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UNIFORM NON-/7-NESS OF ¢-DIRECT SUMS OF BANACH
SPACES

MIKIO KATO, KICHI-SUKE SAITO, AND TAKAYUKI TAMURA

ABSTRACT. We shall characterize the uniform non-¢7-ness of the 1-direct sum
X @y Y of Banach spaces X and Y, where 1 is a convex function on the unit
interval satisfying certain conditions. A previous result for the uniform non-
squareness will be obtained as a corollary. As extreme cases we shall treat the
{1-sum and the /.-sum of finitely many Banach spaces.

1. INTRODUCTION

The 9-direct sum X @, Y of Banach spaces X and Y is the direct sum X ®Y
equipped with the norm [|(z,y)|ly = ||(||=]], [|¥]|])||, where the ||(-, -)||y term in the
right hand side is the absolute normalized norm on C? corresponding to a convex
(continuous) function ¢ with some conditions on the unit interval. This extends
the notion of the £),-sum X @, Y. Since it was introduced in Takahashi, Kato and
Saito [33], the v-direct sum of Banach spaces have been attracting a good deal of
attention and been treated by several authors ([5, 6, 7, 8, 18, 19, 21, 22, 23, 25, 27,
28, 29, 30, etc.]; cf. [31, 32, 27]). In particular the present authors [19] showed that
X @y Y is uniformly non-square if and only if X and Y are uniformly non-square
and neither ) = 91 nor ¢ = 1), where 11 (t) = 1 and ¥ (t) = max{1l — ¢, t} are
the corresponding convex functions to the £1- and f,,-norms respectively.

The purpose of this paper is to characterize the uniform non-¢}-ness of
X @y Y. In comparison with uniform non-squareness the situation will be much
more complicated than expected. Section 2 is devoted to some definitions and
preliminary results.

In Section 3 we shall show that under the assumption ¥ # ¥1,9e0, X ©y Y is
uniformly non-¢7 if and only if X and Y are uniformly non-/7. Keeping in mind the
result on uniform non-squareness mentioned above, the following question arises:
Let X and Y be uniformly non-£7. Then is it possible that X @&, Y is uniformly
non-f1 with ¢ = 11 or ¢ = o7 Our next result (Theorem 3.5) will answer this
question as follows: Under the assumption that both X and Y are not uniformly
non—ﬁf_l, X @y Y is uniformly non-£7 if and only if X and Y are uniformly non-
7 and ¢ # 91,1s. This assumption on X and Y cannot be removed; we shall
present some counterexamples in the final section. Theorem 3.5 covers the above-
mentioned result concerning uniform non-squareness as the case n = 2. Another
corollary states that the £, ;-sum X ®,,Y, 1 < g <p < 00, ¢ < 00, is uniformly
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non-/7 if and only if X and Y are uniformly non-£7. The same is true for the £,-sum
X®,Y,1<p<oo, as the case p = q.

In the next two sections we shall treat the extreme cases. Some results obtained
there will be applied to construct the examples stated above. According to Theorem
3.5 the l1-sum X @1 Y and the lo-sum X @ Y can be uniformly non-f7, n > 3.
In Section 4 we shall first show that the ¢;-sum X @; Y is uniformly non-¢7 if
and only if there exist positive integers ni,ng with niy +n9 = n — 1 such that X is
uniformly non—ﬁ?1Jr1 and Y is uniformly non—ﬁ’f2Jr1 (Theorem 4.2). This was recently
extended for finitely many Banach spaces in [22] with a different proof. We shall
present another proof of this result by induction based on Theorem 4.2 (Theorem
4.3). A corollary states that if the ¢;-sum (X; @ --- @ X,,)1 of Banach spaces
X1,..., Xy is uniformly non-¢7, then each X; is uniformly non—ﬁ?_l. Theorem 4.2
says the converse of this statement holds true for m = 2 and n = 3, that is, X &1 Y
is uniformly non-¢3 if and only if X and Y are uniformly non-square (recall that
X @1Y cannot be uniformly non-square for all X and Y").

In Section 5 we shall show that for m uniformly non-square spaces X1, ..., Xm,
the log-sum (X1 - @ X ) oo is uniformly non-¢7 if and only if m < 2"~ (Theorem
5.2). In particular X @, Y with uniformly non-square spaces X, Y is uniformly non-

" if and only if n > 3, or equivalently, if X and Y are uniformly non-square, then
X @0 Y is uniformly non-¢3. In contrast with the £1-sum case the converse of this
result is not valid. Instead we shall obtain that for three Banach spaces X, Y and
Z, (X ®Y @ Z)s is uniformly non-£3 if and only if X, Y and Z are uniformly non-
square. Theorem 5.2 also yields that ¢7 is uniformly non-¢7 if and only if m < 271,
which will be useful to construct various examples. (Refer to the recent paper [23]
for some further results on {s-sums.) In the final Section 6 we shall present some
counterexamples for Theorem 3.5.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let ¥ be the family of all convex (continuous) functions ¢ on [0, 1] satisfying

(2.1) P(0) =¢(1) =1 and max{l —¢,t} <¢(t) <1 (0<t<1).

For any absolute normalized norm || - || on C2, that is, ||(z,w)| = ||(|2], |w]|)| for all
2w e Cand [[(1,0)] = [[(0, 1)) = 1, let

(2.2) () =[A -t (0<t<1).

Then ¢ € . Conversely for any ¢ € ¥ define

(121 + ol () i (2, w) # (0,0),

(2.3) 1z w)lly =

0 if (z,w) = (0,0).
Then || - || is an absolute normalized norm on C? and satisfies (2.2) (Bonsall and
Duncan [2], see also [31, 32]). The ¢y-norms || - ||, are such examples and for all
absolute normalized norms || - || on C? we have

(2.4) I lloo < - <M1l



UNIFORM NON-£3-NESS OF 4-DIRECT SUMS OF BANACH SPACES 15

([2]). By (2.2) the convex functions corresponding to the £,-norms are given by

{A =t +2}/P if 1 <p < oo,
(2.5) Pp(t) =
max{l — t,t} if p = o0.
Let X and Y be Banach spaces and let ¢» € W. The ¢-direct sum X @, Y of X
and Y is the direct sum X @ Y equipped with the norm

(2.6) Gz )y = Cl21ls [y,

where the ||(-, -)||y term in the right hand side is the absolute normalized norm on
C? corresponding to the convex function 1 ([33, 18]; see [30] for several examples).
This extends the notion of the £,-sum X @, Y and provides a plenty of concrete
non /,-type norms on X @Y.

A Banach space X is said to be uniformly non-¢¢ (cf. [1, 24]) provided there
exists € (0 < € < 1) such that for any x1,...,x, € Sx, the unit sphere of X, there
exists an n-tuple of signs # = (#;) for which

n
> 0z,
=1

As is well known, we may take x1, ..., z, from the unit ball Bx of X in the definition
(This is immediately seen from Lemma 3.1 below; see [20, Corollary 4]). In case
of n = 2 X is called uniformly non-square ([15]; cf. [1, 24]). Though we can
consider the case n = 1 formally, no Banach space is uniformly non-/£1. The following
fundamental fact was proved in Brown [3] (see also Hudzik [13]).

(2.7) <n(l—e).

Proposition A ([3, 13]). Let X be a Banach space. If X is uniformly non-(}, then
X s uniformly non—ﬁ’f'H for every n € N.

For convenience of the reader we shall present a proof. Assume that X is uni-
formly non-¢7. Then there exists ¢y > 0 such that for any x1,...,x, € Sx there ex-
ists an n-tuple of signs (¢;) such that || 327, 0;x;]| < n(1—eo). Then for f,41 = +1
we have
n+1

> bz
j=1

Now we recall a sequence of monotonicity properties of absolute norms on C2,
which is essential in our later discussion.

Lemma 2.1 (2, p.36, Lemma 2). Let ¢ € U.
(i) If [pl < |r| and [q] < |s|, then || (p, @)l < [|(r, )|
(i) If |p| < |r| and |q| <'|s|, then [[(p, q)lly < [[(r,s)[ly-

The following assertion is not true in general:

(2.8) Let |p| < |r| and |q| < |s|. If [p| < |r| or|q| < |s|, then [|[(p,q)[ly < [I(r; )|y

nep
n+1

> 05z + [0ns12naall < n(1l—€) +1 = (n+1)(1 - ).

i=1

<

Indeed the fo.-norm does not satisfy (2.8). Those norms satisfying (2.8) are char-
acterized as follows.
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Proposition 2.2 (Takahashi, Kato and Saito [33]). Let 1) € W. Then the following
assertions are equivalent:
(i) If 2] < [u] and Jw| < |v], or [z] <|u| and Jw| < |v], then [|(z,w)|ly < [[(u,v)]ly-

(ii) ¥ (t) > Yoo(t) for all t € (0,1).

In particular, if ¢ is strictly convex, that is, if, for any s, ¢t € [0,1] (s # t) and for
any ¢ (0 < ¢ < 1), one has ¥((1 —c)s+ct) < (1 —c)p(s) + cp(t), then the assertion
(i) holds true. A more precise (component-wise) result is given in [33]. The next
proposition presents a condition for specified (z,w) and (u,v) to satisfy the above
assertion (i) for a general ¥ € .

Proposition 2.3 (Kato-Saito-Tamura [20]). Let 1) € V. Let (z,w), (u,v) € C2
(i) Let |z| < |u| and |w| = |v|. Then [|(z,w)|ly = |[(u,v)|ly if and only if
1(z, w)ly = |w].
(ii) Let |z| = |u| and |w| < |v|. Then ||(z,w)|y = ||(u,v)|y if and only if
Iz, w)lly = 2]

3. UNIFORM NON-{7-NESS OF X @Y, ¥ # ¥1, Yoo

We need a sequence of lemmas. The first lemma, a recent result of the present
authors [20], is of independent interest as it provides a sharper inequality than the
triangle inequality and its reverse (see also [9, 26]).

Lemma 3.1 (Kato-Saito-Tamura [20]). For all nonzero elements x1,xa, ..., Ty in
a Banach space X

n
Ly
3.1 * (" 2T ) 2, s
j=1
n n
Lemma 3.2. Let {:L‘gk)}k, e {a:g{)}k be n sequences with nonzero terms in a Ba-
nach space X for which {||:1:gk)H}k,, {H%(zk)H}k converge to monzero limits, re-

spectively. Then the following are equivalent.

. - k . - (k
(i) klim Zx§ g klim Z Hx )||
00 = oo]:1
n (k)
() Jim | >ty |
el

Proof. Let limg_ o ngk)H = a; > 0. Suppose (i) to be true. Then by (3.1) we have

®) Z” )

7j=1

n (k)
>

J=1

o
(VAN

k:
[ ‘ mini<j<n Hw
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k .
)H = min{ay,...,an}.

Hence we obtain (ii). The converse implication is immediate from Lemma 3.1. [

as k — oo, where it should be noted that limy_,o, mini<;j<, Ha:§

Lemma 3.3. Let {:rgk)}k, cee {x%k)}k be n sequences in a Banach space X for which
the sequences of their norms are convergent. Then the following are equivalent.

- k . - k
Do) = fim 3 a5
j=1 =1

(ii) lim axgk) + Z:ng)
j=2

(i) lim

k—o0

_ CIIR R0
—khirgo allx; ||+Z||x] || for all a>0.

k—o0 -
Jj=2

-
)

® = ®l . (k) NS
ary’ + z;xj | = kli)rgo allzy || + z; ||$J I| for some a > 0.
]: ]:

Proof. (i) = (ii). Assume that (i) holds. Then, since for any o > 1

k - k n i n N
w4300 = o>l (a3l
j=2 Jj=1 =2
> af Yol - (-1 e,
j=1 =2
we have
tminf ||t + 3725 = e lim 37 e - (0= 1) lim 37 )
=2 =1 j=2

n
) k . k
= o tim o] + lim 3 2,
from which it follows that

aacgk) + Z x§k)
j=2

3.2 li
(3.2) Jim

n
— | (k) (k)
Jim {afa)+ a0
7j=2
If 0 < o <1 we have

amgk) + Z a;;k)
j=2

v
]
S
z
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Hence

Oé.%'l Z (k

lim inf
k—oo

v

n
: (b) i (12®
Jim >l = (1= ) Jim 277
J=1
(k) 11
= alim o H+klggoz;|!$j |
]:

which implies (3.2). The implication (ii) = (iii) is trivial.
(iii) = (i). Assume that (3.2) is true for some ag > 0. If ap > 1, since

k)+2m§-k) = aoxl +Za¢ 0—1)()
j=2

k k k
> Jlaga? + 3o D1,
j=2
we have
liminf ®| I O B (an— 1) i (k)
iminf|| 7"\ > ap lim [l237] + Jim Y 257 — (a0 — 1) lim [l27”
j=1 j=2

. - k
= lim > [z
j=1

k—oo

from which we have (i). If 0 < g < 1, we have

N, 1 k "k
ng) = a—oaomg)—FZaz;)
j=1 =2

_ | W o=~m) (L Nk
= la QT —i—jZ:;xj o 1 T

=2
k) 1 Z k
> L aga? Z< ( 1)Z||x§>u
j=2
Hence
. " k)
hggéf Z:rj
j=1
1 (k) )
> o (oo dm 1ot im 32 ~(a-1) jim Zux

n
TR (S N (k)
= lim [lz;7] + lim 52\% I,
j:

and therefore we obtain (i). This completes the proof.



UNIFORM NON-£}-NESS OF 1-DIRECT SUMS OF BANACH SPACES 19
Now we are in a position to present our first main result.

Theorem 3.4. Let X and Y be Banach spaces and let v € U, # 11,%e0. Then
the following are equivalent.

(i) X @y Y is uniformly non-(7.

(ii) X and Y are uniformly non-(7.

Proof. The implication (i) = (ii) is trivial because X and Y are identified with
subspaces of X @, Y. We show (ii) = (i). Assume that X and Y are uniformly
(k) (k))}

non-¢7 and X @Y is not uniformly non-£7. Then we have n sequences {(z;", y;
in X@®yY (j=1,...,n) such that

(3.3) |](x§-k),yj(-k))H¢ =1foralll<j<nandkeN

and

(3.4) Zej( (-k, yj H ZQIL’ ZQJyJ —mnas k— oo
j=1 "

for all n-tuples of signs § = (6;). Since ||:E H < ||( - ,y] )H¢ = 1, the sequence
{ngk)H}k is bounded for all j. So { ||l‘§k II}x has a convergent subsequence. For

simplicity we assume that {||x§k) ||}5 itself converges. As the same argument works

for the sequences {||yj(k)H}k, {|| > e Hj;rg-k)H}k, and {|| > i1 ijj(k)H}k, we may
assume that

(3.5) a5 = aj, Nyl = b as k — oo
and
(3.6) S0 - 4,
j=1
(3.7) WPl — B

as k — oo. Then letting k — oo in (3.3), we have
(3.8) l(aj,b;)]ly =1forall 1 <j<n.
By (3.4) we have

(3.9) (g, Bo)ll,y = n for all = ().
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Hence
. = k & k
w=ln sl = g | (10|, | o))
j=1 j=1 ¥
. - k = k
< Jim | (10 30 1)
i=1 j=1 "
- ()| | S
j=1  j=1 v M=t ¥

IN

n
> ll(ag b)lly =n
j=1
and thus we have

(3.10) | (Ag, Bo) ||l = =n for all 6 = (0;).

n n
(e 2n)

j=1  j=1 "
We note here that from the condition 1 # 1 it follows that a; > 0 for all j, or
bj > 0 for all j. Indeed suppose that a;, = bj, = 0 with some j; and jo. Then by
(3.8), j1 # jo and b;, = aj, = 1. Since

n

> (a;,b;)

(aj,,b51) + (ajy,bj0) + Z (aj,b;)

]:1 T/J j#jl:j? '(,Z)
< 0,0+ (L0)[lp+ || D (a,b5)
J#j1,32 P
= H(l’ 1)”1/) + Z (ajvbj) s
J#J1,52 P
we have
2> (1,1l > || > (ay,by) > (ajby)| =n—(n-2)=
Jj=1 ) J#j1,52 P

by (3.10), whence ||(1,1)||, = 2. Consequently we have

o)-1e2)]

which implies that 1 = 1, a contradiction.
Now we obviously have Ay < Z;”Zl a; and By < Z?:l b;. Consequently in view
of Lemma 2.1, for all § = (#;) there is no case that

n n
Ag < ajand By <Y _b;.
j=1 j=1

=1,
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Case 1. Let Ag =>""_  aj and By = > ", b; for all 6 = (0;).
(a) Assume first that a; > 0 for all j. Then

lim H 29 5 ’ Ap = iaj = leIIOlOi |’93$§k)||

k—o0
Therefore by Lemma 3.2 we have

(k)

ZW’“!

which implies that X is not uniformly non-¢7, a contradiction.
(b) If bj > 0 for all j, the parallel argument works for Y.
Case 2. Let (a) Ag = > 7 a; for all 0 = (0;) and By < 3°7 | b; with some
0" = (07), or (b) Ag < 3%, a; with some ¢' = (¢;) and By = > 7, b; for all
6 = (6;). It is enough to see the case (a). Since
= n,

1(Agr, Bor) |l = H (Zaa’a > bj)
j=1  j=1 "

we have by Proposition 2.3 377, a; = ||(Agr, By)|ly = n and hence a; = 1 for all j
(recall 0 < a; < 1). Consequently X is not uniformly non-¢} as in Case 1(a).
Case 3. Let Ag < > i_; aj and By < Y7, b; with different 6 = (0;) and ¢" = (07).
Then we have

lim
k—oo

‘ =n for all 6 = (0;),

3.12 Ay < a; and By = b;
J j
j=1 j=1
and
(3.13) Ay = Zaj and By < ij.
j=1 j=1

By Proposition 2.3, (3.10), (3.12) and (3.13) we have

> aj =4y =|[(Ag, By)lly =n and ) b; =By =||(4g, By)lly = n.
j=1 =t

Therefore by (3.10)
B ‘ (Z% ij) — e mlly = (L Dl
=t =1 g

and thus ||(1,1)]|, = 1. Consequently we have

OB |

which implies that 1 = 1, a contradiction. This completes the proof. O

27
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The foregoing Theorem 3.4 does not answer the following: Let X and Y be
uniformly non-£7. Is it possible for X @, Y to be uniformly non-¢7 with ¢ = or
1 = YPoo? The next theorem will answer this question.

Theorem 3.5. Let X and Y be Banach spaces and let p € W. Assume that neither
X norY is uniformly non—ﬁ’f‘l. Then the following are equivalent.

(i) X @y Y is uniformly non-£7.

(ii) X and Y are uniformly non-07 and v # 11, %ec.

Proof. We merely see the assertion (i) = (ii). Assume that X @, Y is uniformly
non-¢7. Then X and Y are uniformly non-¢} as mentioned before. Since X is not
uniformly non-¢} "1, there exist n — 1 sequences {xgk)}k, ce {$£zk—)1}k C Sx such
that

(3.14) lim

k—o0

n—1
7j=1

for all 0; = £1. We ﬁrst assume that @ = 1. Take y € Sy. Then the n sequences
{(acgk),O)}, ey {(:L’n 1,0)},{(0,y)} are in the unit sphere of X @, Y and

n—1 n—1
. A (k:) s (k) _
Jlim j;ej( 7750) +6,(0,y) 1—klggo ;93% + [|6nyll | =n,

from which it follows that X @1 Y is not uniformly non-¢7, a contradiction. Thus
we have ¥ # 1. Next assume that ¥ = 1. Since Y is not uniformly non—é’ffl,

there exist n — 1 sequences {ygk)}k, e {ygc_)l}k C Sy such that

(3.15) kli)rgo jyj(.k)

for all 9 = +1. Then the sequences {(951 ,y1 )}k,...,{( nk)l,yn 1) s

{(— xg ,yl )}k are in the unit sphere of X @ Y. Owing to Lemma 3.3 it follows
from (3.15) that

n—1
. k k
= tim 2017l + D 1yl | =
—00 j:2

n—1
2019 + 3 6,
=2

lim
k—o0
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Hence, if 6; = 0,,, we have

n—1
. k k
klggo Zé?]( (-),y]( ))+9 (— wg),:ﬁ ))
J=1 0
. k
= kli)r{.lo ZGﬂE ) ZHJ )+ 20, Y (k)
=, ® s (k)
= klirrolo max Zﬁjxg iy, + 201y
Jj=2
= ® ()
= max klggo ZHjxj hm ]yj —|— 201y,
7j=2
n—1 )
= max kILHOlO Zﬂjxj ,n oy =n.
7j=2
If 61 = —6,,, by (3.14) we have
n—1
. k k k
klirrolo 29( (-),yj( ))+9( 33(1):y§))
J=1 o0
SIC (k)
= kliﬂrg@max Zﬁjxj + 26127 ||, Y5
=2
= ® (k) (k)
= mmax k]LI& ZQ@jfL‘j + 2911‘1 ’khigo iY;
J:
. . B
= max\ n, kli)rgo iY; =n.

Consequently X @© Y is not uniformly non-£7,

1) # 1o, which completes the

proof.

23

a contradiction. Thus we have

O

Remark 3.6. In Theorem 3.5 we cannot remove the condition that neither X nor Y

is uniformly non-£7~

L 'We shall see this in the final section.

Theorem 3.5 yields the following recent result of the authors.

Corollary 3.7 (Kato-Saito-Tamura [19]). Let X and Y be Banach spaces and 1) €

W. Then the following are equivalent.
(i) X @y Y is uniformly non-square.
(ii) X and Y are uniformly non-square and 1 # 11, so-
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Now we consider the (Lorentz) ¢, ;-norm || - ||p 4, 1 < ¢ <p < oc:

1/q
|G, 20)llpg = {0+ 2007150 L,

where {2}, 25} is the non-increasing rearrangement of {|z1], |22|}. (Note that in
case of 1 <p < g <00, ||+ ||pq is not a norm but a quasi-norm (cf. [16], [34, p.126]).
Clearly ||-|,q is an absolute normalized norm and the corresponding convex function

Vpq is given by

{(1 — )74 20/p~ 140}l /a §f 0 <t <1/2,

(3.16) Pp.q(t) =
{t? 4 20/P=1(1 —t)a}V/a if 1/2 <t < 1.

Thus 1, 4 yields the £, ;-sum X @, , Y

1. 1/q
(3.17) @, )llpg = {max(llel?, y17) + 292~ min(all?, Jy|4)}

Corollary 3.8. Let 1 < ¢ < p < 00, g < 00. Then the £ 4-sum X1 ©pq Xo is
uniformly non-07 if and only if X1 and Xo are uniformly non-07. In particular the
lp-sum X1 ®p Xo, 1 < p < 00, is uniformly non-07 if and only if X1 and Xo are
uniformly non-€7. The same is true for the uniform non-squareness.

4. ¢1-SUMS

The f1-sum X @1 Y cannot be uniformly non-square for all X and Y, whereas
Theorem 3.5 indicates that it can be uniformly non-£7, n > 3. In this section we
shall treat the uniform non-¢}-ness of the ¢;-sum of finitely many Banach spaces.
We shall denote by (X7 @ --- @ X,)1 the ¢1-sum of m Banach spaces Xi,..., X,
though it is not consistent with the notation X @7 Y. First we shall prove the
following.

Proposition 4.1. Let X and Y be Banach spaces and let n > 3 and n = ni + na
with positive integers ni,ny. Let X ®1Y be uniformly non-7. Then X is uniformly
non-01* or'Y is uniformly non-£1?.

Proof. Assume that X is not uniformly non-¢i* and Y is not uniformly non-£72.
Then there exist {xgk)}k, e {:z:q(fl)}k in Sx and {y%k)}k, Cee {y,ﬁ’?}k in Sy such that
limy o || D2 9/~ZE(k)H = ny for all (6}) of ny signs and limg .o || 752 9’-’yj(.k)|| =

j=1"5"j J=177
}2 for;lt (07) of n signs, respectively. Define (zgk),wgk)), oo fLIjLnQ,wg?er) in
D1 y
k) (K k
(P, 0f?) = @90, 0 wl) = 1), 0),

k k k k k
P w® ) = 0,9™), . R w® Y = (0,58).



UNIFORM NON-£3-NESS OF 4-DIRECT SUMS OF BANACH SPACES 25

Let § = (#;) be an arbitrary (n; + ng)-tuple of signs. Then H(z](k), w](.k))Hl =1 for

all1 <j<nandkéeN and

ni+no ) ( ) ni ni1+ne
k k k)
> 0w = ([ e X e,
j=1 1 j=1 Jj=ni+1 1
o wf LS, ®
S DT B (D SN EE
j=1 j=ni1+1

as k — oo. This implies that X @1 Y is not uniformly non-¢7**"?  which completes
the proof. O

Theorem 4.2. Let X and Y be Banach spaces. The following are equivalent.

(i) X @1 Y is uniformly non-£7.

(ii) There exist positive integers ny and ng with nqy +ne = n — 1 such that X is
uniformly non-€3* ™ and Y is uniformly non-€72*1.
Proof. (i) = (ii). Assume that X @; Y is uniformly non-¢}. Let ny = min{m €
N : X is uniformly non-¢/"*'} (note that X is uniformly non-¢}). Then X is
uniformly non—f’flﬂ, but not uniformly non-¢7*. Therefore Y is uniformly non-
¢7™"™ Dby Proposition 4.1 and hence n — ny > 2. Letting ng = n —ny — 1, we have
the conclusion.

(i) = (i). Assume that X is uniformly non-¢'** and Y is uniformly non-¢2+*
with ny +no = n —1. Suppose that X @1 Y is not uniformly non-#}. Then we have

n sequences {(z; ),yj Vhein X &1Y (j=1,...,n) such that
(4.1) ||(1‘j ,y] )||1:1f0r all<j<mnand ke N
and

n

>0,y

=1

(4.2)

—mnas k— oo
1

=) (e o

for all n-tuples of signs § = (9 ). Asi 1n the proof of Theorem 3.4 we may assume that

eachofthesequences{”a: H}k, {||y H}k, {H ijl Oja:j H}k7 and{H ijl Jy] H}k
has a limit and

k k
(4.3) e — @, N1yl = b as k — oo
and
(4.4) H — Ay, jyj H — By as k — oo.

Letting k — oo in (4.1), we have

(4.5) l(aj,bj)[1 =1 forall 1 < j <mn,
and by (4.2)

(4.6) |(Ag, Bp)||1 = n for all 8 = (6;).
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Then as (3.10)

| (Ag, Bo) 1 = =n for all § = (6).

(za], >oh)
1
Since Ag < E?:l aj and By < ijl bj, we have
(4.7) Ag = Z aj, Bg = ij
P =1

for all @ = (0;). Let L ={j : a; =0} and M = {j : b; = 0}. Since X is uniformly

1
non—ﬁflJr , we have

2%

20 Zk

jeLe Lj

card(L¢) = lim

k—o0

<ni+1

by (4.7) and Lemma 3.2. In the same way card(MC) < ng + 1. Therefore
card(L) >n —mn; —1 =na.

On the other hand, as L C M€ (recall that ||(a;,b;)|| =1 for all j), we obtain that
card(L) < card(M€) < ng + 1, a contradiction. This completes the proof. O

Recently Theorem 4.2 was extended for finitely many Banach spaces in [22] as
follows (with the different proof). We shall present another proof by induction
based on Theorem 4.2.

Theorem 4.3 (Kato and Tamura [22, Theorem 1]). Let Xi,...,X,, be Banach
spaces. Let n be an arbitrary positive integer with n > 2. Then the following are
equivalent.

(i) (X1 @& Xin)1 is uniformly non-£7.

(ii) There exist positive integers ni, ..., Ny withny +ng+-+-+ny =n—1 such
that X; is uniformly non—@’fiJrl foralll <i<m.

Proof. According to Theorem 4.2 our assertion is valid for m = 2. Assume that the
assertion holds for m. Then, since the space (X7 @ -+ @ X;p+1)1 is expressed as
(X1®: @ Xint1)1=(X1 -+ © Xon)1 D1 X1, we have that (X1 & -+ @ Xong1 )1
is uniformly non-¢7 if and only if there exist positive integers ng and n,,4+1 with

no + Nm4+1 = n — 1 such that (X7 @ -+ @ X,;,)1 is uniformly non—ﬁ?ﬁl and X1 is

i1+l
uniformly non-¢; +1t

£n0+l

. By the induction assumption, (X1 ®---® X,;,)1 is uniformly
non- if and only if there exist positive integers nq,...,n,, with ny +no +---+
nm = ng — 1 such that X; is uniformly non—ﬁ?#l for all 1 <4 < m. This implies

that our assertion holds true for m + 1, which completes the proof. O

From Theorem 4.3 it follows that if even one of Xi,...,X,, is not uniformly
non—f?_l, then (X7 @ --- @ X;)1 cannot be uniformly non-¢7, that is:

Corollary 4.4. Let Xy,...,X,, be Banach spaces. If (X1P---® Xyn)1 s uniformly
non-£1, then each of X; is uniformly non—ﬁ’f_l.
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Indeed, assume that (X; @ --- @ X,,)1 is uniformly non-¢. Then by Theorem
4.3 there exist positive integers ni, ..., n, with ny +---+n,, = n — 1 such that X;
is uniformly non—ﬁfi+1 foralll<i<m. Asn;+1<ni+---+n,=n—1, X; is
uniformly non—f’ffl for each 7 by Proposition A.

As the case m = 2 and n = 3 Theorem 4.3 yields the following interesting result.

Theorem 4.5. Let X and Y be Banach spaces. Then the following are equivalent.
(i) X @1Y is uniformly non-£3.
(ii) X and Y are uniformly non-square.

5. £so-SUMS

In this section we shall discuss the uniform non-¢7-ness of the fo.-sum of a finite
number of uniformly non-square Banach spaces. The f,-sum of Banach spaces
X1,...,Xm, which we denote by (X1 @ -+ ® X,;,)00, is their direct sum equipped
with the norm | - ||oo = max{|| - |xy,---, | - I x,.}-

Proposition 5.1. Let X be a uniformly non-square Banach space and let {:cgk)}k,

cee {a:gc)}k be n sequences with nonzero terms in the closed unit ball of X. Let

(5.1) B({z{"},.... {z{P})
= {(Hj) : klirgo

Then card(B({xgk)}, cee {xq(@k)})) <1.

n

j=1

=n, 01:1, Gj:il (2<j<n)}.

Proof. We shall prove this by induction. In case of n = 2 our assertion is valid as X
is uniformly non-square. Assume that our assertion holds true for any n sequences

in Bx, n > 2. Let {xgk)}k, e {555;’21}k be n + 1 sequences with nonzero terms in
Bx. Suppose that (6;), (¢;) € B({xgk)}, ey {xsﬁzl ). Then

n+1 n+1

k k
> i >l
j=1 =1

Denote by B(n) the set B({xgk)}, e {x%k)}) for the first n sequences {xgk)}k, e
{x%k)}k Then

= lim =n+1.

k—oo

lim
k—o00

n n+1
. k . k k
vz S 2 |50 -l
7=1 7j=1
> (n+1)—1=n.
Thus we have limyco [| D27, ijg.k) | = n. The same is true for (¢)7_;. Therefore

(07)7—1,(07)7—; € B(n), which implies that §; = 0} for all 1 < j < n by the
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induction hypothesis. If 0,11 # 0, 1, we have limy oo [| 327, ijg.k)ixfﬁl | =n+1.
Consequently

. 1 k k . k)
klingo n(nZij§- )>i$7(1421 = klin;o Z@x( i:anrl =n+1
j=1
— him 1S g™
= 0
j=1
. I L)
= dim [ D305 £ 20
00 =
(note that limy_ foﬁlH = 1), from which it follows by Lemma 3.3 that
o, ( 29 g ) = it [H > el + Hx;’iZlu]
=1

This contradicts the uniform non-squareness of X. Therefore we obtain (6;) = (),

ie. card(B({azgk)}, {xnﬂ )) <1, which completes the proof. O

Theorem 5.2. Let X1,...,X,, be uniformly non-square Banach spaces. Then
(X1® - ® Xn)oo is uniformly non-€7 if and only if m < 271,

Proof. Assume first that (X; @ - @ X,,)e0 is uniformly non-¢7. Suppose that m >
2L Let t = 2771, Then (% is uniformly non-¢} as ¢! is imbedded into (X; ®

@ Xm)oo- Werecall Rademacher matrices Ry, = (rl(] )) (2™ x n matrices; see [17]):

1
Ry,
1 1
(5.2) Ry = < I ) Ry = |—+—| (n=12..)
D | Ry
-1
Take z1 = (rﬁl), . rff)), e Xy = (rﬁ?, . Tt(Z)) from the unit sphere of ¢4 (we

write n columns of the upper half submatrix of R, inrow). Let = (#;) be arbitrary
n signs with #; = 1. By the definition of R,, there exists an ig, 1 < i9 < m, such
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that 0; = 7"(nj) for all 1 < j <n. Then we have

10
= ZGj(rg?),...,rg?,...,Tg-L))
j=1

n
> 0z,
j=1

o0 o0

[e.e]

_ Zejrﬁ‘), N "Zgjrl(;?, o Zejrgz)
j=1 j=1 j=1

= max Zﬁjrﬁl) ey ZHJ‘TZ%) R 293‘7%(?)
j=1 3=1 j=1

n n
_ (1) ()| \ _
= max E ‘937"1]‘ R (T E ertj =n
j:l j:l

and also [| 327 (=0;)zjlloc = n. Since 0 is arbitary, ¢'_ is not uniformly non-£7,
a contradiction. Consequently, if (X; & -+ & X;,)oo is uniformly non-¢7, we have
m < 2L

Conversely assume that m < 277!, Let

n
> b
j=1

Then there exist n sequences {xgk)}k, cee {x%’“)}k in the unit sphere of (X7 ®--- &

(5.3) K =sup aniijrtll PT1 e T € S(X @0 X m) oo
=

o

Xim)oo such that K = limg oo ming, —+1 || 227, ijg-k) ||oo- Put xgk) = (xgli), . ,xﬁﬂ),
e ,ZL‘ng) = (xglfl), ... ,xq(q]%) By choosing subsequences if necessary, we may

assume that limg oo || D27, Hjng)ﬂ exists for each 1 < i < m. Let (6;) €
B({z™}, ..., {z'M}). Then as

n = lim Zﬁjxék)
j=1

n

k k

Jj=1

= lim

k—o00 k—o00

o0 o0

k—o0

= lim Z ijgl;), ey Z ijgf;
7j=1 7=1

o0

g ) g o)
>0z, > Ot
j=1 j=1
there exists 1 <49 < m such that limy_.o || X274 ij(k)H =n. Let

i0J
Z ijg?) = n}
=1

for the space X; and let B = J;_; B;j(n). Then by Proposition 5.1 card(B;(n)) <1
and hence card(B) < m. Therefore denoting by A the set of all n-tuples (6;) of

lim
k—oo

= INa

»

..., lim
k—o0

k—o0

(54) Bi(n):= B({x§’f’},...,{x§i>}>={(0»: 6 =1, lim
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signs with #; = 1, we have card(A) — card(B) > 2"~! —m > 0. Consequently there

exists (07) € A such that limg oo [| Y7 05 (k) | <n forall 1 <i < m, whence we

j=1"jTij
0z

have limg oo || 3272 0575 loo < n. Since

n n
T : (k) . v (k)
K= klingo 9;1;1111 Zejmj < kli»Holo Zejmj < n,
Jj=1 Jj=1 oo
(X1 @ - ® Xin)oo is uniformly non-¢7. This completes the proof. O

As the case m = 2 in Theorem 5.2 we have the next result.

Corollary 5.3. Let X andY be uniformly non-square Banach spaces. Then X @Y
s uniformly non-£1 if and only if n > 3.

This is equivalent to:

Corollary 5.3 bis. Let X and Y be uniformly non-square Banach spaces. Then
X oo Y is uniformly non-f3.

According to Theorem 4.5 the f1-sum X @1 Y is uniformly non-¢3 if and only if
X and Y are uniformly non-square, while the converse assertion of Corollary 5.3 bis
for the fo-sum X @ Y is not true as we shall see in Remark 5.5 below. Instead we
shall obtain the following result which is interesting in contrast with Theorem 4.5.

Theorem 5.4. Let X, Y and Z be Banach spaces. Then the following are equiva-
lent.

(1) (X DY @ 2)s is uniformly non-£3.

(ii) X, Y and Z are uniformly non-square.

Proof. The implication (ii) = (i) is a consequence of Theorem 5.2. We shall prove
that (i) implies (ii). Assume that (X@Y ©2) is uniformly non-£3 and the assertion
(i) does not hold. We may assume that X is not uniformly non-square without loss
of generality. Let W =Y @ Z. Then W is not uniformly non-square by Corollary
3.7. Therefore there exist {xgk)}k, {:cgk)}k C Sx and {wgk)}b{wék)}k C Sw such
that

. k k
(5.5) Jim 2t & 25 = 2
and
(5.6) lim ol £ wi | =2,

(k) (k)) ((k) (k)) (m(k) (k))

respectively. Then (z7, w, Ty, We 5, € Sxg. w- Since

k k k

1z, w0 + (@8, wi) + (28, i)l
k k k k k k

1@ + 28 + 28 0 + w0l — 0o,

owing to Lemma 3.3 with (5.5) and (5.6) we have

k k k k k k
1@, w) + @8, wi) + @8, =0 o = 112 + 225, 10l )]0 — 3
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and
k k k k k k k k k
1@ 0y = @, wi?) + (@8, —w0i) oo = 112, 0 = 20 ) o0 — 3
as k — oo. In the same way

1z, w0y + (@8 wi) = (28, —wi)[|oo — 3 as k — oo

Consequently we obtain that (X @Y @ Z)oo = X @ W is not uniformly non-£3,
a contradiction, which implies that X is uniformly non-square. This completes the
proof. O

Remark 5.5. Let X, Y and Z be uniformly non-square Banach spaces and let W =
Y &« Z. Then X ©, W is uniformly non—éi’ by Theorem 5.4, whereas W is not
uniformly non-square. Thus the converse assertion of Corollary 5.3 bis is not true.

We shall close this section with the following extremely useful result to construct
various examples.

Corollary 5.6. (™ is uniformly non-€} if and only if m < 271,

6. EXAMPLES AND PROBLEMS

In Theorem 3.5 we have seen that if X @y Y is uniformly non-£7 and if neither
X nor'Y is uniformly non—ﬁf—l, then ¢ # 1,%s. We shall give some examples
below which show that we cannot remove the assumption that X and Y are not
uniformly non-£7~1.

Examples. (i) Let X = 3| Y = (4 and ¢ = ¥». Then X @ Y = £7. Owing to
Corollary 5.6, X @u, Y is uniformly non-¢{, whereas X is uniformly non-¢3 and Y’
is not uniformly non-£3.

(i) Let X = (%)Y = ¢3 and ¢ = 1. Then by Corollary 5.6 both of X and
Y are uniformly non-¢3. By Theorem 4.2 (let ny = ny = 2), X @1 Y is uniformly
non-£;. whereas both of X and Y are uniformly non-¢{. (Recall that Corollary 4.4
says that for general Banach spaces X and Y, if X @®; Y is uniformly non-¢7, then
X and Y are uniformly non-¢7~1.)

Problem 6.1. Characterize the uniform non-¢7-ness or the uniform non-squareness
of (X1 Xo® - ® Xm)¢ (cf. [18, 32, 27]).

Problem 6.2. Characterize the uniform non-£}-ness of (X1 & --- @ X;,)oo without
the assumption that X, ..., X,, are uniformly non-square.
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