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UNIFORM NON-`n
1 -NESS OF ψ-DIRECT SUMS OF BANACH

SPACES

MIKIO KATO, KICHI-SUKE SAITO, AND TAKAYUKI TAMURA

Abstract. We shall characterize the uniform non-`n
1 -ness of the ψ-direct sum

X ⊕ψ Y of Banach spaces X and Y , where ψ is a convex function on the unit
interval satisfying certain conditions. A previous result for the uniform non-
squareness will be obtained as a corollary. As extreme cases we shall treat the
`1-sum and the `∞-sum of finitely many Banach spaces.

1. Introduction

The ψ-direct sum X ⊕ψ Y of Banach spaces X and Y is the direct sum X ⊕ Y
equipped with the norm ‖(x, y)‖ψ = ‖(‖x‖, ‖y‖)‖ψ, where the ‖(·, ·)‖ψ term in the
right hand side is the absolute normalized norm on C2 corresponding to a convex
(continuous) function ψ with some conditions on the unit interval. This extends
the notion of the `p-sum X ⊕p Y . Since it was introduced in Takahashi, Kato and
Saito [33], the ψ-direct sum of Banach spaces have been attracting a good deal of
attention and been treated by several authors ([5, 6, 7, 8, 18, 19, 21, 22, 23, 25, 27,
28, 29, 30, etc.]; cf. [31, 32, 27]). In particular the present authors [19] showed that
X ⊕ψ Y is uniformly non-square if and only if X and Y are uniformly non-square
and neither ψ = ψ1 nor ψ = ψ∞, where ψ1(t) = 1 and ψ∞(t) = max{1 − t, t} are
the corresponding convex functions to the `1- and `∞-norms respectively.

The purpose of this paper is to characterize the uniform non-`n
1 -ness of

X ⊕ψ Y . In comparison with uniform non-squareness the situation will be much
more complicated than expected. Section 2 is devoted to some definitions and
preliminary results.

In Section 3 we shall show that under the assumption ψ 6= ψ1, ψ∞, X ⊕ψ Y is
uniformly non-`n

1 if and only if X and Y are uniformly non-`n
1 . Keeping in mind the

result on uniform non-squareness mentioned above, the following question arises:
Let X and Y be uniformly non-`n

1 . Then is it possible that X ⊕ψ Y is uniformly
non-`n

1 with ψ = ψ1 or ψ = ψ∞? Our next result (Theorem 3.5) will answer this
question as follows: Under the assumption that both X and Y are not uniformly
non-`n−1

1 , X ⊕ψ Y is uniformly non-`n
1 if and only if X and Y are uniformly non-

`n
1 and ψ 6= ψ1, ψ∞. This assumption on X and Y cannot be removed; we shall

present some counterexamples in the final section. Theorem 3.5 covers the above-
mentioned result concerning uniform non-squareness as the case n = 2. Another
corollary states that the `p,q-sum X ⊕p,q Y , 1 ≤ q ≤ p ≤ ∞, q < ∞, is uniformly
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non-`n
1 if and only if X and Y are uniformly non-`n

1 . The same is true for the `p-sum
X ⊕p Y , 1 < p < ∞, as the case p = q.

In the next two sections we shall treat the extreme cases. Some results obtained
there will be applied to construct the examples stated above. According to Theorem
3.5 the `1-sum X ⊕1 Y and the `∞-sum X ⊕∞ Y can be uniformly non-`n

1 , n ≥ 3.
In Section 4 we shall first show that the `1-sum X ⊕1 Y is uniformly non-`n

1 if
and only if there exist positive integers n1, n2 with n1 + n2 = n− 1 such that X is
uniformly non-`n1+1

1 and Y is uniformly non-`n2+1
1 (Theorem 4.2). This was recently

extended for finitely many Banach spaces in [22] with a different proof. We shall
present another proof of this result by induction based on Theorem 4.2 (Theorem
4.3). A corollary states that if the `1-sum (X1 ⊕ · · · ⊕ Xm)1 of Banach spaces
X1, . . . , Xm is uniformly non-`n

1 , then each Xi is uniformly non-`n−1
1 . Theorem 4.2

says the converse of this statement holds true for m = 2 and n = 3, that is, X ⊕1 Y
is uniformly non-`3

1 if and only if X and Y are uniformly non-square (recall that
X ⊕1 Y cannot be uniformly non-square for all X and Y ).

In Section 5 we shall show that for m uniformly non-square spaces X1, . . . , Xm,
the `∞-sum (X1⊕· · ·⊕Xm)∞ is uniformly non-`n

1 if and only if m < 2n−1 (Theorem
5.2). In particular X⊕∞Y with uniformly non-square spaces X, Y is uniformly non-
`n
1 if and only if n ≥ 3, or equivalently, if X and Y are uniformly non-square, then

X ⊕∞ Y is uniformly non-`3
1. In contrast with the `1-sum case the converse of this

result is not valid. Instead we shall obtain that for three Banach spaces X, Y and
Z, (X ⊕Y ⊕Z)∞ is uniformly non-`3

1 if and only if X, Y and Z are uniformly non-
square. Theorem 5.2 also yields that `m∞ is uniformly non-`n

1 if and only if m < 2n−1,
which will be useful to construct various examples. (Refer to the recent paper [23]
for some further results on `∞-sums.) In the final Section 6 we shall present some
counterexamples for Theorem 3.5.

2. Definitions and preliminary results

Let Ψ be the family of all convex (continuous) functions ψ on [0, 1] satisfying

(2.1) ψ(0) = ψ(1) = 1 and max{1− t, t} ≤ ψ(t) ≤ 1 (0 ≤ t ≤ 1).

For any absolute normalized norm ‖ · ‖ on C2, that is, ‖(z, w)‖ = ‖(|z|, |w|)‖ for all
z, w ∈ C and ‖(1, 0)‖ = ‖(0, 1)‖ = 1, let

(2.2) ψ(t) = ‖(1− t, t)‖ (0 ≤ t ≤ 1).

Then ψ ∈ Ψ. Conversely for any ψ ∈ Ψ define

‖(z, w)‖ψ =





(|z|+ |w|)ψ
( |w|
|z|+|w|

)
if (z, w) 6= (0, 0),

0 if (z, w) = (0, 0).
(2.3)

Then ‖ · ‖ψ is an absolute normalized norm on C2 and satisfies (2.2) (Bonsall and
Duncan [2], see also [31, 32]). The `p-norms ‖ · ‖p are such examples and for all
absolute normalized norms ‖ · ‖ on C2 we have

(2.4) ‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖1
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([2]). By (2.2) the convex functions corresponding to the `p-norms are given by

(2.5) ψp(t) =

{ {(1− t)p + tp}1/p if 1 ≤ p < ∞,

max{1− t, t} if p = ∞.

Let X and Y be Banach spaces and let ψ ∈ Ψ. The ψ-direct sum X ⊕ψ Y of X
and Y is the direct sum X ⊕ Y equipped with the norm

(2.6) ‖(x, y)‖ψ = ‖(‖x‖, ‖y‖)‖ψ,

where the ‖(·, ·)‖ψ term in the right hand side is the absolute normalized norm on
C2 corresponding to the convex function ψ ([33, 18]; see [30] for several examples).
This extends the notion of the `p-sum X ⊕p Y and provides a plenty of concrete
non `p-type norms on X ⊕ Y .

A Banach space X is said to be uniformly non-`n
1 (cf. [1, 24]) provided there

exists ε (0 < ε < 1) such that for any x1, . . . , xn ∈ SX , the unit sphere of X, there
exists an n-tuple of signs θ = (θj) for which

(2.7)

∥∥∥∥∥
n∑

j=1

θjxj

∥∥∥∥∥ ≤ n(1− ε).

As is well known, we may take x1, . . . , xn from the unit ball BX of X in the definition
(This is immediately seen from Lemma 3.1 below; see [20, Corollary 4]). In case
of n = 2 X is called uniformly non-square ([15]; cf. [1, 24]). Though we can
consider the case n = 1 formally, no Banach space is uniformly non-`1

1. The following
fundamental fact was proved in Brown [3] (see also Hudzik [13]).

Proposition A ([3, 13]). Let X be a Banach space. If X is uniformly non-`n
1 , then

X is uniformly non-`n+1
1 for every n ∈ N.

For convenience of the reader we shall present a proof. Assume that X is uni-
formly non-`n

1 . Then there exists ε0 > 0 such that for any x1, . . . , xn ∈ SX there ex-
ists an n-tuple of signs (θj) such that ‖∑n

j=1 θjxj‖ ≤ n(1−ε0). Then for θn+1 = ±1
we have∥∥∥∥∥

n+1∑

j=1

θjxj

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑

j=1

θjxj

∥∥∥∥∥ + ‖θn+1xn+1‖ ≤ n(1− ε0) + 1 = (n + 1)(1− nε0
n + 1

).

Now we recall a sequence of monotonicity properties of absolute norms on C2,
which is essential in our later discussion.

Lemma 2.1 (2, p.36, Lemma 2). Let ψ ∈ Ψ.
(i) If |p| ≤ |r| and |q| ≤ |s|, then ‖(p, q)‖ψ ≤ ‖(r, s)‖ψ.
(ii) If |p| < |r| and |q| < |s|, then ‖(p, q)‖ψ < ‖(r, s)‖ψ.

The following assertion is not true in general:

(2.8) Let |p| ≤ |r| and |q| ≤ |s|. If |p| < |r| or |q| < |s|, then ‖(p, q)‖ψ < ‖(r, s)‖ψ.

Indeed the `∞-norm does not satisfy (2.8). Those norms satisfying (2.8) are char-
acterized as follows.
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Proposition 2.2 (Takahashi, Kato and Saito [33]). Let ψ ∈ Ψ. Then the following
assertions are equivalent:

(i) If |z| ≤ |u| and |w| < |v|, or |z| < |u| and |w| ≤ |v|, then ‖(z, w)‖ψ < ‖(u, v)‖ψ.
(ii) ψ(t) > ψ∞(t) for all t ∈ (0, 1).

In particular, if ψ is strictly convex, that is, if, for any s, t ∈ [0, 1] (s 6= t) and for
any c (0 < c < 1), one has ψ((1− c)s + ct) < (1− c)ψ(s) + cψ(t), then the assertion
(i) holds true. A more precise (component-wise) result is given in [33]. The next
proposition presents a condition for specified (z, w) and (u, v) to satisfy the above
assertion (i) for a general ψ ∈ Ψ.

Proposition 2.3 (Kato-Saito-Tamura [20]). Let ψ ∈ Ψ. Let (z, w), (u, v) ∈ C2.
(i) Let |z| < |u| and |w| = |v|. Then ‖(z, w)‖ψ = ‖(u, v)‖ψ if and only if

‖(z, w)‖ψ = |w|.
(ii) Let |z| = |u| and |w| < |v|. Then ‖(z, w)‖ψ = ‖(u, v)‖ψ if and only if

‖(z, w)‖ψ = |z|.

3. Uniform non-`n
1 -ness of X ⊕ψ Y, ψ 6= ψ1, ψ∞

We need a sequence of lemmas. The first lemma, a recent result of the present
authors [20], is of independent interest as it provides a sharper inequality than the
triangle inequality and its reverse (see also [9, 26]).

Lemma 3.1 (Kato-Saito-Tamura [20]). For all nonzero elements x1, x2, . . . , xn in
a Banach space X

∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥ +

(
n−

∥∥∥∥∥∥

n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥

)
min

1≤j≤n
‖xj‖(3.1)

≤
n∑

j=1

‖xj‖ ≤
∥∥∥∥∥

n∑

j=1

xj

∥∥∥∥∥ +

(
n−

∥∥∥∥∥∥

n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥

)
max

1≤j≤n
‖xj‖.

Lemma 3.2. Let {x(k)
1 }k, . . . , {x(k)

n }k be n sequences with nonzero terms in a Ba-
nach space X for which {‖x(k)

1 ‖}k, . . . , {‖x(k)
n ‖}k converge to nonzero limits, re-

spectively. Then the following are equivalent.

(i) lim
k→∞

∥∥∥∥∥
n∑

j=1

x
(k)
j

∥∥∥∥∥ = lim
k→∞

n∑

j=1

‖x(k)
j ‖.

(ii) lim
k→∞

∥∥∥∥∥
n∑

j=1

x
(k)
j

‖x(k)
j ‖

∥∥∥∥∥ = n.

Proof. Let limk→∞ ‖x(k)
j ‖ = aj > 0. Suppose (i) to be true. Then by (3.1) we have

0 ≤ n−
∥∥∥∥∥

n∑

j=1

x
(k)
j

‖x(k)
j ‖

∥∥∥∥∥ ≤
1

min1≤j≤n ‖x(k)
j ‖




n∑

j=1

‖x(k)
j ‖ −

∥∥∥∥∥
n∑

j=1

x
(k)
j

∥∥∥∥∥


 → 0
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as k →∞, where it should be noted that limk→∞min1≤j≤n ‖x(k)
j ‖ = min{a1, . . . , an}.

Hence we obtain (ii). The converse implication is immediate from Lemma 3.1. ¤

Lemma 3.3. Let {x(k)
1 }k, . . . , {x(k)

n }k be n sequences in a Banach space X for which
the sequences of their norms are convergent. Then the following are equivalent.

(i) lim
k→∞

∥∥∥∥∥
n∑

j=1

x
(k)
j

∥∥∥∥∥ = lim
k→∞

n∑

j=1

‖x(k)
j ‖.

(ii) lim
k→∞

∥∥∥∥∥αx
(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥ = lim
k→∞


α‖x(k)

1 ‖+
n∑

j=2

‖x(k)
j ‖


 for all α > 0.

(iii) lim
k→∞

∥∥∥∥∥αx
(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥ = lim
k→∞


α‖x(k)

1 ‖+
n∑

j=2

‖x(k)
j ‖


 for some α > 0.

Proof. (i) ⇒ (ii). Assume that (i) holds. Then, since for any α ≥ 1

∥∥∥∥∥αx
(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥ =

∥∥∥∥∥α

n∑

j=1

x
(k)
j − (α− 1)

n∑

j=2

x
(k)
j

∥∥∥∥∥

≥ α

∥∥∥∥∥
n∑

j=1

x
(k)
j

∥∥∥∥∥− (α− 1)
n∑

j=2

‖x(k)
j ‖,

we have

lim inf
k→∞

∥∥∥∥∥αx
(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥ ≥ α lim
k→∞

n∑

j=1

‖x(k)
j ‖ − (α− 1) lim

k→∞

n∑

j=2

‖x(k)
j ‖

= α lim
k→∞

‖x(k)
1 ‖+ lim

k→∞

n∑

j=2

‖x(k)
j ‖,

from which it follows that

(3.2) lim
k→∞

∥∥∥∥∥αx
(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥ = lim
k→∞


α‖x(k)

1 ‖+
n∑

j=2

‖x(k)
j ‖


 .

If 0 < α < 1 we have
∥∥∥∥∥αx

(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥ =

∥∥∥∥∥
n∑

j=1

x
(k)
j − (1− α)x(k)

1

∥∥∥∥∥

≥
∥∥∥∥∥

n∑

j=1

x
(k)
j

∥∥∥∥∥− (1− α)‖x(k)
1 ‖.
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Hence

lim inf
k→∞

∥∥∥∥∥αx
(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥ ≥ lim
k→∞

n∑

j=1

‖x(k)
j ‖ − (1− α) lim

k→∞
‖x(k)

1 ‖

= α lim
k→∞

‖x(k)
1 ‖+ lim

k→∞

n∑

j=2

‖x(k)
j ‖,

which implies (3.2). The implication (ii) ⇒ (iii) is trivial.
(iii) ⇒ (i). Assume that (3.2) is true for some α0 > 0. If α0 > 1, since

∥∥∥∥∥x
(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥ =

∥∥∥∥∥α0x
(k)
1 +

n∑

j=2

x
(k)
j − (α0 − 1)x(k)

1

∥∥∥∥∥

≥
∥∥∥∥∥α0x

(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥− (α0 − 1)‖x(k)
1 ‖,

we have

lim inf
k→∞

∥∥∥∥∥
n∑

j=1

x
(k)
j

∥∥∥∥∥ ≥ α0 lim
k→∞

‖x(k)
1 ‖+ lim

k→∞

n∑

j=2

‖x(k)
j ‖ − (α0 − 1) lim

k→∞
‖x(k)

1 ‖

= lim
k→∞

n∑

j=1

‖x(k)
j ‖,

from which we have (i). If 0 < α0 < 1, we have
∥∥∥∥∥

n∑

j=1

x
(k)
j

∥∥∥∥∥ =

∥∥∥∥∥
1
α0

α0x
(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥

=

∥∥∥∥∥
1
α0


α0x

(k)
1 +

n∑

j=2

x
(k)
j


−

(
1
α0

− 1
) n∑

j=2

x
(k)
j

∥∥∥∥∥

≥ 1
α0

∥∥∥∥∥α0x
(k)
1 +

n∑

j=2

x
(k)
j

∥∥∥∥∥−
(

1
α0

− 1
) n∑

j=2

‖x(k)
j ‖.

Hence

lim inf
k→∞

∥∥∥∥∥
n∑

j=1

x
(k)
j

∥∥∥∥∥

≥ 1
α0


α0 lim

k→∞
‖x(k)

1 ‖+ lim
k→∞

n∑

j=2

‖x(k)
j ‖


−

(
1
α0

− 1
)

lim
k→∞

n∑

j=2

‖x(k)
j ‖

= lim
k→∞

‖x(k)
1 ‖+ lim

k→∞

n∑

j=2

‖x(k)
j ‖,

and therefore we obtain (i). This completes the proof. ¤
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Now we are in a position to present our first main result.

Theorem 3.4. Let X and Y be Banach spaces and let ψ ∈ Ψ, ψ 6= ψ1, ψ∞. Then
the following are equivalent.

(i) X ⊕ψ Y is uniformly non-`n
1 .

(ii) X and Y are uniformly non-`n
1 .

Proof. The implication (i) ⇒ (ii) is trivial because X and Y are identified with
subspaces of X ⊕ψ Y . We show (ii) ⇒ (i). Assume that X and Y are uniformly
non-`n

1 and X⊕ψY is not uniformly non-`n
1 . Then we have n sequences {(x(k)

j , y
(k)
j )}k

in X ⊕ψ Y (j = 1, . . . , n) such that

(3.3) ‖(x(k)
j , y

(k)
j )‖ψ = 1 for all 1 ≤ j ≤ n and k ∈ N

and

∥∥∥∥∥
n∑

j=1

θj(x
(k)
j , y

(k)
j )

∥∥∥∥∥
ψ

=

∥∥∥∥∥




n∑

j=1

θjx
(k)
j ,

n∑

j=1

θjy
(k)
j




∥∥∥∥∥
ψ

→ n as k →∞(3.4)

for all n-tuples of signs θ = (θj). Since ‖x(k)
j ‖ ≤ ‖(x(k)

j , y
(k)
j )‖ψ = 1, the sequence

{‖x(k)
j ‖}k is bounded for all j. So {‖x(k)

j ‖}k has a convergent subsequence. For

simplicity we assume that {‖x(k)
j ‖}k itself converges. As the same argument works

for the sequences {‖y(k)
j ‖}k, {

∥∥∑n
j=1 θjx

(k)
j

∥∥}k, and {∥∥∑n
j=1 θjy

(k)
j

∥∥}k, we may
assume that

(3.5) ‖x(k)
j ‖ → aj , ‖y(k)

j ‖ → bj as k →∞

and

∥∥∥∥
n∑

j=1

θjx
(k)
j

∥∥∥∥ → Aθ,(3.6)

∥∥∥∥
n∑

j=1

θjy
(k)
j

∥∥∥∥ → Bθ(3.7)

as k →∞. Then letting k →∞ in (3.3), we have

(3.8) ‖(aj , bj)‖ψ = 1 for all 1 ≤ j ≤ n.

By (3.4) we have

(3.9) ‖(Aθ, Bθ)‖ψ = n for all θ = (θj).
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Hence

n = ‖ (Aθ, Bθ) ‖ψ = lim
k→∞

∥∥∥∥∥
(∥∥∥∥

n∑

j=1

θjx
(k)
j

∥∥∥∥,

∥∥∥∥
n∑

j=1

θjy
(k)
j

∥∥∥∥
)∥∥∥∥∥

ψ

≤ lim
k→∞

∥∥∥∥∥
( n∑

j=1

‖x(k)
j ‖,

n∑

j=1

‖y(k)
j ‖

)∥∥∥∥∥
ψ

=

∥∥∥∥∥
( n∑

j=1

aj ,
n∑

j=1

bj

)∥∥∥∥∥
ψ

=

∥∥∥∥∥
n∑

j=1

(aj , bj)

∥∥∥∥∥
ψ

≤
n∑

j=1

‖(aj , bj)‖ψ = n

and thus we have

(3.10) ‖ (Aθ, Bθ) ‖ψ =

∥∥∥∥∥
( n∑

j=1

aj ,

n∑

j=1

bj

)∥∥∥∥∥
ψ

= n for all θ = (θj).

We note here that from the condition ψ 6= ψ1 it follows that aj > 0 for all j, or
bj > 0 for all j. Indeed suppose that aj1 = bj2 = 0 with some j1 and j2. Then by
(3.8), j1 6= j2 and bj1 = aj2 = 1. Since∥∥∥∥∥

n∑

j=1

(aj , bj)

∥∥∥∥∥
ψ

=

∥∥∥∥∥(aj1 , bj1) + (aj2 , bj2) +
∑

j 6=j1,j2

(aj , bj)

∥∥∥∥∥
ψ

≤ ‖(0, 1) + (1, 0)‖ψ +

∥∥∥∥∥
∑

j 6=j1,j2

(aj , bj)

∥∥∥∥∥
ψ

= ‖(1, 1)‖ψ +

∥∥∥∥∥
∑

j 6=j1,j2

(aj , bj)

∥∥∥∥∥
ψ

,

we have

2 ≥ ‖(1, 1)‖ψ ≥
∥∥∥∥∥

n∑

j=1

(aj , bj)

∥∥∥∥∥
ψ

−
∥∥∥∥∥

∑

j 6=j1,j2

(aj , bj)

∥∥∥∥∥
ψ

≥ n− (n− 2) = 2

by (3.10), whence ‖(1, 1)‖ψ = 2. Consequently we have

(3.11) ψ

(
1
2

)
=

∥∥∥∥∥
(

1
2
,

1
2

)∥∥∥∥∥
ψ

= 1,

which implies that ψ = ψ1, a contradiction.
Now we obviously have Aθ ≤

∑n
j=1 aj and Bθ ≤

∑n
j=1 bj . Consequently in view

of Lemma 2.1, for all θ = (θj) there is no case that

Aθ <

n∑

j=1

aj and Bθ <

n∑

j=1

bj .
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Case 1. Let Aθ =
∑n

j=1 aj and Bθ =
∑n

j=1 bj for all θ = (θj).
(a) Assume first that aj > 0 for all j. Then

lim
k→∞

∥∥∥∥
n∑

j=1

θjx
(k)
j

∥∥∥∥ = Aθ =
n∑

j=1

aj = lim
k→∞

n∑

j=1

‖θjx
(k)
j ‖.

Therefore by Lemma 3.2 we have

lim
k→∞

∥∥∥∥∥
n∑

j=1

θj

x
(k)
j

‖x(k)
j ‖

∥∥∥∥∥ = n for all θ = (θj),

which implies that X is not uniformly non-`n
1 , a contradiction.

(b) If bj > 0 for all j, the parallel argument works for Y .
Case 2. Let (a) Aθ =

∑n
j=1 aj for all θ = (θj) and Bθ′ <

∑n
j=1 bj with some

θ′ = (θ′j), or (b) Aθ′ <
∑n

j=1 aj with some θ′ = (θ′j) and Bθ =
∑n

j=1 bj for all
θ = (θj). It is enough to see the case (a). Since

‖(Aθ′ , Bθ′)‖ψ =

∥∥∥∥∥
( n∑

j=1

aj ,
n∑

j=1

bj

)∥∥∥∥∥
ψ

= n,

we have by Proposition 2.3
∑n

j=1 aj = ‖(Aθ′ , Bθ′)‖ψ = n and hence aj = 1 for all j

(recall 0 ≤ aj ≤ 1). Consequently X is not uniformly non-`n
1 as in Case 1(a).

Case 3. Let Aθ <
∑n

j=1 aj and Bθ′ <
∑n

j=1 bj with different θ = (θj) and θ′ = (θ′j).
Then we have

(3.12) Aθ <
n∑

j=1

aj and Bθ =
n∑

j=1

bj

and

(3.13) Aθ′ =
n∑

j=1

aj and Bθ′ <

n∑

j=1

bj .

By Proposition 2.3, (3.10), (3.12) and (3.13) we have
n∑

j=1

aj = Aθ′ = ‖(Aθ′ , Bθ′)‖ψ = n and
n∑

j=1

bj = Bθ = ‖(Aθ, Bθ)‖ψ = n.

Therefore by (3.10)

n =

∥∥∥∥∥
( n∑

j=1

aj ,

n∑

j=1

bj

)∥∥∥∥∥
ψ

= ‖(n, n)‖ψ = n‖(1, 1)‖ψ,

and thus ‖(1, 1)‖ψ = 1. Consequently we have

ψ

(
1
2

)
=

∥∥∥∥∥
(

1
2
,

1
2

)∥∥∥∥∥
ψ

=
1
2
,

which implies that ψ = ψ∞, a contradiction. This completes the proof. ¤
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The foregoing Theorem 3.4 does not answer the following: Let X and Y be
uniformly non-`n

1 . Is it possible for X ⊕ψ Y to be uniformly non-`n
1 with ψ = ψ1 or

ψ = ψ∞? The next theorem will answer this question.

Theorem 3.5. Let X and Y be Banach spaces and let ψ ∈ Ψ. Assume that neither
X nor Y is uniformly non-`n−1

1 . Then the following are equivalent.
(i) X ⊕ψ Y is uniformly non-`n

1 .
(ii) X and Y are uniformly non-`n

1 and ψ 6= ψ1, ψ∞.

Proof. We merely see the assertion (i) ⇒ (ii). Assume that X ⊕ψ Y is uniformly
non-`n

1 . Then X and Y are uniformly non-`n
1 as mentioned before. Since X is not

uniformly non-`n−1
1 , there exist n − 1 sequences {x(k)

1 }k, . . . , {x(k)
n−1}k ⊂ SX such

that

(3.14) lim
k→∞

∥∥∥∥∥
n−1∑

j=1

θjx
(k)
j

∥∥∥∥∥ = n− 1

for all θj = ±1. We first assume that ψ = ψ1. Take y ∈ SY . Then the n sequences
{(x(k)

1 , 0)}, . . . , {(x(k)
n−1, 0)}, {(0, y)} are in the unit sphere of X ⊕ψ Y and

lim
k→∞

∥∥∥∥∥
n−1∑

j=1

θj(x
(k)
j , 0) + θn(0, y)

∥∥∥∥∥
1

= lim
k→∞




∥∥∥∥∥
n−1∑

j=1

θjx
(k)
j

∥∥∥∥∥ + ‖θny‖

 = n,

from which it follows that X ⊕1 Y is not uniformly non-`n
1 , a contradiction. Thus

we have ψ 6= ψ1. Next assume that ψ = ψ∞. Since Y is not uniformly non-`n−1
1 ,

there exist n− 1 sequences {y(k)
1 }k, . . . , {y(k)

n−1}k ⊂ SY such that

(3.15) lim
k→∞

∥∥∥∥∥
n−1∑

j=1

θjy
(k)
j

∥∥∥∥∥ = n− 1

for all θj = ±1. Then the sequences {(x(k)
1 , y

(k)
1 )}k, . . . , {(x(k)

n−1, y
(k)
n−1)}k,

{(−x
(k)
1 , y

(k)
1 )}k are in the unit sphere of X ⊕∞ Y . Owing to Lemma 3.3 it follows

from (3.15) that

lim
k→∞

∥∥∥∥∥2θ1y
(k)
1 +

n−1∑

j=2

θjy
(k)
j

∥∥∥∥∥ = lim
k→∞


2‖y(k)

1 ‖+
n−1∑

j=2

‖y(k)
j ‖


 = n.
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Hence, if θ1 = θn, we have

lim
k→∞

∥∥∥∥∥
n−1∑

j=1

θj(x
(k)
j , y

(k)
j ) + θn(−x

(k)
1 , y

(k)
1 )

∥∥∥∥∥
∞

= lim
k→∞

∥∥∥∥∥




n−1∑

j=2

θjx
(k)
j ,

n−1∑

j=2

θjy
(k)
j + 2θ1y

(k)
1




∥∥∥∥∥
∞

= lim
k→∞

max





∥∥∥∥∥
n−1∑

j=2

θjx
(k)
j

∥∥∥∥∥,

∥∥∥∥∥
n−1∑

j=2

θjy
(k)
j + 2θ1y

(k)
1

∥∥∥∥∥





= max



 lim

k→∞

∥∥∥∥∥
n−1∑

j=2

θjx
(k)
j

∥∥∥∥∥, lim
k→∞

∥∥∥∥∥
n−1∑

j=2

θjy
(k)
j + 2θ1y

(k)
1

∥∥∥∥∥





= max



 lim

k→∞

∥∥∥∥∥
n−1∑

j=2

θjx
(k)
j

∥∥∥∥∥, n



 = n.

If θ1 = −θn, by (3.14) we have

lim
k→∞

∥∥∥∥∥
n−1∑

j=1

θj(x
(k)
j , y

(k)
j ) + θn(−x

(k)
1 , y

(k)
1 )

∥∥∥∥∥
∞

= lim
k→∞

max





∥∥∥∥∥
n−1∑

j=2

θjx
(k)
j + 2θ1x

(k)
1

∥∥∥∥∥,

∥∥∥∥∥
n−1∑

j=2

θjy
(k)
j

∥∥∥∥∥





= max



 lim

k→∞

∥∥∥∥∥
n−1∑

j=2

θjx
(k)
j + 2θ1x

(k)
1

∥∥∥∥∥, lim
k→∞

∥∥∥∥∥
n−1∑

j=2

θjy
(k)
j

∥∥∥∥∥





= max



n, lim

k→∞

∥∥∥∥∥
n−1∑

j=2

θjy
(k)
j

∥∥∥∥∥



 = n.

Consequently X ⊕∞ Y is not uniformly non-`n
1 , a contradiction. Thus we have

ψ 6= ψ∞, which completes the proof. ¤

Remark 3.6. In Theorem 3.5 we cannot remove the condition that neither X nor Y
is uniformly non-`n−1

1 . We shall see this in the final section.

Theorem 3.5 yields the following recent result of the authors.

Corollary 3.7 (Kato-Saito-Tamura [19]). Let X and Y be Banach spaces and ψ ∈
Ψ. Then the following are equivalent.

(i) X ⊕ψ Y is uniformly non-square.
(ii) X and Y are uniformly non-square and ψ 6= ψ1, ψ∞.
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Now we consider the (Lorentz) `p,q-norm ‖ · ‖p,q, 1 ≤ q ≤ p ≤ ∞:

‖(z1, z2)‖p,q =
{

z∗1
q + 2(q/p)−1z∗2

q
}1/q

,

where {z∗1 , z∗2} is the non-increasing rearrangement of {|z1|, |z2|}. (Note that in
case of 1 ≤ p < q ≤ ∞, ‖ · ‖p,q is not a norm but a quasi-norm (cf. [16], [34, p.126]).
Clearly ‖·‖p,q is an absolute normalized norm and the corresponding convex function
ψp,q is given by

(3.16) ψp,q(t) =




{(1− t)q + 2q/p−1tq}1/q if 0 ≤ t ≤ 1/2,

{tq + 2q/p−1(1− t)q}1/q if 1/2 ≤ t ≤ 1.

Thus ψp,q yields the `p,q-sum X ⊕p,q Y :

(3.17) ‖(x, y)‖p,q =
{

max(‖x‖q, ‖y‖q) + 2(q/p)−1 min(‖x‖q, ‖y‖q)
}1/q

.

Corollary 3.8. Let 1 ≤ q ≤ p ≤ ∞, q < ∞. Then the `p,q-sum X1 ⊕p,q X2 is
uniformly non-`n

1 if and only if X1 and X2 are uniformly non-`n
1 . In particular the

`p-sum X1 ⊕p X2, 1 < p < ∞, is uniformly non-`n
1 if and only if X1 and X2 are

uniformly non-`n
1 . The same is true for the uniform non-squareness.

4. `1-sums

The `1-sum X ⊕1 Y cannot be uniformly non-square for all X and Y , whereas
Theorem 3.5 indicates that it can be uniformly non-`n

1 , n ≥ 3. In this section we
shall treat the uniform non-`n

1 -ness of the `1-sum of finitely many Banach spaces.
We shall denote by (X1 ⊕ · · · ⊕Xm)1 the `1-sum of m Banach spaces X1, . . . , Xm

though it is not consistent with the notation X ⊕1 Y . First we shall prove the
following.

Proposition 4.1. Let X and Y be Banach spaces and let n ≥ 3 and n = n1 + n2

with positive integers n1, n2. Let X⊕1 Y be uniformly non-`n
1 . Then X is uniformly

non-`n1
1 or Y is uniformly non-`n2

1 .

Proof. Assume that X is not uniformly non-`n1
1 and Y is not uniformly non-`n2

1 .
Then there exist {x(k)

1 }k, . . . , {x(k)
n1 }k in SX and {y(k)

1 }k, . . . , {y(k)
n2 }k in SY such that

limk→∞ ‖
∑n1

j=1 θ′jx
(k)
j ‖ = n1 for all (θ′j) of n1 signs and limk→∞ ‖

∑n2
j=1 θ′′j y

(k)
j ‖ =

n2 for all (θ′′j ) of n2 signs, respectively. Define (z(k)
1 , w

(k)
1 ), . . . , (z(k)

n1+n2
, w

(k)
n1+n2

) in
X ⊕1 Y by

(z(k)
1 , w

(k)
1 ) = (x(k)

1 , 0), . . . . . . , (z(k)
n1

, w(k)
n1

) = (x(k)
n1

, 0),

(z(k)
n1+1, w

(k)
n1+1) = (0, y

(k)
1 ), . . . . . . , (z(k)

n1+n2
, w

(k)
n1+n2

) = (0, y(k)
n2

).
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Let θ = (θj) be an arbitrary (n1 + n2)-tuple of signs. Then ‖(z(k)
j , w

(k)
j )‖1 = 1 for

all 1 ≤ j ≤ n and k ∈ N and
∥∥∥∥∥

n1+n2∑

j=1

θj(z
(k)
j , w

(k)
j )

∥∥∥∥∥
1

=

∥∥∥∥∥




n1∑

j=1

θjx
(k)
j ,

n1+n2∑

j=n1+1

θjy
(k)
j−n1




∥∥∥∥∥
1

=

∥∥∥∥∥
n1∑

j=1

θjx
(k)
j

∥∥∥∥∥ +

∥∥∥∥∥
n1+n2∑

j=n1+1

θjy
(k)
j−n1

∥∥∥∥∥ → n1 + n2

as k →∞. This implies that X ⊕1 Y is not uniformly non-`n1+n2
1 , which completes

the proof. ¤
Theorem 4.2. Let X and Y be Banach spaces. The following are equivalent.

(i) X ⊕1 Y is uniformly non-`n
1 .

(ii) There exist positive integers n1 and n2 with n1 + n2 = n − 1 such that X is
uniformly non-`n1+1

1 and Y is uniformly non-`n2+1
1 .

Proof. (i) ⇒ (ii). Assume that X ⊕1 Y is uniformly non-`n
1 . Let n1 = min{m ∈

N : X is uniformly non-`m+1
1 } (note that X is uniformly non-`n

1 ). Then X is
uniformly non-`n1+1

1 , but not uniformly non-`n1
1 . Therefore Y is uniformly non-

`n−n1
1 by Proposition 4.1 and hence n − n1 ≥ 2. Letting n2 = n − n1 − 1, we have

the conclusion.
(ii) ⇒ (i). Assume that X is uniformly non-`n1+1

1 and Y is uniformly non-`n2+1
1

with n1 + n2 = n− 1. Suppose that X ⊕1 Y is not uniformly non-`n
1 . Then we have

n sequences {(x(k)
j , y

(k)
j )}k in X ⊕1 Y (j = 1, . . . , n) such that

(4.1) ‖(x(k)
j , y

(k)
j )‖1 = 1 for all 1 ≤ j ≤ n and k ∈ N

and
∥∥∥∥∥

n∑

j=1

θj(x
(k)
j , y

(k)
j )

∥∥∥∥∥
1

=

∥∥∥∥∥




n∑

j=1

θjx
(k)
j ,

n∑

j=1

θjy
(k)
j




∥∥∥∥∥
1

→ n as k →∞(4.2)

for all n-tuples of signs θ = (θj). As in the proof of Theorem 3.4 we may assume that
each of the sequences {‖x(k)

j ‖}k, {‖y(k)
j ‖}k, {

∥∥∑n
j=1 θjx

(k)
j

∥∥}k, and {∥∥∑n
j=1 θjy

(k)
j

∥∥}k

has a limit and

(4.3) ‖x(k)
j ‖ → aj , ‖y(k)

j ‖ → bj as k →∞
and ∥∥∥∥

n∑

j=1

θjx
(k)
j

∥∥∥∥ → Aθ,

∥∥∥∥
n∑

j=1

θjy
(k)
j

∥∥∥∥ → Bθ as k →∞.(4.4)

Letting k →∞ in (4.1), we have

(4.5) ‖(aj , bj)‖1 = 1 for all 1 ≤ j ≤ n,

and by (4.2)

(4.6) ‖(Aθ, Bθ)‖1 = n for all θ = (θj).
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Then as (3.10)

‖ (Aθ, Bθ) ‖1 =

∥∥∥∥∥
( n∑

j=1

aj ,
n∑

j=1

bj

)∥∥∥∥∥
1

= n for all θ = (θj).

Since Aθ ≤
∑n

j=1 aj and Bθ ≤
∑n

j=1 bj , we have

(4.7) Aθ =
n∑

j=1

aj , Bθ =
n∑

j=1

bj

for all θ = (θj). Let L = {j : aj = 0} and M = {j : bj = 0}. Since X is uniformly
non-`n1+1

1 , we have

card(Lc) = lim
k→∞

∥∥∥∥∥
∑

j∈Lc

θj

x
(k)
j

‖x(k)
j ‖

∥∥∥∥∥ < n1 + 1

by (4.7) and Lemma 3.2. In the same way card(M c) < n2 + 1. Therefore

card(L) > n− n1 − 1 = n2.

On the other hand, as L ⊂ M c (recall that ‖(aj , bj)‖ = 1 for all j), we obtain that
card(L) ≤ card(M c) < n2 + 1, a contradiction. This completes the proof. ¤

Recently Theorem 4.2 was extended for finitely many Banach spaces in [22] as
follows (with the different proof). We shall present another proof by induction
based on Theorem 4.2.

Theorem 4.3 (Kato and Tamura [22, Theorem 1]). Let X1, . . . , Xm be Banach
spaces. Let n be an arbitrary positive integer with n ≥ 2. Then the following are
equivalent.

(i) (X1 ⊕ · · · ⊕Xm)1 is uniformly non-`n
1 .

(ii) There exist positive integers n1, . . . , nm with n1 + n2 + · · ·+ nm = n− 1 such
that Xi is uniformly non-`ni+1

1 for all 1 ≤ i ≤ m.

Proof. According to Theorem 4.2 our assertion is valid for m = 2. Assume that the
assertion holds for m. Then, since the space (X1 ⊕ · · · ⊕ Xm+1)1 is expressed as
(X1 ⊕ · · · ⊕Xm+1)1=(X1 ⊕ · · · ⊕Xm)1 ⊕1 Xm+1, we have that (X1 ⊕ · · · ⊕Xm+1)1
is uniformly non-`n

1 if and only if there exist positive integers n0 and nm+1 with
n0 + nm+1 = n− 1 such that (X1⊕ · · · ⊕Xm)1 is uniformly non-`n0+1

1 and Xm+1 is
uniformly non-`nm+1+1

1 . By the induction assumption, (X1⊕· · ·⊕Xm)1 is uniformly
non-`n0+1

1 if and only if there exist positive integers n1, . . . , nm with n1 +n2 + · · ·+
nm = n0 − 1 such that Xi is uniformly non-`ni+1

1 for all 1 ≤ i ≤ m. This implies
that our assertion holds true for m + 1, which completes the proof. ¤

From Theorem 4.3 it follows that if even one of X1, . . . , Xm is not uniformly
non-`n−1

1 , then (X1 ⊕ · · · ⊕Xm)1 cannot be uniformly non-`n
1 , that is:

Corollary 4.4. Let X1, . . . , Xm be Banach spaces. If (X1⊕· · ·⊕Xm)1 is uniformly
non-`n

1 , then each of Xi is uniformly non-`n−1
1 .
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Indeed, assume that (X1 ⊕ · · · ⊕ Xm)1 is uniformly non-`n
1 . Then by Theorem

4.3 there exist positive integers n1, . . . , nm with n1 + · · ·+ nm = n− 1 such that Xi

is uniformly non-`ni+1
1 for all 1 ≤ i ≤ m. As ni + 1 ≤ n1 + · · ·+ nm = n− 1, Xi is

uniformly non-`n−1
1 for each i by Proposition A.

As the case m = 2 and n = 3 Theorem 4.3 yields the following interesting result.

Theorem 4.5. Let X and Y be Banach spaces. Then the following are equivalent.
(i) X ⊕1 Y is uniformly non-`3

1.
(ii) X and Y are uniformly non-square.

5. `∞-sums

In this section we shall discuss the uniform non-`n
1 -ness of the `∞-sum of a finite

number of uniformly non-square Banach spaces. The `∞-sum of Banach spaces
X1, . . . , Xm, which we denote by (X1 ⊕ · · · ⊕ Xm)∞, is their direct sum equipped
with the norm ‖ · ‖∞ = max{‖ · ‖X1 , . . . , ‖ · ‖Xm}.

Proposition 5.1. Let X be a uniformly non-square Banach space and let {x(k)
1 }k,

. . . , {x(k)
n }k be n sequences with nonzero terms in the closed unit ball of X. Let

B({x(k)
1 }, . . . , {x(k)

n })(5.1)

:=

{
(θj) : lim

k→∞

∥∥∥∥∥
n∑

j=1

θjx
(k)
j

∥∥∥∥∥ = n, θ1 = 1, θj = ±1 (2 ≤ j ≤ n)

}
.

Then card(B({x(k)
1 }, . . . , {x(k)

n })) ≤ 1.

Proof. We shall prove this by induction. In case of n = 2 our assertion is valid as X
is uniformly non-square. Assume that our assertion holds true for any n sequences
in BX , n ≥ 2. Let {x(k)

1 }k, . . . , {x(k)
n+1}k be n + 1 sequences with nonzero terms in

BX . Suppose that (θj), (θ′j) ∈ B({x(k)
1 }, . . . , {x(k)

n+1}). Then

lim
k→∞

∥∥∥∥∥
n+1∑

j=1

θjx
(k)
j

∥∥∥∥∥ = lim
k→∞

∥∥∥∥∥
n+1∑

j=1

θ′jx
(k)
j

∥∥∥∥∥ = n + 1.

Denote by B(n) the set B({x(k)
1 }, . . . , {x(k)

n }) for the first n sequences {x(k)
1 }k, . . . ,

{x(k)
n }k. Then

n ≥ lim
k→∞

∥∥∥∥∥
n∑

j=1

θjx
(k)
j

∥∥∥∥∥ ≥ lim
k→∞

[∥∥∥∥∥
n+1∑

j=1

θjx
(k)
j

∥∥∥∥∥− ‖θn+1x
(k)
n+1‖

]

≥ (n + 1)− 1 = n.

Thus we have limk→∞ ‖
∑n

j=1 θjx
(k)
j ‖ = n. The same is true for (θ′j)

n
j=1. Therefore

(θj)n
j=1, (θ

′
j)

n
j=1 ∈ B(n), which implies that θj = θ′j for all 1 ≤ j ≤ n by the
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induction hypothesis. If θn+1 6= θ′n+1, we have limk→∞ ‖
∑n

j=1 θjx
(k)
j ±x

(k)
n+1‖ = n+1.

Consequently

lim
k→∞

∥∥∥∥∥n

(
1
n

n∑

j=1

θjx
(k)
j

)
± x

(k)
n+1

∥∥∥∥∥ = lim
k→∞

∥∥∥∥∥
n∑

j=1

θjx
(k)
j ± x

(k)
n+1

∥∥∥∥∥ = n + 1

= lim
k→∞

∥∥∥∥∥
n∑

j=1

θjx
(k)
j

∥∥∥∥∥ + 1

= lim
k→∞

[
n

∥∥∥∥∥
1
n

n∑

j=1

θjx
(k)
j

∥∥∥∥∥ + ‖ ± x
(k)
n+1‖

]

(note that limk→∞ ‖x(k)
n+1‖ = 1), from which it follows by Lemma 3.3 that

lim
k→∞

∥∥∥∥∥

(
1
n

n∑

j=1

θjx
(k)
j

)
± x

(k)
n+1

∥∥∥∥∥ = lim
k→∞

[∥∥∥∥∥
1
n

n∑

j=1

θjx
(k)
j

∥∥∥∥∥ + ‖x(k)
n+1‖

]

= 2.

This contradicts the uniform non-squareness of X. Therefore we obtain (θj) = (θ′j),

i.e. card(B({x(k)
1 }, . . . , {x(k)

n+1})) ≤ 1, which completes the proof. ¤

Theorem 5.2. Let X1, . . . , Xm be uniformly non-square Banach spaces. Then
(X1 ⊕ · · · ⊕Xm)∞ is uniformly non-`n

1 if and only if m < 2n−1.

Proof. Assume first that (X1⊕ · · · ⊕Xm)∞ is uniformly non-`n
1 . Suppose that m ≥

2n−1. Let t = 2n−1. Then `t∞ is uniformly non-`n
1 as `t∞ is imbedded into (X1 ⊕

· · ·⊕Xm)∞. We recall Rademacher matrices Rn = (r(n)
ij ) (2n×n matrices; see [17]):

(5.2) R1 =
(

1
−1

)
, Rn+1 =




1
... Rn

1
−1

... Rn

−1




(n = 1, 2, ...)

Take x1 = (r(n)
11 , . . . , r

(n)
t1 ), . . . , xn = (r(n)

1n , . . . , r
(n)
tn ) from the unit sphere of `t∞ (we

write n columns of the upper half submatrix of Rn in row). Let θ = (θj) be arbitrary
n signs with θ1 = 1. By the definition of Rn there exists an i0, 1 ≤ i0 ≤ m, such
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that θj = r
(n)
i0j for all 1 ≤ j ≤ n. Then we have

∥∥∥∥∥
n∑

j=1

θjxj

∥∥∥∥∥
∞

=

∥∥∥∥∥
n∑

j=1

θj(r
(n)
1j , . . . , r

(n)
i0j , . . . , r

(n)
tj )

∥∥∥∥∥
∞

=

∥∥∥∥∥




n∑

j=1

θjr
(n)
1j , . . . ,

n∑

j=1

θjr
(n)
i0j , . . . ,

n∑

j=1

θjr
(n)
tj




∥∥∥∥∥
∞

= max





∣∣∣∣∣∣

n∑

j=1

θjr
(n)
1j

∣∣∣∣∣∣
, . . . ,

∣∣∣∣∣∣

n∑

j=1

θjr
(n)
i0j

∣∣∣∣∣∣
, . . . ,

∣∣∣∣∣∣

n∑

j=1

θjr
(n)
tj

∣∣∣∣∣∣





= max





∣∣∣∣∣∣

n∑

j=1

θjr
(n)
1j

∣∣∣∣∣∣
, . . . , n, . . . ,

∣∣∣∣∣∣

n∑

j=1

θjr
(n)
tj

∣∣∣∣∣∣



 = n

and also ‖∑n
j=1(−θj)xj‖∞ = n. Since θ is arbitary, `t∞ is not uniformly non-`n

1 ,
a contradiction. Consequently, if (X1 ⊕ · · · ⊕ Xm)∞ is uniformly non-`n

1 , we have
m < 2n−1.

Conversely assume that m < 2n−1. Let

(5.3) K = sup



 min

θj=±1

∥∥∥∥∥
n∑

j=1

θjxj

∥∥∥∥∥
∞

: x1, . . . , xn ∈ S(X1⊕···⊕Xm)∞



 .

Then there exist n sequences {x(k)
1 }k, . . . , {x(k)

n }k in the unit sphere of (X1 ⊕ · · · ⊕
Xm)∞ such that K = limk→∞minθj=±1 ‖

∑n
j=1 θjx

(k)
j ‖∞. Put x

(k)
1 = (x(k)

11 , . . . , x
(k)
m1),

. . . , x
(k)
n = (x(k)

1n , . . . , x
(k)
mn). By choosing subsequences if necessary, we may

assume that limk→∞ ‖
∑n

j=1 θjx
(k)
ij ‖ exists for each 1 ≤ i ≤ m. Let (θj) ∈

B({x(k)
1 }, . . . , {x(k)

n }). Then as

n = lim
k→∞

∥∥∥∥∥
n∑

j=1

θjx
(k)
j

∥∥∥∥∥
∞

= lim
k→∞

∥∥∥∥∥
n∑

j=1

θj(x
(k)
1j , . . . , x

(k)
mj)

∥∥∥∥∥
∞

= lim
k→∞

∥∥∥∥∥




n∑

j=1

θjx
(k)
1j , . . . ,

n∑

j=1

θjx
(k)
mj




∥∥∥∥∥
∞

= max



 lim

k→∞

∥∥∥∥∥
n∑

j=1

θjx
(k)
1j

∥∥∥∥∥, . . . , lim
k→∞

∥∥∥∥∥
n∑

j=1

θjx
(k)
mj

∥∥∥∥∥



 ,

there exists 1 ≤ i0 ≤ m such that limk→∞ ‖
∑n

j=1 θjx
(k)
i0j‖ = n. Let

(5.4) Bi(n) := B({x(k)
i1 }, . . . , {x(k)

in }) =

{
(θj) : θ1 = 1, lim

k→∞

∥∥∥∥∥
n∑

j=1

θjx
(k)
ij

∥∥∥∥∥ = n

}

for the space Xi and let B =
⋃n

i=1 Bi(n). Then by Proposition 5.1 card(Bi(n)) ≤ 1
and hence card(B) ≤ m. Therefore denoting by A the set of all n-tuples (θj) of
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signs with θ1 = 1, we have card(A)− card(B) ≥ 2n−1 −m > 0. Consequently there
exists (θ′j) ∈ A such that limk→∞ ‖

∑n
j=1 θ′jx

(k)
ij ‖ < n for all 1 ≤ i ≤ m, whence we

have limk→∞ ‖
∑n

j=1 θ′jx
(k)
j ‖∞ < n. Since

K = lim
k→∞

min
θj=±1

∥∥∥∥∥
n∑

j=1

θjx
(k)
j

∥∥∥∥∥
∞
≤ lim

k→∞

∥∥∥∥∥
n∑

j=1

θ′jx
(k)
j

∥∥∥∥∥
∞

< n,

(X1 ⊕ · · · ⊕Xm)∞ is uniformly non-`n
1 . This completes the proof. ¤

As the case m = 2 in Theorem 5.2 we have the next result.

Corollary 5.3. Let X and Y be uniformly non-square Banach spaces. Then X⊕∞Y
is uniformly non-`n

1 if and only if n ≥ 3.

This is equivalent to:

Corollary 5.3 bis. Let X and Y be uniformly non-square Banach spaces. Then
X ⊕∞ Y is uniformly non-`3

1.

According to Theorem 4.5 the `1-sum X ⊕1 Y is uniformly non-`3
1 if and only if

X and Y are uniformly non-square, while the converse assertion of Corollary 5.3 bis
for the `∞-sum X⊕∞ Y is not true as we shall see in Remark 5.5 below. Instead we
shall obtain the following result which is interesting in contrast with Theorem 4.5.

Theorem 5.4. Let X, Y and Z be Banach spaces. Then the following are equiva-
lent.

(i) (X ⊕ Y ⊕ Z)∞ is uniformly non-`3
1.

(ii) X, Y and Z are uniformly non-square.

Proof. The implication (ii) ⇒ (i) is a consequence of Theorem 5.2. We shall prove
that (i) implies (ii). Assume that (X⊕Y ⊕Z)∞ is uniformly non-`3

1 and the assertion
(ii) does not hold. We may assume that X is not uniformly non-square without loss
of generality. Let W = Y ⊕∞ Z. Then W is not uniformly non-square by Corollary
3.7. Therefore there exist {x(k)

1 }k, {x(k)
2 }k ⊂ SX and {w(k)

1 }k, {w(k)
2 }k ⊂ SW such

that

(5.5) lim
k→∞

‖x(k)
1 ± x

(k)
2 ‖ = 2

and

(5.6) lim
k→∞

‖w(k)
1 ± w

(k)
2 ‖ = 2,

respectively. Then (x(k)
1 , w

(k)
1 ), (x(k)

2 , w
(k)
2 ), (x(k)

2 ,−w
(k)
2 ) ∈ SX⊕∞W . Since

‖(x(k)
1 , w

(k)
1 )± (x(k)

2 , w
(k)
2 ) + (x(k)

2 ,−w
(k)
2 )‖∞

= ‖(x(k)
1 ± x

(k)
2 + x

(k)
2 , w

(k)
1 ± w

(k)
2 − w

(k)
2 )‖∞,

owing to Lemma 3.3 with (5.5) and (5.6) we have

‖(x(k)
1 , w

(k)
1 ) + (x(k)

2 , w
(k)
2 ) + (x(k)

2 ,−w
(k)
2 )‖∞ = ‖(‖x(k)

1 + 2x
(k)
2 ‖, ‖w(k)

1 ‖)‖∞ → 3
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and

‖(x(k)
1 , w

(k)
1 )− (x(k)

2 , w
(k)
2 ) + (x(k)

2 ,−w
(k)
2 )‖∞ = ‖(‖x(k)

1 ‖, ‖w(k)
1 − 2w

(k)
1 ‖)‖∞ → 3

as k →∞. In the same way

‖(x(k)
1 , w

(k)
1 )± (x(k)

2 , w
(k)
2 )− (x(k)

2 ,−w
(k)
2 )‖∞ → 3 as k →∞.

Consequently we obtain that (X ⊕ Y ⊕ Z)∞ = X ⊕∞ W is not uniformly non-`3
1,

a contradiction, which implies that X is uniformly non-square. This completes the
proof. ¤
Remark 5.5. Let X, Y and Z be uniformly non-square Banach spaces and let W =
Y ⊕∞ Z. Then X ⊕∞ W is uniformly non-`3

1 by Theorem 5.4, whereas W is not
uniformly non-square. Thus the converse assertion of Corollary 5.3 bis is not true.

We shall close this section with the following extremely useful result to construct
various examples.

Corollary 5.6. `m∞ is uniformly non-`n
1 if and only if m < 2n−1.

6. Examples and problems

In Theorem 3.5 we have seen that if X ⊕ψ Y is uniformly non-`n
1 and if neither

X nor Y is uniformly non-`n−1
1 , then ψ 6= ψ1, ψ∞. We shall give some examples

below which show that we cannot remove the assumption that X and Y are not
uniformly non-`n−1

1 .

Examples. (i) Let X = `3∞, Y = `4∞ and ψ = ψ∞. Then X ⊕∞ Y = `7∞. Owing to
Corollary 5.6, X ⊕∞ Y is uniformly non-`4

1, whereas X is uniformly non-`3
1 and Y

is not uniformly non-`3
1.

(ii) Let X = `2∞, Y = `3∞ and ψ = ψ1. Then by Corollary 5.6 both of X and
Y are uniformly non-`3

1. By Theorem 4.2 (let n1 = n2 = 2), X ⊕1 Y is uniformly
non-`5

1. whereas both of X and Y are uniformly non-`4
1. (Recall that Corollary 4.4

says that for general Banach spaces X and Y , if X ⊕1 Y is uniformly non-`n
1 , then

X and Y are uniformly non-`n−1
1 .)

Problem 6.1. Characterize the uniform non-`n
1 -ness or the uniform non-squareness

of (X1 ⊕X2 ⊕ · · · ⊕Xm)ψ (cf. [18, 32, 27]).

Problem 6.2. Characterize the uniform non-`n
1 -ness of (X1⊕ · · · ⊕Xm)∞ without

the assumption that X, . . . , Xm are uniformly non-square.
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