Yokoharna Publishers
ISSN 1880-5221 ONLINE JOURNAL

UNIFORM NON- ℓ_{1}^{n}-NESS OF ψ-DIRECT SUMS OF BANACH SPACES

MIKIO KATO, KICHI-SUKE SAITO, AND TAKAYUKI TAMURA

Abstract

We shall characterize the uniform non- ℓ_{1}^{n}-ness of the ψ-direct sum $X \oplus_{\psi} Y$ of Banach spaces X and Y, where ψ is a convex function on the unit interval satisfying certain conditions. A previous result for the uniform nonsquareness will be obtained as a corollary. As extreme cases we shall treat the ℓ_{1}-sum and the ℓ_{∞}-sum of finitely many Banach spaces.

1. Introduction

The ψ-direct sum $X \oplus_{\psi} Y$ of Banach spaces X and Y is the direct sum $X \oplus Y$ equipped with the norm $\|(x, y)\|_{\psi}=\|(\|x\|,\|y\|)\|_{\psi}$, where the $\|(\cdot, \cdot)\|_{\psi}$ term in the right hand side is the absolute normalized norm on \mathbb{C}^{2} corresponding to a convex (continuous) function ψ with some conditions on the unit interval. This extends the notion of the ℓ_{p}-sum $X \oplus_{p} Y$. Since it was introduced in Takahashi, Kato and Saito [33], the ψ-direct sum of Banach spaces have been attracting a good deal of attention and been treated by several authors ($[5,6,7,8,18,19,21,22,23,25,27$, $28,29,30$, etc.]; cf. [31, 32, 27]). In particular the present authors [19] showed that $X \oplus_{\psi} Y$ is uniformly non-square if and only if X and Y are uniformly non-square and neither $\psi=\psi_{1}$ nor $\psi=\psi_{\infty}$, where $\psi_{1}(t)=1$ and $\psi_{\infty}(t)=\max \{1-t, t\}$ are the corresponding convex functions to the ℓ_{1} - and ℓ_{∞}-norms respectively.

The purpose of this paper is to characterize the uniform non- ℓ_{1}^{n}-ness of $X \oplus_{\psi} Y$. In comparison with uniform non-squareness the situation will be much more complicated than expected. Section 2 is devoted to some definitions and preliminary results.

In Section 3 we shall show that under the assumption $\psi \neq \psi_{1}, \psi_{\infty}, X \oplus_{\psi} Y$ is uniformly non- ℓ_{1}^{n} if and only if X and Y are uniformly non- ℓ_{1}^{n}. Keeping in mind the result on uniform non-squareness mentioned above, the following question arises: Let X and Y be uniformly non- ℓ_{1}^{n}. Then is it possible that $X \oplus_{\psi} Y$ is uniformly non- ℓ_{1}^{n} with $\psi=\psi_{1}$ or $\psi=\psi_{\infty}$? Our next result (Theorem 3.5) will answer this question as follows: Under the assumption that both X and Y are not uniformly non- $\ell_{1}^{n-1}, X \oplus_{\psi} Y$ is uniformly non- ℓ_{1}^{n} if and only if X and Y are uniformly nonℓ_{1}^{n} and $\psi \neq \psi_{1}, \psi_{\infty}$. This assumption on X and Y cannot be removed; we shall present some counterexamples in the final section. Theorem 3.5 covers the abovementioned result concerning uniform non-squareness as the case $n=2$. Another corollary states that the $\ell_{p, q^{-}}$-sum $X \oplus_{p, q} Y, 1 \leq q \leq p \leq \infty, q<\infty$, is uniformly

[^0]non- ℓ_{1}^{n} if and only if X and Y are uniformly non- ℓ_{1}^{n}. The same is true for the ℓ_{p}-sum $X \oplus_{p} Y, 1<p<\infty$, as the case $p=q$.

In the next two sections we shall treat the extreme cases. Some results obtained there will be applied to construct the examples stated above. According to Theorem 3.5 the ℓ_{1}-sum $X \oplus_{1} Y$ and the ℓ_{∞}-sum $X \oplus_{\infty} Y$ can be uniformly non- $\ell_{1}^{n}, n \geq 3$. In Section 4 we shall first show that the ℓ_{1}-sum $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{n} if and only if there exist positive integers n_{1}, n_{2} with $n_{1}+n_{2}=n-1$ such that X is uniformly non- $\ell_{1}^{n_{1}+1}$ and Y is uniformly non- $\ell_{1}^{n_{2}+1}$ (Theorem 4.2). This was recently extended for finitely many Banach spaces in [22] with a different proof. We shall present another proof of this result by induction based on Theorem 4.2 (Theorem 4.3). A corollary states that if the ℓ_{1}-sum $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{1}$ of Banach spaces X_{1}, \ldots, X_{m} is uniformly non- ℓ_{1}^{n}, then each X_{i} is uniformly non- ℓ_{1}^{n-1}. Theorem 4.2 says the converse of this statement holds true for $m=2$ and $n=3$, that is, $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{3} if and only if X and Y are uniformly non-square (recall that $X \oplus_{1} Y$ cannot be uniformly non-square for all X and $\left.Y\right)$.

In Section 5 we shall show that for m uniformly non-square spaces X_{1}, \ldots, X_{m}, the ℓ_{∞}-sum $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{\infty}$ is uniformly non- ℓ_{1}^{n} if and only if $m<2^{n-1}$ (Theorem 5.2). In particular $X \oplus_{\infty} Y$ with uniformly non-square spaces X, Y is uniformly nonℓ_{1}^{n} if and only if $n \geq 3$, or equivalently, if X and Y are uniformly non-square, then $X \oplus_{\infty} Y$ is uniformly non- ℓ_{1}^{3}. In contrast with the ℓ_{1}-sum case the converse of this result is not valid. Instead we shall obtain that for three Banach spaces X, Y and $Z,(X \oplus Y \oplus Z)_{\infty}$ is uniformly non- ℓ_{1}^{3} if and only if X, Y and Z are uniformly nonsquare. Theorem 5.2 also yields that ℓ_{∞}^{m} is uniformly non- ℓ_{1}^{n} if and only if $m<2^{n-1}$, which will be useful to construct various examples. (Refer to the recent paper [23] for some further results on ℓ_{∞}-sums.) In the final Section 6 we shall present some counterexamples for Theorem 3.5.

2. Definitions and preliminary Results

Let Ψ be the family of all convex (continuous) functions ψ on $[0,1]$ satisfying

$$
\begin{equation*}
\psi(0)=\psi(1)=1 \text { and } \max \{1-t, t\} \leq \psi(t) \leq 1(0 \leq t \leq 1) \tag{2.1}
\end{equation*}
$$

For any absolute normalized norm $\|\cdot\|$ on \mathbb{C}^{2}, that is, $\|(z, w)\|=\|(|z|,|w|)\|$ for all $z, w \in \mathbb{C}$ and $\|(1,0)\|=\|(0,1)\|=1$, let

$$
\begin{equation*}
\psi(t)=\|(1-t, t)\|(0 \leq t \leq 1) \tag{2.2}
\end{equation*}
$$

Then $\psi \in \Psi$. Conversely for any $\psi \in \Psi$ define

$$
\|(z, w)\|_{\psi}= \begin{cases}(|z|+|w|) \psi\left(\frac{|w|}{|z|+|w|}\right) & \text { if }(z, w) \neq(0,0) \tag{2.3}\\ 0 & \text { if }(z, w)=(0,0)\end{cases}
$$

Then $\|\cdot\|_{\psi}$ is an absolute normalized norm on \mathbb{C}^{2} and satisfies (2.2) (Bonsall and Duncan [2], see also [31, 32]). The ℓ_{p}-norms $\|\cdot\|_{p}$ are such examples and for all absolute normalized norms $\|\cdot\|$ on \mathbb{C}^{2} we have

$$
\begin{equation*}
\|\cdot\|_{\infty} \leq\|\cdot\| \leq\|\cdot\|_{1} \tag{2.4}
\end{equation*}
$$

([2]). By (2.2) the convex functions corresponding to the ℓ_{p}-norms are given by

$$
\psi_{p}(t)= \begin{cases}\left\{(1-t)^{p}+t^{p}\right\}^{1 / p} & \text { if } 1 \leq p<\infty \tag{2.5}\\ \max \{1-t, t\} & \text { if } p=\infty\end{cases}
$$

Let X and Y be Banach spaces and let $\psi \in \Psi$. The ψ-direct sum $X \oplus_{\psi} Y$ of X and Y is the direct sum $X \oplus Y$ equipped with the norm

$$
\begin{equation*}
\|(x, y)\|_{\psi}=\|(\|x\|,\|y\|)\|_{\psi}, \tag{2.6}
\end{equation*}
$$

where the $\|(\cdot, \cdot)\|_{\psi}$ term in the right hand side is the absolute normalized norm on \mathbb{C}^{2} corresponding to the convex function ψ ($[33,18]$; see [30] for several examples). This extends the notion of the ℓ_{p}-sum $X \oplus_{p} Y$ and provides a plenty of concrete non ℓ_{p}-type norms on $X \oplus Y$.

A Banach space X is said to be uniformly non- ℓ_{1}^{n} (cf. [1, 24]) provided there exists $\epsilon(0<\epsilon<1)$ such that for any $x_{1}, \ldots, x_{n} \in S_{X}$, the unit sphere of X, there exists an n-tuple of signs $\theta=\left(\theta_{j}\right)$ for which

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\| \leq n(1-\epsilon) . \tag{2.7}
\end{equation*}
$$

As is well known, we may take x_{1}, \ldots, x_{n} from the unit ball B_{X} of X in the definition (This is immediately seen from Lemma 3.1 below; see [20, Corollary 4]). In case of $n=2 X$ is called uniformly non-square ([15]; cf. [1, 24]). Though we can consider the case $n=1$ formally, no Banach space is uniformly non- ℓ_{1}^{1}. The following fundamental fact was proved in Brown [3] (see also Hudzik [13]).

Proposition A ([3, 13]). Let X be a Banach space. If X is uniformly non $-\ell_{1}^{n}$, then X is uniformly non- ℓ_{1}^{n+1} for every $n \in \mathbb{N}$.

For convenience of the reader we shall present a proof. Assume that X is uniformly non- ℓ_{1}^{n}. Then there exists $\epsilon_{0}>0$ such that for any $x_{1}, \ldots, x_{n} \in S_{X}$ there exists an n-tuple of signs $\left(\theta_{j}\right)$ such that $\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\| \leq n\left(1-\epsilon_{0}\right)$. Then for $\theta_{n+1}= \pm 1$ we have

$$
\left\|\sum_{j=1}^{n+1} \theta_{j} x_{j}\right\| \leq\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\|+\left\|\theta_{n+1} x_{n+1}\right\| \leq n\left(1-\epsilon_{0}\right)+1=(n+1)\left(1-\frac{n \epsilon_{0}}{n+1}\right) .
$$

Now we recall a sequence of monotonicity properties of absolute norms on \mathbb{C}^{2}, which is essential in our later discussion.
Lemma 2.1 (2, p.36, Lemma 2). Let $\psi \in \Psi$.
(i) If $|p| \leq|r|$ and $|q| \leq|s|$, then $\|(p, q)\|_{\psi} \leq\|(r, s)\|_{\psi}$.
(ii) If $|p|<|r|$ and $|q|<|s|$, then $\|(p, q)\|_{\psi}<\|(r, s)\|_{\psi}$.

The following assertion is not true in general:
(2.8) Let $|p| \leq|r|$ and $|q| \leq|s|$. If $|p|<|r|$ or $|q|<|s|$, then $\|(p, q)\|_{\psi}<\|(r, s)\|_{\psi}$.

Indeed the ℓ_{∞}-norm does not satisfy (2.8). Those norms satisfying (2.8) are characterized as follows.

Proposition 2.2 (Takahashi, Kato and Saito [33]). Let $\psi \in \Psi$. Then the following assertions are equivalent:
(i) If $|z| \leq|u|$ and $|w|<|v|$, or $|z|<|u|$ and $|w| \leq|v|$, then $\|(z, w)\|_{\psi}<\|(u, v)\|_{\psi}$.
(ii) $\psi(t)>\psi_{\infty}(t)$ for all $t \in(0,1)$.

In particular, if ψ is strictly convex, that is, if, for any $s, t \in[0,1](s \neq t)$ and for any $c(0<c<1)$, one has $\psi((1-c) s+c t)<(1-c) \psi(s)+c \psi(t)$, then the assertion (i) holds true. A more precise (component-wise) result is given in [33]. The next proposition presents a condition for specified (z, w) and (u, v) to satisfy the above assertion (i) for a general $\psi \in \Psi$.

Proposition 2.3 (Kato-Saito-Tamura [20]). Let $\psi \in \Psi . \operatorname{Let}(z, w),(u, v) \in \mathbb{C}^{2}$.
(i) Let $|z|<|u|$ and $|w|=|v|$. Then $\|(z, w)\|_{\psi}=\|(u, v)\|_{\psi}$ if and only if $\|(z, w)\|_{\psi}=|w|$.
(ii) Let $|z|=|u|$ and $|w|<|v|$. Then $\|(z, w)\|_{\psi}=\|(u, v)\|_{\psi}$ if and only if $\|(z, w)\|_{\psi}=|z|$.

3. UNIFORM NON- ℓ_{1}^{n}-NESS OF $X \oplus_{\psi} Y, \psi \neq \psi_{1}, \psi_{\infty}$

We need a sequence of lemmas. The first lemma, a recent result of the present authors [20], is of independent interest as it provides a sharper inequality than the triangle inequality and its reverse (see also [9, 26]).

Lemma 3.1 (Kato-Saito-Tamura [20]). For all nonzero elements $x_{1}, x_{2}, \ldots, x_{n}$ in a Banach space X

$$
\begin{align*}
& \left\|\sum_{j=1}^{n} x_{j}\right\|+\left(n-\left\|\sum_{j=1}^{n} \frac{x_{j}}{\left\|x_{j}\right\|}\right\|\right) \min _{1 \leq j \leq n}\left\|x_{j}\right\| \tag{3.1}\\
\leq & \sum_{j=1}^{n}\left\|x_{j}\right\| \leq\left\|\sum_{j=1}^{n} x_{j}\right\|+\left(n-\left\|\sum_{j=1}^{n} \frac{x_{j}}{\left\|x_{j}\right\|}\right\|\right) \max _{1 \leq j \leq n}\left\|x_{j}\right\| .
\end{align*}
$$

Lemma 3.2. Let $\left\{x_{1}^{(k)}\right\}_{k}, \ldots,\left\{x_{n}^{(k)}\right\}_{k}$ be n sequences with nonzero terms in a Banach space X for which $\left\{\left\|x_{1}^{(k)}\right\|\right\}_{k}, \ldots,\left\{\left\|x_{n}^{(k)}\right\|\right\}_{k}$ converge to nonzero limits, respectively. Then the following are equivalent.
(i) $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} x_{j}^{(k)}\right\|=\lim _{k \rightarrow \infty} \sum_{j=1}^{n}\left\|x_{j}^{(k)}\right\|$.
(ii) $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \frac{x_{j}^{(k)}}{\left\|x_{j}^{(k)}\right\|}\right\|=n$.

Proof. Let $\lim _{k \rightarrow \infty}\left\|x_{j}^{(k)}\right\|=a_{j}>0$. Suppose (i) to be true. Then by (3.1) we have

$$
0 \leq n-\left\|\sum_{j=1}^{n} \frac{x_{j}^{(k)}}{\left\|x_{j}^{(k)}\right\|}\right\| \leq \frac{1}{\min _{1 \leq j \leq n}\left\|x_{j}^{(k)}\right\|}\left(\sum_{j=1}^{n}\left\|x_{j}^{(k)}\right\|-\left\|\sum_{j=1}^{n} x_{j}^{(k)}\right\|\right) \rightarrow 0
$$

as $k \rightarrow \infty$, where it should be noted that $\lim _{k \rightarrow \infty} \min _{1 \leq j \leq n}\left\|x_{j}^{(k)}\right\|=\min \left\{a_{1}, \ldots, a_{n}\right\}$. Hence we obtain (ii). The converse implication is immediate from Lemma 3.1.

Lemma 3.3. Let $\left\{x_{1}^{(k)}\right\}_{k}, \ldots,\left\{x_{n}^{(k)}\right\}_{k}$ be n sequences in a Banach space X for which the sequences of their norms are convergent. Then the following are equivalent.
(i) $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} x_{j}^{(k)}\right\|=\lim _{k \rightarrow \infty} \sum_{j=1}^{n}\left\|x_{j}^{(k)}\right\|$.
(ii) $\lim _{k \rightarrow \infty}\left\|\alpha x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\|=\lim _{k \rightarrow \infty}\left[\alpha\left\|x_{1}^{(k)}\right\|+\sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\|\right]$ for all $\alpha>0$.
(iii) $\lim _{k \rightarrow \infty}\left\|\alpha x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\|=\lim _{k \rightarrow \infty}\left[\alpha\left\|x_{1}^{(k)}\right\|+\sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\|\right]$ for some $\alpha>0$.

Proof. (i) \Rightarrow (ii). Assume that (i) holds. Then, since for any $\alpha \geq 1$

$$
\begin{aligned}
\left\|\alpha x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\| & =\left\|\alpha \sum_{j=1}^{n} x_{j}^{(k)}-(\alpha-1) \sum_{j=2}^{n} x_{j}^{(k)}\right\| \\
& \geq \alpha\left\|\sum_{j=1}^{n} x_{j}^{(k)}\right\|-(\alpha-1) \sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\|,
\end{aligned}
$$

we have

$$
\begin{aligned}
\liminf _{k \rightarrow \infty}\left\|\alpha x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\| & \geq \alpha \lim _{k \rightarrow \infty} \sum_{j=1}^{n}\left\|x_{j}^{(k)}\right\|-(\alpha-1) \lim _{k \rightarrow \infty} \sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\| \\
& =\alpha \lim _{k \rightarrow \infty}\left\|x_{1}^{(k)}\right\|+\lim _{k \rightarrow \infty} \sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\|
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\alpha x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\|=\lim _{k \rightarrow \infty}\left[\alpha\left\|x_{1}^{(k)}\right\|+\sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\|\right] . \tag{3.2}
\end{equation*}
$$

If $0<\alpha<1$ we have

$$
\begin{aligned}
\left\|\alpha x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\| & =\left\|\sum_{j=1}^{n} x_{j}^{(k)}-(1-\alpha) x_{1}^{(k)}\right\| \\
& \geq\left\|\sum_{j=1}^{n} x_{j}^{(k)}\right\|-(1-\alpha)\left\|x_{1}^{(k)}\right\| .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\liminf _{k \rightarrow \infty}\left\|\alpha x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\| & \geq \lim _{k \rightarrow \infty} \sum_{j=1}^{n}\left\|x_{j}^{(k)}\right\|-(1-\alpha) \lim _{k \rightarrow \infty}\left\|x_{1}^{(k)}\right\| \\
& =\alpha \lim _{k \rightarrow \infty}\left\|x_{1}^{(k)}\right\|+\lim _{k \rightarrow \infty} \sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\|
\end{aligned}
$$

which implies (3.2). The implication (ii) \Rightarrow (iii) is trivial.
(iii) \Rightarrow (i). Assume that (3.2) is true for some $\alpha_{0}>0$. If $\alpha_{0}>1$, since

$$
\begin{aligned}
\left\|x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\| & =\left\|\alpha_{0} x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}-\left(\alpha_{0}-1\right) x_{1}^{(k)}\right\| \\
& \geq\left\|\alpha_{0} x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\|-\left(\alpha_{0}-1\right)\left\|x_{1}^{(k)}\right\|,
\end{aligned}
$$

we have

$$
\begin{aligned}
\liminf _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} x_{j}^{(k)}\right\| & \geq \alpha_{0} \lim _{k \rightarrow \infty}\left\|x_{1}^{(k)}\right\|+\lim _{k \rightarrow \infty} \sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\|-\left(\alpha_{0}-1\right) \lim _{k \rightarrow \infty}\left\|x_{1}^{(k)}\right\| \\
& =\lim _{k \rightarrow \infty} \sum_{j=1}^{n}\left\|x_{j}^{(k)}\right\|
\end{aligned}
$$

from which we have (i). If $0<\alpha_{0}<1$, we have

$$
\begin{aligned}
\left\|\sum_{j=1}^{n} x_{j}^{(k)}\right\| & =\left\|\frac{1}{\alpha_{0}} \alpha_{0} x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\| \\
& =\left\|\frac{1}{\alpha_{0}}\left(\alpha_{0} x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right)-\left(\frac{1}{\alpha_{0}}-1\right) \sum_{j=2}^{n} x_{j}^{(k)}\right\| \\
& \geq \frac{1}{\alpha_{0}}\left\|\alpha_{0} x_{1}^{(k)}+\sum_{j=2}^{n} x_{j}^{(k)}\right\|-\left(\frac{1}{\alpha_{0}}-1\right) \sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\| .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \liminf _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} x_{j}^{(k)}\right\| \\
\geq & \frac{1}{\alpha_{0}}\left(\alpha_{0} \lim _{k \rightarrow \infty}\left\|x_{1}^{(k)}\right\|+\lim _{k \rightarrow \infty} \sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\|\right)-\left(\frac{1}{\alpha_{0}}-1\right) \lim _{k \rightarrow \infty} \sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\| \\
= & \lim _{k \rightarrow \infty}\left\|x_{1}^{(k)}\right\|+\lim _{k \rightarrow \infty} \sum_{j=2}^{n}\left\|x_{j}^{(k)}\right\|
\end{aligned}
$$

and therefore we obtain (i). This completes the proof.

Now we are in a position to present our first main result.
Theorem 3.4. Let X and Y be Banach spaces and let $\psi \in \Psi, \psi \neq \psi_{1}, \psi_{\infty}$. Then the following are equivalent.
(i) $X \oplus_{\psi} Y$ is uniformly non- ℓ_{1}^{n}.
(ii) X and Y are uniformly non- ℓ_{1}^{n}.

Proof. The implication (i) \Rightarrow (ii) is trivial because X and Y are identified with subspaces of $X \oplus_{\psi} Y$. We show (ii) \Rightarrow (i). Assume that X and Y are uniformly non- ℓ_{1}^{n} and $X \oplus_{\psi} Y$ is not uniformly non- ℓ_{1}^{n}. Then we have n sequences $\left\{\left(x_{j}^{(k)}, y_{j}^{(k)}\right)\right\}_{k}$ in $X \oplus_{\psi} Y(j=1, \ldots, n)$ such that

$$
\begin{equation*}
\left\|\left(x_{j}^{(k)}, y_{j}^{(k)}\right)\right\|_{\psi}=1 \text { for all } 1 \leq j \leq n \text { and } k \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \theta_{j}\left(x_{j}^{(k)}, y_{j}^{(k)}\right)\right\|_{\psi}=\left\|\left(\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}, \sum_{j=1}^{n} \theta_{j} y_{j}^{(k)}\right)\right\|_{\psi} \rightarrow n \text { as } k \rightarrow \infty \tag{3.4}
\end{equation*}
$$

for all n-tuples of signs $\theta=\left(\theta_{j}\right)$. Since $\left\|x_{j}^{(k)}\right\| \leq\left\|\left(x_{j}^{(k)}, y_{j}^{(k)}\right)\right\|_{\psi}=1$, the sequence $\left\{\left\|x_{j}^{(k)}\right\|\right\}_{k}$ is bounded for all j. So $\left\{\left\|x_{j}^{(k)}\right\|\right\}_{k}$ has a convergent subsequence. For simplicity we assume that $\left\{\left\|x_{j}^{(k)}\right\|\right\}_{k}$ itself converges. As the same argument works for the sequences $\left\{\left\|y_{j}^{(k)}\right\|\right\}_{k},\left\{\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|\right\}_{k}$, and $\left\{\left\|\sum_{j=1}^{n} \theta_{j} y_{j}^{(k)}\right\|\right\}_{k}$, we may assume that

$$
\begin{equation*}
\left\|x_{j}^{(k)}\right\| \rightarrow a_{j},\left\|y_{j}^{(k)}\right\| \rightarrow b_{j} \text { as } k \rightarrow \infty \tag{3.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\| \tag{3.6}
\end{align*} \rightarrow A_{\theta},
$$

as $k \rightarrow \infty$. Then letting $k \rightarrow \infty$ in (3.3), we have

$$
\begin{equation*}
\left\|\left(a_{j}, b_{j}\right)\right\|_{\psi}=1 \text { for all } 1 \leq j \leq n \tag{3.8}
\end{equation*}
$$

By (3.4) we have

$$
\begin{equation*}
\left\|\left(A_{\theta}, B_{\theta}\right)\right\|_{\psi}=n \text { for all } \theta=\left(\theta_{j}\right) . \tag{3.9}
\end{equation*}
$$

Hence

$$
\begin{aligned}
n=\left\|\left(A_{\theta}, B_{\theta}\right)\right\|_{\psi} & =\lim _{k \rightarrow \infty}\left\|\left(\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|,\left\|\sum_{j=1}^{n} \theta_{j} y_{j}^{(k)}\right\|\right)\right\|_{\psi} \\
& \leq \lim _{k \rightarrow \infty}\left\|\left(\sum_{j=1}^{n}\left\|x_{j}^{(k)}\right\|, \sum_{j=1}^{n}\left\|y_{j}^{(k)}\right\|\right)\right\|_{\psi} \\
& =\left\|\left(\sum_{j=1}^{n} a_{j}, \sum_{j=1}^{n} b_{j}\right)\right\|_{\psi}=\left\|\sum_{j=1}^{n}\left(a_{j}, b_{j}\right)\right\|_{\psi} \\
& \leq \sum_{j=1}^{n}\left\|\left(a_{j}, b_{j}\right)\right\|_{\psi}=n
\end{aligned}
$$

and thus we have

$$
\begin{equation*}
\left\|\left(A_{\theta}, B_{\theta}\right)\right\|_{\psi}=\left\|\left(\sum_{j=1}^{n} a_{j}, \sum_{j=1}^{n} b_{j}\right)\right\|_{\psi}=n \text { for all } \theta=\left(\theta_{j}\right) \tag{3.10}
\end{equation*}
$$

We note here that from the condition $\psi \neq \psi_{1}$ it follows that $a_{j}>0$ for all j, or $b_{j}>0$ for all j. Indeed suppose that $a_{j_{1}}=b_{j_{2}}=0$ with some j_{1} and j_{2}. Then by (3.8), $j_{1} \neq j_{2}$ and $b_{j_{1}}=a_{j_{2}}=1$. Since

$$
\begin{aligned}
\left\|\sum_{j=1}^{n}\left(a_{j}, b_{j}\right)\right\|_{\psi} & =\left\|\left(a_{j_{1}}, b_{j_{1}}\right)+\left(a_{j_{2}}, b_{j_{2}}\right)+\sum_{j \neq j_{1}, j_{2}}\left(a_{j}, b_{j}\right)\right\|_{\psi} \\
& \leq\|(0,1)+(1,0)\|_{\psi}+\left\|\sum_{j \neq j_{1}, j_{2}}\left(a_{j}, b_{j}\right)\right\|_{\psi} \\
& =\|(1,1)\|_{\psi}+\left\|\sum_{j \neq j_{1}, j_{2}}\left(a_{j}, b_{j}\right)\right\|_{\psi}
\end{aligned}
$$

we have

$$
2 \geq\|(1,1)\|_{\psi} \geq\left\|\sum_{j=1}^{n}\left(a_{j}, b_{j}\right)\right\|_{\psi}-\left\|\sum_{j \neq j_{1}, j_{2}}\left(a_{j}, b_{j}\right)\right\|_{\psi} \geq n-(n-2)=2
$$

by (3.10), whence $\|(1,1)\|_{\psi}=2$. Consequently we have

$$
\begin{equation*}
\psi\left(\frac{1}{2}\right)=\left\|\left(\frac{1}{2}, \frac{1}{2}\right)\right\|_{\psi}=1 \tag{3.11}
\end{equation*}
$$

which implies that $\psi=\psi_{1}$, a contradiction.
Now we obviously have $A_{\theta} \leq \sum_{j=1}^{n} a_{j}$ and $B_{\theta} \leq \sum_{j=1}^{n} b_{j}$. Consequently in view of Lemma 2.1, for all $\theta=\left(\theta_{j}\right)$ there is no case that

$$
A_{\theta}<\sum_{j=1}^{n} a_{j} \text { and } B_{\theta}<\sum_{j=1}^{n} b_{j} .
$$

Case 1. Let $A_{\theta}=\sum_{j=1}^{n} a_{j}$ and $B_{\theta}=\sum_{j=1}^{n} b_{j}$ for all $\theta=\left(\theta_{j}\right)$.
(a) Assume first that $a_{j}>0$ for all j. Then

$$
\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|=A_{\theta}=\sum_{j=1}^{n} a_{j}=\lim _{k \rightarrow \infty} \sum_{j=1}^{n}\left\|\theta_{j} x_{j}^{(k)}\right\|
$$

Therefore by Lemma 3.2 we have

$$
\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} \frac{x_{j}^{(k)}}{\left\|x_{j}^{(k)}\right\|}\right\|=n \text { for all } \theta=\left(\theta_{j}\right)
$$

which implies that X is not uniformly non- ℓ_{1}^{n}, a contradiction.
(b) If $b_{j}>0$ for all j, the parallel argument works for Y.

Case 2. Let (a) $A_{\theta}=\sum_{j=1}^{n} a_{j}$ for all $\theta=\left(\theta_{j}\right)$ and $B_{\theta^{\prime}}<\sum_{j=1}^{n} b_{j}$ with some $\theta^{\prime}=\left(\theta_{j}^{\prime}\right)$, or (b) $A_{\theta^{\prime}}<\sum_{j=1}^{n} a_{j}$ with some $\theta^{\prime}=\left(\theta_{j}^{\prime}\right)$ and $B_{\theta}=\sum_{j=1}^{n} b_{j}$ for all $\theta=\left(\theta_{j}\right)$. It is enough to see the case (a). Since

$$
\left\|\left(A_{\theta^{\prime}}, B_{\theta^{\prime}}\right)\right\|_{\psi}=\left\|\left(\sum_{j=1}^{n} a_{j}, \sum_{j=1}^{n} b_{j}\right)\right\|_{\psi}=n
$$

we have by Proposition $2.3 \sum_{j=1}^{n} a_{j}=\left\|\left(A_{\theta^{\prime}}, B_{\theta^{\prime}}\right)\right\|_{\psi}=n$ and hence $a_{j}=1$ for all j (recall $0 \leq a_{j} \leq 1$). Consequently X is not uniformly non- ℓ_{1}^{n} as in Case 1(a).
Case 3. Let $A_{\theta}<\sum_{j=1}^{n} a_{j}$ and $B_{\theta^{\prime}}<\sum_{j=1}^{n} b_{j}$ with different $\theta=\left(\theta_{j}\right)$ and $\theta^{\prime}=\left(\theta_{j}^{\prime}\right)$. Then we have

$$
\begin{equation*}
A_{\theta}<\sum_{j=1}^{n} a_{j} \text { and } B_{\theta}=\sum_{j=1}^{n} b_{j} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{\theta^{\prime}}=\sum_{j=1}^{n} a_{j} \text { and } B_{\theta^{\prime}}<\sum_{j=1}^{n} b_{j} \tag{3.13}
\end{equation*}
$$

By Proposition 2.3, (3.10), (3.12) and (3.13) we have

$$
\sum_{j=1}^{n} a_{j}=A_{\theta^{\prime}}=\left\|\left(A_{\theta^{\prime}}, B_{\theta^{\prime}}\right)\right\|_{\psi}=n \quad \text { and } \quad \sum_{j=1}^{n} b_{j}=B_{\theta}=\left\|\left(A_{\theta}, B_{\theta}\right)\right\|_{\psi}=n
$$

Therefore by (3.10)

$$
n=\left\|\left(\sum_{j=1}^{n} a_{j}, \sum_{j=1}^{n} b_{j}\right)\right\|_{\psi}=\|(n, n)\|_{\psi}=n\|(1,1)\|_{\psi},
$$

and thus $\|(1,1)\|_{\psi}=1$. Consequently we have

$$
\psi\left(\frac{1}{2}\right)=\left\|\left(\frac{1}{2}, \frac{1}{2}\right)\right\|_{\psi}=\frac{1}{2}
$$

which implies that $\psi=\psi_{\infty}$, a contradiction. This completes the proof.

The foregoing Theorem 3.4 does not answer the following: Let X and Y be uniformly non- ℓ_{1}^{n}. Is it possible for $X \oplus_{\psi} Y$ to be uniformly non- ℓ_{1}^{n} with $\psi=\psi_{1}$ or $\psi=\psi_{\infty}$? The next theorem will answer this question.

Theorem 3.5. Let X and Y be Banach spaces and let $\psi \in \Psi$. Assume that neither X nor Y is uniformly non- ℓ_{1}^{n-1}. Then the following are equivalent.
(i) $X \oplus_{\psi} Y$ is uniformly non- ℓ_{1}^{n}.
(ii) X and Y are uniformly non- ℓ_{1}^{n} and $\psi \neq \psi_{1}, \psi_{\infty}$.

Proof. We merely see the assertion (i) \Rightarrow (ii). Assume that $X \oplus_{\psi} Y$ is uniformly non- ℓ_{1}^{n}. Then X and Y are uniformly non- ℓ_{1}^{n} as mentioned before. Since X is not uniformly non- ℓ_{1}^{n-1}, there exist $n-1$ sequences $\left\{x_{1}^{(k)}\right\}_{k}, \ldots,\left\{x_{n-1}^{(k)}\right\}_{k} \subset S_{X}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n-1} \theta_{j} x_{j}^{(k)}\right\|=n-1 \tag{3.14}
\end{equation*}
$$

for all $\theta_{j}= \pm 1$. We first assume that $\psi=\psi_{1}$. Take $y \in S_{Y}$. Then the n sequences $\left\{\left(x_{1}^{(k)}, 0\right)\right\}, \ldots,\left\{\left(x_{n-1}^{(k)}, 0\right)\right\},\{(0, y)\}$ are in the unit sphere of $X \oplus_{\psi} Y$ and

$$
\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n-1} \theta_{j}\left(x_{j}^{(k)}, 0\right)+\theta_{n}(0, y)\right\|_{1}=\lim _{k \rightarrow \infty}\left[\left\|\sum_{j=1}^{n-1} \theta_{j} x_{j}^{(k)}\right\|+\left\|\theta_{n} y\right\|\right]=n
$$

from which it follows that $X \oplus_{1} Y$ is not uniformly non $-\ell_{1}^{n}$, a contradiction. Thus we have $\psi \neq \psi_{1}$. Next assume that $\psi=\psi_{\infty}$. Since Y is not uniformly non- ℓ_{1}^{n-1}, there exist $n-1$ sequences $\left\{y_{1}^{(k)}\right\}_{k}, \ldots,\left\{y_{n-1}^{(k)}\right\}_{k} \subset S_{Y}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n-1} \theta_{j} y_{j}^{(k)}\right\|=n-1 \tag{3.15}
\end{equation*}
$$

for all $\theta_{j}= \pm 1$. Then the sequences $\left\{\left(x_{1}^{(k)}, y_{1}^{(k)}\right)\right\}_{k}, \ldots,\left\{\left(x_{n-1}^{(k)}, y_{n-1}^{(k)}\right)\right\}_{k}$, $\left\{\left(-x_{1}^{(k)}, y_{1}^{(k)}\right)\right\}_{k}$ are in the unit sphere of $X \oplus_{\infty} Y$. Owing to Lemma 3.3 it follows from (3.15) that

$$
\lim _{k \rightarrow \infty}\left\|2 \theta_{1} y_{1}^{(k)}+\sum_{j=2}^{n-1} \theta_{j} y_{j}^{(k)}\right\|=\lim _{k \rightarrow \infty}\left[2\left\|y_{1}^{(k)}\right\|+\sum_{j=2}^{n-1}\left\|y_{j}^{(k)}\right\|\right]=n
$$

Hence, if $\theta_{1}=\theta_{n}$, we have

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n-1} \theta_{j}\left(x_{j}^{(k)}, y_{j}^{(k)}\right)+\theta_{n}\left(-x_{1}^{(k)}, y_{1}^{(k)}\right)\right\|_{\infty} \\
= & \lim _{k \rightarrow \infty}\left\|\left(\sum_{j=2}^{n-1} \theta_{j} x_{j}^{(k)}, \sum_{j=2}^{n-1} \theta_{j} y_{j}^{(k)}+2 \theta_{1} y_{1}^{(k)}\right)\right\|_{\infty} \\
= & \lim _{k \rightarrow \infty} \max \left\{\left\|\sum_{j=2}^{n-1} \theta_{j} x_{j}^{(k)}\right\|,\left\|\sum_{j=2}^{n-1} \theta_{j} y_{j}^{(k)}+2 \theta_{1} y_{1}^{(k)}\right\|\right\} \\
= & \max \left\{\lim _{k \rightarrow \infty}\left\|\sum_{j=2}^{n-1} \theta_{j} x_{j}^{(k)}\right\|, \lim _{k \rightarrow \infty}\left\|\sum_{j=2}^{n-1} \theta_{j} y_{j}^{(k)}+2 \theta_{1} y_{1}^{(k)}\right\|\right\} \\
= & \max \left\{\lim _{k \rightarrow \infty}\left\|\sum_{j=2}^{n-1} \theta_{j} x_{j}^{(k)}\right\|, n\right\}=n .
\end{aligned}
$$

If $\theta_{1}=-\theta_{n}$, by (3.14) we have

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n-1} \theta_{j}\left(x_{j}^{(k)}, y_{j}^{(k)}\right)+\theta_{n}\left(-x_{1}^{(k)}, y_{1}^{(k)}\right)\right\|_{\infty} \\
= & \lim _{k \rightarrow \infty} \max \left\{\left\|\sum_{j=2}^{n-1} \theta_{j} x_{j}^{(k)}+2 \theta_{1} x_{1}^{(k)}\right\|,\left\|\sum_{j=2}^{n-1} \theta_{j} y_{j}^{(k)}\right\|\right\} \\
= & \max \left\{\lim _{k \rightarrow \infty}\left\|\sum_{j=2}^{n-1} \theta_{j} x_{j}^{(k)}+2 \theta_{1} x_{1}^{(k)}\right\|, \lim _{k \rightarrow \infty}\left\|\sum_{j=2}^{n-1} \theta_{j} y_{j}^{(k)}\right\|\right\} \\
= & \max \left\{n, \lim _{k \rightarrow \infty}\left\|\sum_{j=2}^{n-1} \theta_{j} y_{j}^{(k)}\right\|\right\}=n .
\end{aligned}
$$

Consequently $X \oplus_{\infty} Y$ is not uniformly non- ℓ_{1}^{n}, a contradiction. Thus we have $\psi \neq \psi_{\infty}$, which completes the proof.

Remark 3.6. In Theorem 3.5 we cannot remove the condition that neither X nor Y is uniformly non- ℓ_{1}^{n-1}. We shall see this in the final section.

Theorem 3.5 yields the following recent result of the authors.
Corollary 3.7 (Kato-Saito-Tamura [19]). Let X and Y be Banach spaces and $\psi \in$ Ψ. Then the following are equivalent.
(i) $X \oplus_{\psi} Y$ is uniformly non-square.
(ii) X and Y are uniformly non-square and $\psi \neq \psi_{1}, \psi_{\infty}$.

Now we consider the (Lorentz) $\ell_{p, q^{-}}$-norm $\|\cdot\|_{p, q}, 1 \leq q \leq p \leq \infty$:

$$
\left\|\left(z_{1}, z_{2}\right)\right\|_{p, q}=\left\{z_{1}^{* q}+2^{(q / p)-1} z_{2}^{* q}\right\}^{1 / q}
$$

where $\left\{z_{1}^{*}, z_{2}^{*}\right\}$ is the non-increasing rearrangement of $\left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}$. (Note that in case of $1 \leq p<q \leq \infty,\|\cdot\|_{p, q}$ is not a norm but a quasi-norm (cf. [16], [34, p.126]). Clearly $\|\cdot\|_{p, q}$ is an absolute normalized norm and the corresponding convex function $\psi_{p, q}$ is given by

$$
\psi_{p, q}(t)= \begin{cases}\left\{(1-t)^{q}+2^{q / p-1} t^{q}\right\}^{1 / q} & \text { if } 0 \leq t \leq 1 / 2 \tag{3.16}\\ \left\{t^{q}+2^{q / p-1}(1-t)^{q}\right\}^{1 / q} & \text { if } 1 / 2 \leq t \leq 1\end{cases}
$$

Thus $\psi_{p, q}$ yields the $\ell_{p, q}$-sum $X \oplus_{p, q} Y$:

$$
\begin{equation*}
\|(x, y)\|_{p, q}=\left\{\max \left(\|x\|^{q},\|y\|^{q}\right)+2^{(q / p)-1} \min \left(\|x\|^{q},\|y\|^{q}\right)\right\}^{1 / q} \tag{3.17}
\end{equation*}
$$

Corollary 3.8. Let $1 \leq q \leq p \leq \infty, q<\infty$. Then the $\ell_{p, q-s u m} X_{1} \oplus_{p, q} X_{2}$ is uniformly non- ℓ_{1}^{n} if and only if X_{1} and X_{2} are uniformly non- ℓ_{1}^{n}. In particular the ℓ_{p}-sum $X_{1} \oplus_{p} X_{2}, 1<p<\infty$, is uniformly non- ℓ_{1}^{n} if and only if X_{1} and X_{2} are uniformly non- ℓ_{1}^{n}. The same is true for the uniform non-squareness.

4. ℓ_{1}-SUMS

The ℓ_{1}-sum $X \oplus_{1} Y$ cannot be uniformly non-square for all X and Y, whereas Theorem 3.5 indicates that it can be uniformly non- $\ell_{1}^{n}, n \geq 3$. In this section we shall treat the uniform non- ℓ_{1}^{n}-ness of the ℓ_{1}-sum of finitely many Banach spaces. We shall denote by $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{1}$ the ℓ_{1}-sum of m Banach spaces X_{1}, \ldots, X_{m} though it is not consistent with the notation $X \oplus_{1} Y$. First we shall prove the following.

Proposition 4.1. Let X and Y be Banach spaces and let $n \geq 3$ and $n=n_{1}+n_{2}$ with positive integers n_{1}, n_{2}. Let $X \oplus_{1} Y$ be uniformly non- ℓ_{1}^{n}. Then X is uniformly non- $\ell_{1}^{n_{1}}$ or Y is uniformly non- $\ell_{1}^{n_{2}}$.

Proof. Assume that X is not uniformly non- $\ell_{1}^{n_{1}}$ and Y is not uniformly non- $\ell_{1}^{n_{2}}$. Then there exist $\left\{x_{1}^{(k)}\right\}_{k}, \ldots,\left\{x_{n_{1}}^{(k)}\right\}_{k}$ in S_{X} and $\left\{y_{1}^{(k)}\right\}_{k}, \ldots,\left\{y_{n_{2}}^{(k)}\right\}_{k}$ in S_{Y} such that $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n_{1}} \theta_{j}^{\prime} x_{j}^{(k)}\right\|=n_{1}$ for all $\left(\theta_{j}^{\prime}\right)$ of n_{1} signs and $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n_{2}} \theta_{j}^{\prime \prime} y_{j}^{(k)}\right\|=$ n_{2} for all $\left(\theta_{j}^{\prime \prime}\right)$ of n_{2} signs, respectively. Define $\left(z_{1}^{(k)}, w_{1}^{(k)}\right), \ldots,\left(z_{n_{1}+n_{2}}^{(k)}, w_{n_{1}+n_{2}}^{(k)}\right)$ in $X \oplus_{1} Y$ by

$$
\left(z_{1}^{(k)}, w_{1}^{(k)}\right)=\left(x_{1}^{(k)}, 0\right), \ldots \ldots,\left(z_{n_{1}}^{(k)}, w_{n_{1}}^{(k)}\right)=\left(x_{n_{1}}^{(k)}, 0\right)
$$

$$
\left(z_{n_{1}+1}^{(k)}, w_{n_{1}+1}^{(k)}\right)=\left(0, y_{1}^{(k)}\right), \ldots \ldots,\left(z_{n_{1}+n_{2}}^{(k)}, w_{n_{1}+n_{2}}^{(k)}\right)=\left(0, y_{n_{2}}^{(k)}\right)
$$

Let $\theta=\left(\theta_{j}\right)$ be an arbitrary $\left(n_{1}+n_{2}\right)$-tuple of signs. Then $\left\|\left(z_{j}^{(k)}, w_{j}^{(k)}\right)\right\|_{1}=1$ for all $1 \leq j \leq n$ and $k \in \mathbb{N}$ and

$$
\begin{aligned}
\left\|\sum_{j=1}^{n_{1}+n_{2}} \theta_{j}\left(z_{j}^{(k)}, w_{j}^{(k)}\right)\right\|_{1} & =\left\|\left(\sum_{j=1}^{n_{1}} \theta_{j} x_{j}^{(k)}, \sum_{j=n_{1}+1}^{n_{1}+n_{2}} \theta_{j} y_{j-n_{1}}^{(k)}\right)\right\|_{1} \\
& =\left\|\sum_{j=1}^{n_{1}} \theta_{j} x_{j}^{(k)}\right\|+\left\|\sum_{j=n_{1}+1}^{n_{1}+n_{2}} \theta_{j} y_{j-n_{1}}^{(k)}\right\| \rightarrow n_{1}+n_{2}
\end{aligned}
$$

as $k \rightarrow \infty$. This implies that $X \oplus_{1} Y$ is not uniformly non $-\ell_{1}^{n_{1}+n_{2}}$, which completes the proof.
Theorem 4.2. Let X and Y be Banach spaces. The following are equivalent.
(i) $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{n}.
(ii) There exist positive integers n_{1} and n_{2} with $n_{1}+n_{2}=n-1$ such that X is uniformly non- $-\ell_{1}^{n_{1}+1}$ and Y is uniformly non- $\ell_{1}^{n_{2}+1}$.
Proof. (i) \Rightarrow (ii). Assume that $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{n}. Let $n_{1}=\min \{m \in$ $\mathbb{N}: X$ is uniformly non- $\left.\ell_{1}^{m+1}\right\}$ (note that X is uniformly non $-\ell_{1}^{n}$). Then X is uniformly non- $\ell_{1}^{n_{1}+1}$, but not uniformly non- $\ell_{1}^{n_{1}}$. Therefore Y is uniformly non-$\ell_{1}^{n-n_{1}}$ by Proposition 4.1 and hence $n-n_{1} \geq 2$. Letting $n_{2}=n-n_{1}-1$, we have the conclusion.
(ii) \Rightarrow (i). Assume that X is uniformly non- $\ell_{1}^{n_{1}+1}$ and Y is uniformly non $-\ell_{1}^{n_{2}+1}$ with $n_{1}+n_{2}=n-1$. Suppose that $X \oplus_{1} Y$ is not uniformly non- ℓ_{1}^{n}. Then we have n sequences $\left\{\left(x_{j}^{(k)}, y_{j}^{(k)}\right)\right\}_{k}$ in $X \oplus_{1} Y(j=1, \ldots, n)$ such that

$$
\begin{equation*}
\left\|\left(x_{j}^{(k)}, y_{j}^{(k)}\right)\right\|_{1}=1 \text { for all } 1 \leq j \leq n \text { and } k \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \theta_{j}\left(x_{j}^{(k)}, y_{j}^{(k)}\right)\right\|_{1}=\left\|\left(\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}, \sum_{j=1}^{n} \theta_{j} y_{j}^{(k)}\right)\right\|_{1} \rightarrow n \text { as } k \rightarrow \infty \tag{4.2}
\end{equation*}
$$

for all n-tuples of signs $\theta=\left(\theta_{j}\right)$. As in the proof of Theorem 3.4 we may assume that each of the sequences $\left\{\left\|x_{j}^{(k)}\right\|\right\}_{k},\left\{\left\|y_{j}^{(k)}\right\|\right\}_{k},\left\{\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|\right\}_{k}$, and $\left\{\left\|\sum_{j=1}^{n} \theta_{j} y_{j}^{(k)}\right\|\right\}_{k}$ has a limit and

$$
\begin{equation*}
\left\|x_{j}^{(k)}\right\| \rightarrow a_{j},\left\|y_{j}^{(k)}\right\| \rightarrow b_{j} \text { as } k \rightarrow \infty \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\| \rightarrow A_{\theta},\left\|\sum_{j=1}^{n} \theta_{j} y_{j}^{(k)}\right\| \rightarrow B_{\theta} \text { as } k \rightarrow \infty \tag{4.4}
\end{equation*}
$$

Letting $k \rightarrow \infty$ in (4.1), we have

$$
\begin{equation*}
\left\|\left(a_{j}, b_{j}\right)\right\|_{1}=1 \text { for all } 1 \leq j \leq n \tag{4.5}
\end{equation*}
$$

and by (4.2)

$$
\begin{equation*}
\left\|\left(A_{\theta}, B_{\theta}\right)\right\|_{1}=n \text { for all } \theta=\left(\theta_{j}\right) \tag{4.6}
\end{equation*}
$$

Then as (3.10)

$$
\left\|\left(A_{\theta}, B_{\theta}\right)\right\|_{1}=\left\|\left(\sum_{j=1}^{n} a_{j}, \sum_{j=1}^{n} b_{j}\right)\right\|_{1}=n \text { for all } \theta=\left(\theta_{j}\right)
$$

Since $A_{\theta} \leq \sum_{j=1}^{n} a_{j}$ and $B_{\theta} \leq \sum_{j=1}^{n} b_{j}$, we have

$$
\begin{equation*}
A_{\theta}=\sum_{j=1}^{n} a_{j}, B_{\theta}=\sum_{j=1}^{n} b_{j} \tag{4.7}
\end{equation*}
$$

for all $\theta=\left(\theta_{j}\right)$. Let $L=\left\{j: a_{j}=0\right\}$ and $M=\left\{j: b_{j}=0\right\}$. Since X is uniformly non- $\ell_{1}^{n_{1}+1}$, we have

$$
\operatorname{card}\left(L^{c}\right)=\lim _{k \rightarrow \infty}\left\|\sum_{j \in L^{c}} \theta_{j} \frac{x_{j}^{(k)}}{\left\|x_{j}^{(k)}\right\|}\right\|<n_{1}+1
$$

by (4.7) and Lemma 3.2. In the same way $\operatorname{card}\left(M^{c}\right)<n_{2}+1$. Therefore

$$
\operatorname{card}(L)>n-n_{1}-1=n_{2}
$$

On the other hand, as $L \subset M^{c}$ (recall that $\left\|\left(a_{j}, b_{j}\right)\right\|=1$ for all j), we obtain that $\operatorname{card}(L) \leq \operatorname{card}\left(M^{c}\right)<n_{2}+1$, a contradiction. This completes the proof.

Recently Theorem 4.2 was extended for finitely many Banach spaces in [22] as follows (with the different proof). We shall present another proof by induction based on Theorem 4.2.

Theorem 4.3 (Kato and Tamura [22, Theorem 1]). Let X_{1}, \ldots, X_{m} be Banach spaces. Let n be an arbitrary positive integer with $n \geq 2$. Then the following are equivalent.
(i) $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{1}$ is uniformly non- ℓ_{1}^{n}.
(ii) There exist positive integers n_{1}, \ldots, n_{m} with $n_{1}+n_{2}+\cdots+n_{m}=n-1$ such that X_{i} is uniformly non $-\ell_{1}^{n_{i}+1}$ for all $1 \leq i \leq m$.

Proof. According to Theorem 4.2 our assertion is valid for $m=2$. Assume that the assertion holds for m. Then, since the space $\left(X_{1} \oplus \cdots \oplus X_{m+1}\right)_{1}$ is expressed as $\left(X_{1} \oplus \cdots \oplus X_{m+1}\right)_{1}=\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{1} \oplus_{1} X_{m+1}$, we have that $\left(X_{1} \oplus \cdots \oplus X_{m+1}\right)_{1}$ is uniformly non- ℓ_{1}^{n} if and only if there exist positive integers n_{0} and n_{m+1} with $n_{0}+n_{m+1}=n-1$ such that $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{1}$ is uniformly non- $\ell_{1}^{n_{0}+1}$ and X_{m+1} is uniformly non $-\ell_{1}^{n_{m+1}+1}$. By the induction assumption, $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{1}$ is uniformly non $-\ell_{1}^{n_{0}+1}$ if and only if there exist positive integers n_{1}, \ldots, n_{m} with $n_{1}+n_{2}+\cdots+$ $n_{m}=n_{0}-1$ such that X_{i} is uniformly non $-\ell_{1}^{n_{i}+1}$ for all $1 \leq i \leq m$. This implies that our assertion holds true for $m+1$, which completes the proof.

From Theorem 4.3 it follows that if even one of X_{1}, \ldots, X_{m} is not uniformly non- ℓ_{1}^{n-1}, then $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{1}$ cannot be uniformly non- ℓ_{1}^{n}, that is:

Corollary 4.4. Let X_{1}, \ldots, X_{m} be Banach spaces. If $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{1}$ is uniformly non- ℓ_{1}^{n}, then each of X_{i} is uniformly non $-\ell_{1}^{n-1}$.

Indeed, assume that $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{1}$ is uniformly non- ℓ_{1}^{n}. Then by Theorem 4.3 there exist positive integers n_{1}, \ldots, n_{m} with $n_{1}+\cdots+n_{m}=n-1$ such that X_{i} is uniformly non- $\ell_{1}^{n_{i}+1}$ for all $1 \leq i \leq m$. As $n_{i}+1 \leq n_{1}+\cdots+n_{m}=n-1, X_{i}$ is uniformly non- ℓ_{1}^{n-1} for each i by Proposition A.

As the case $m=2$ and $n=3$ Theorem 4.3 yields the following interesting result.
Theorem 4.5. Let X and Y be Banach spaces. Then the following are equivalent.
(i) $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{3}.
(ii) X and Y are uniformly non-square.

5. ℓ_{∞}-SUMS

In this section we shall discuss the uniform non- ℓ_{1}^{n}-ness of the ℓ_{∞}-sum of a finite number of uniformly non-square Banach spaces. The ℓ_{∞}-sum of Banach spaces X_{1}, \ldots, X_{m}, which we denote by $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{\infty}$, is their direct sum equipped with the norm $\|\cdot\|_{\infty}=\max \left\{\|\cdot\|_{X_{1}}, \ldots,\|\cdot\|_{X_{m}}\right\}$.

Proposition 5.1. Let X be a uniformly non-square Banach space and let $\left\{x_{1}^{(k)}\right\}_{k}$, $\ldots,\left\{x_{n}^{(k)}\right\}_{k}$ be n sequences with nonzero terms in the closed unit ball of X. Let

$$
\begin{align*}
& B\left(\left\{x_{1}^{(k)}\right\}, \ldots,\left\{x_{n}^{(k)}\right\}\right) \tag{5.1}\\
:= & \left\{\left(\theta_{j}\right): \lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|=n, \theta_{1}=1, \theta_{j}= \pm 1(2 \leq j \leq n)\right\} .
\end{align*}
$$

Then $\operatorname{card}\left(B\left(\left\{x_{1}^{(k)}\right\}, \ldots,\left\{x_{n}^{(k)}\right\}\right)\right) \leq 1$.
Proof. We shall prove this by induction. In case of $n=2$ our assertion is valid as X is uniformly non-square. Assume that our assertion holds true for any n sequences in $B_{X}, n \geq 2$. Let $\left\{x_{1}^{(k)}\right\}_{k}, \ldots,\left\{x_{n+1}^{(k)}\right\}_{k}$ be $n+1$ sequences with nonzero terms in B_{X}. Suppose that $\left(\theta_{j}\right),\left(\theta_{j}^{\prime}\right) \in B\left(\left\{x_{1}^{(k)}\right\}, \ldots,\left\{x_{n+1}^{(k)}\right\}\right)$. Then

$$
\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n+1} \theta_{j} x_{j}^{(k)}\right\|=\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n+1} \theta_{j}^{\prime} x_{j}^{(k)}\right\|=n+1
$$

Denote by $B(n)$ the set $B\left(\left\{x_{1}^{(k)}\right\}, \ldots,\left\{x_{n}^{(k)}\right\}\right)$ for the first n sequences $\left\{x_{1}^{(k)}\right\}_{k}, \ldots$, $\left\{x_{n}^{(k)}\right\}_{k}$. Then

$$
\begin{aligned}
n \geq \lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\| & \geq \lim _{k \rightarrow \infty}\left[\left\|\sum_{j=1}^{n+1} \theta_{j} x_{j}^{(k)}\right\|-\left\|\theta_{n+1} x_{n+1}^{(k)}\right\|\right] \\
& \geq(n+1)-1=n
\end{aligned}
$$

Thus we have $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|=n$. The same is true for $\left(\theta_{j}^{\prime}\right)_{j=1}^{n}$. Therefore $\left(\theta_{j}\right)_{j=1}^{n},\left(\theta_{j}^{\prime}\right)_{j=1}^{n} \in B(n)$, which implies that $\theta_{j}=\theta_{j}^{\prime}$ for all $1 \leq j \leq n$ by the
induction hypothesis. If $\theta_{n+1} \neq \theta_{n+1}^{\prime}$, we have $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)} \pm x_{n+1}^{(k)}\right\|=n+1$. Consequently

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\|n\left(\frac{1}{n} \sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right) \pm x_{n+1}^{(k)}\right\| & =\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)} \pm x_{n+1}^{(k)}\right\|=n+1 \\
& =\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|+1 \\
& =\lim _{k \rightarrow \infty}\left[n\left\|\frac{1}{n} \sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|+\left\| \pm x_{n+1}^{(k)}\right\|\right]
\end{aligned}
$$

(note that $\lim _{k \rightarrow \infty}\left\|x_{n+1}^{(k)}\right\|=1$), from which it follows by Lemma 3.3 that

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\|\left(\frac{1}{n} \sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right) \pm x_{n+1}^{(k)}\right\| & =\lim _{k \rightarrow \infty}\left[\left\|\frac{1}{n} \sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|+\left\|x_{n+1}^{(k)}\right\|\right] \\
& =2
\end{aligned}
$$

This contradicts the uniform non-squareness of X. Therefore we obtain $\left(\theta_{j}\right)=\left(\theta_{j}^{\prime}\right)$, i.e. $\operatorname{card}\left(B\left(\left\{x_{1}^{(k)}\right\}, \ldots,\left\{x_{n+1}^{(k)}\right\}\right)\right) \leq 1$, which completes the proof.

Theorem 5.2. Let X_{1}, \ldots, X_{m} be uniformly non-square Banach spaces. Then $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{\infty}$ is uniformly non- ℓ_{1}^{n} if and only if $m<2^{n-1}$.

Proof. Assume first that $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{\infty}$ is uniformly non- ℓ_{1}^{n}. Suppose that $m \geq$ 2^{n-1}. Let $t=2^{n-1}$. Then ℓ_{∞}^{t} is uniformly non- ℓ_{1}^{n} as ℓ_{∞}^{t} is imbedded into ($X_{1} \oplus$ $\left.\cdots \oplus X_{m}\right)_{\infty}$. We recall Rademacher matrices $R_{n}=\left(r_{i j}^{(n)}\right)\left(2^{n} \times n\right.$ matrices; see [17]):

$$
R_{1}=\binom{1}{-1}, R_{n+1}=\left(\begin{array}{r|r}
1 & \tag{5.2}\\
\vdots & R_{n} \\
1 & \\
\hline-1 & \\
\vdots & R_{n} \\
-1 &
\end{array}\right) \quad(n=1,2, \ldots)
$$

Take $x_{1}=\left(r_{11}^{(n)}, \ldots, r_{t 1}^{(n)}\right), \ldots, x_{n}=\left(r_{1 n}^{(n)}, \ldots, r_{t n}^{(n)}\right)$ from the unit sphere of ℓ_{∞}^{t} (we write n columns of the upper half submatrix of R_{n} in row). Let $\theta=\left(\theta_{j}\right)$ be arbitrary n signs with $\theta_{1}=1$. By the definition of R_{n} there exists an $i_{0}, 1 \leq i_{0} \leq m$, such
that $\theta_{j}=r_{i_{0} j}^{(n)}$ for all $1 \leq j \leq n$. Then we have

$$
\begin{aligned}
\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\|_{\infty} & =\left\|\sum_{j=1}^{n} \theta_{j}\left(r_{1 j}^{(n)}, \ldots, r_{i_{0} j}^{(n)}, \ldots, r_{t j}^{(n)}\right)\right\|_{\infty} \\
& =\left\|\left(\sum_{j=1}^{n} \theta_{j} r_{1 j}^{(n)}, \ldots, \sum_{j=1}^{n} \theta_{j} r_{i_{0} j}^{(n)}, \ldots, \sum_{j=1}^{n} \theta_{j} r_{t j}^{(n)}\right)\right\|_{\infty} \\
& =\max \left\{\left|\sum_{j=1}^{n} \theta_{j} r_{1 j}^{(n)}\right|, \ldots,\left|\sum_{j=1}^{n} \theta_{j} r_{i_{0} j}^{(n)}\right|, \ldots,\left|\sum_{j=1}^{n} \theta_{j} r_{t j}^{(n)}\right|\right\} \\
& =\max \left\{\left|\sum_{j=1}^{n} \theta_{j} r_{1 j}^{(n)}\right|, \ldots, n, \ldots,\left|\sum_{j=1}^{n} \theta_{j} r_{t j}^{(n)}\right|\right\}=n
\end{aligned}
$$

and also $\left\|\sum_{j=1}^{n}\left(-\theta_{j}\right) x_{j}\right\|_{\infty}=n$. Since θ is arbitary, ℓ_{∞}^{t} is not uniformly non- ℓ_{1}^{n}, a contradiction. Consequently, if $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{\infty}$ is uniformly non- ℓ_{1}^{n}, we have $m<2^{n-1}$.

Conversely assume that $m<2^{n-1}$. Let

$$
\begin{equation*}
K=\sup \left\{\min _{\theta_{j}= \pm 1}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\|_{\infty}: x_{1}, \ldots, x_{n} \in S_{\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{\infty}}\right\} \tag{5.3}
\end{equation*}
$$

Then there exist n sequences $\left\{x_{1}^{(k)}\right\}_{k}, \ldots,\left\{x_{n}^{(k)}\right\}_{k}$ in the unit sphere of $\left(X_{1} \oplus \cdots \oplus\right.$ $\left.X_{m}\right)_{\infty}$ such that $K=\lim _{k \rightarrow \infty} \min _{\theta_{j}= \pm 1}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|_{\infty}$. Put $x_{1}^{(k)}=\left(x_{11}^{(k)}, \ldots, x_{m 1}^{(k)}\right)$, $\ldots, x_{n}^{(k)}=\left(x_{1 n}^{(k)}, \ldots, x_{m n}^{(k)}\right)$. By choosing subsequences if necessary, we may assume that $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{i j}^{(k)}\right\|$ exists for each $1 \leq i \leq m$. Let $\left(\theta_{j}\right) \in$ $B\left(\left\{x_{1}^{(k)}\right\}, \ldots,\left\{x_{n}^{(k)}\right\}\right)$. Then as

$$
\begin{aligned}
n & =\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}^{(k)}\right\|_{\infty}=\lim _{k \rightarrow \infty} \| \sum_{j=1}^{n} \theta_{j}\left(x_{1 j}^{(k)}, \ldots, x_{m j}^{(k)} \|_{\infty}\right. \\
& =\lim _{k \rightarrow \infty}\left\|\left(\sum_{j=1}^{n} \theta_{j} x_{1 j}^{(k)}, \ldots, \sum_{j=1}^{n} \theta_{j} x_{m j}^{(k)}\right)\right\| \infty \\
& =\max \left\{\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{1 j}^{(k)}\right\|, \ldots, \lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{m j}^{(k)}\right\|\right\},
\end{aligned}
$$

there exists $1 \leq i_{0} \leq m$ such that $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{i_{0} j}^{(k)}\right\|=n$. Let

$$
\begin{equation*}
B_{i}(n):=B\left(\left\{x_{i 1}^{(k)}\right\}, \ldots,\left\{x_{i n}^{(k)}\right\}\right)=\left\{\left(\theta_{j}\right): \theta_{1}=1, \lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j} x_{i j}^{(k)}\right\|=n\right\} \tag{5.4}
\end{equation*}
$$

for the space X_{i} and let $B=\bigcup_{i=1}^{n} B_{i}(n)$. Then by Proposition $5.1 \operatorname{card}\left(B_{i}(n)\right) \leq 1$ and hence $\operatorname{card}(B) \leq m$. Therefore denoting by A the set of all n-tuples $\left(\theta_{j}\right)$ of
signs with $\theta_{1}=1$, we have $\operatorname{card}(A)-\operatorname{card}(B) \geq 2^{n-1}-m>0$. Consequently there exists $\left(\theta_{j}^{\prime}\right) \in A$ such that $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j}^{\prime} x_{i j}^{(k)}\right\|<n$ for all $1 \leq i \leq m$, whence we have $\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j}^{\prime} x_{j}^{(k)}\right\|_{\infty}<n$. Since

$$
K=\lim \min _{k \rightarrow \infty}\left\|\sum_{\theta_{j}= \pm 1}^{n} \theta_{j} x_{j}^{(k)}\right\|_{\infty} \leq \lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{n} \theta_{j}^{\prime} x_{j}^{(k)}\right\|_{\infty}<n
$$

$\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{\infty}$ is uniformly non- ℓ_{1}^{n}. This completes the proof.
As the case $m=2$ in Theorem 5.2 we have the next result.
Corollary 5.3. Let X and Y be uniformly non-square Banach spaces. Then $X \oplus_{\infty} Y$ is uniformly non- ℓ_{1}^{n} if and only if $n \geq 3$.

This is equivalent to:
Corollary 5.3 bis. Let X and Y be uniformly non-square Banach spaces. Then $X \oplus_{\infty} Y$ is uniformly non- ℓ_{1}^{3}.

According to Theorem 4.5 the ℓ_{1}-sum $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{3} if and only if X and Y are uniformly non-square, while the converse assertion of Corollary 5.3 bis for the ℓ_{∞}-sum $X \oplus_{\infty} Y$ is not true as we shall see in Remark 5.5 below. Instead we shall obtain the following result which is interesting in contrast with Theorem 4.5.

Theorem 5.4. Let X, Y and Z be Banach spaces. Then the following are equivalent.
(i) $(X \oplus Y \oplus Z)_{\infty}$ is uniformly non- ℓ_{1}^{3}.
(ii) X, Y and Z are uniformly non-square.

Proof. The implication (ii) \Rightarrow (i) is a consequence of Theorem 5.2. We shall prove that (i) implies (ii). Assume that $(X \oplus Y \oplus Z)_{\infty}$ is uniformly non- ℓ_{1}^{3} and the assertion (ii) does not hold. We may assume that X is not uniformly non-square without loss of generality. Let $W=Y \oplus_{\infty} Z$. Then W is not uniformly non-square by Corollary 3.7. Therefore there exist $\left\{x_{1}^{(k)}\right\}_{k},\left\{x_{2}^{(k)}\right\}_{k} \subset S_{X}$ and $\left\{w_{1}^{(k)}\right\}_{k},\left\{w_{2}^{(k)}\right\}_{k} \subset S_{W}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|x_{1}^{(k)} \pm x_{2}^{(k)}\right\|=2 \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|w_{1}^{(k)} \pm w_{2}^{(k)}\right\|=2 \tag{5.6}
\end{equation*}
$$

respectively. Then $\left(x_{1}^{(k)}, w_{1}^{(k)}\right),\left(x_{2}^{(k)}, w_{2}^{(k)}\right),\left(x_{2}^{(k)},-w_{2}^{(k)}\right) \in S_{X \oplus_{\infty} W}$. Since

$$
\begin{aligned}
& \left\|\left(x_{1}^{(k)}, w_{1}^{(k)}\right) \pm\left(x_{2}^{(k)}, w_{2}^{(k)}\right)+\left(x_{2}^{(k)},-w_{2}^{(k)}\right)\right\|_{\infty} \\
= & \left\|\left(x_{1}^{(k)} \pm x_{2}^{(k)}+x_{2}^{(k)}, w_{1}^{(k)} \pm w_{2}^{(k)}-w_{2}^{(k)}\right)\right\|_{\infty}
\end{aligned}
$$

owing to Lemma 3.3 with (5.5) and (5.6) we have

$$
\left\|\left(x_{1}^{(k)}, w_{1}^{(k)}\right)+\left(x_{2}^{(k)}, w_{2}^{(k)}\right)+\left(x_{2}^{(k)},-w_{2}^{(k)}\right)\right\|_{\infty}=\left\|\left(\left\|x_{1}^{(k)}+2 x_{2}^{(k)}\right\|,\left\|w_{1}^{(k)}\right\|\right)\right\|_{\infty} \rightarrow 3
$$

and

$$
\left\|\left(x_{1}^{(k)}, w_{1}^{(k)}\right)-\left(x_{2}^{(k)}, w_{2}^{(k)}\right)+\left(x_{2}^{(k)},-w_{2}^{(k)}\right)\right\|_{\infty}=\|\left(\left\|x_{1}^{(k)}\right\|,\left\|w_{1}^{(k)}-2 w_{1}^{(k)}\right\|_{1} \|_{\infty} \rightarrow 3\right.
$$

as $k \rightarrow \infty$. In the same way

$$
\left\|\left(x_{1}^{(k)}, w_{1}^{(k)}\right) \pm\left(x_{2}^{(k)}, w_{2}^{(k)}\right)-\left(x_{2}^{(k)},-w_{2}^{(k)}\right)\right\|_{\infty} \rightarrow 3 \text { as } k \rightarrow \infty .
$$

Consequently we obtain that $(X \oplus Y \oplus Z)_{\infty}=X \oplus_{\infty} W$ is not uniformly non- ℓ_{1}^{3}, a contradiction, which implies that X is uniformly non-square. This completes the proof.

Remark 5.5. Let X, Y and Z be uniformly non-square Banach spaces and let $W=$ $Y \oplus_{\infty} Z$. Then $X \oplus_{\infty} W$ is uniformly non- ℓ_{1}^{3} by Theorem 5.4, whereas W is not uniformly non-square. Thus the converse assertion of Corollary 5.3 bis is not true.

We shall close this section with the following extremely useful result to construct various examples.
Corollary 5.6. ℓ_{∞}^{m} is uniformly non $-\ell_{1}^{n}$ if and only if $m<2^{n-1}$.

6. Examples and problems

In Theorem 3.5 we have seen that if $X \oplus_{\psi} Y$ is uniformly non- ℓ_{1}^{n} and if neither X nor Y is uniformly non $-\ell_{1}^{n-1}$, then $\psi \neq \psi_{1}, \psi_{\infty}$. We shall give some examples below which show that we cannot remove the assumption that X and Y are not uniformly non- ℓ_{1}^{n-1}.
Examples. (i) Let $X=\ell_{\infty}^{3}, Y=\ell_{\infty}^{4}$ and $\psi=\psi_{\infty}$. Then $X \oplus_{\infty} Y=\ell_{\infty}^{7}$. Owing to Corollary 5.6, $X \oplus_{\infty} Y$ is uniformly non- ℓ_{1}^{4}, whereas X is uniformly non- ℓ_{1}^{3} and Y is not uniformly non- ℓ_{1}^{3}.
(ii) Let $X=\ell_{\infty}^{2}, Y=\ell_{\infty}^{3}$ and $\psi=\psi_{1}$. Then by Corollary 5.6 both of X and Y are uniformly non- ℓ_{1}^{3}. By Theorem 4.2 (let $n_{1}=n_{2}=2$), $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{5}. whereas both of X and Y are uniformly non- ℓ_{1}^{4}. (Recall that Corollary 4.4 says that for general Banach spaces X and Y, if $X \oplus_{1} Y$ is uniformly non- ℓ_{1}^{n}, then X and Y are uniformly non- ℓ_{1}^{n-1}.)

Problem 6.1. Characterize the uniform non- ℓ_{1}^{n}-ness or the uniform non-squareness of $\left(X_{1} \oplus X_{2} \oplus \cdots \oplus X_{m}\right)_{\psi}$ (cf. [18, 32, 27]).

Problem 6.2. Characterize the uniform non- ℓ_{1}^{n}-ness of $\left(X_{1} \oplus \cdots \oplus X_{m}\right)_{\infty}$ without the assumption that X, \ldots, X_{m} are uniformly non-square.

References

[1] B. Beauzamy, Introduction to Banach Spaces and their Geometry, 2nd ed., North-Holland, 1985.
[2] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, 1973.
[3] D. R. Brown, B-convexity in Banach spaces, Doctoral dissertation, Ohaio State University, 1970.
[4] M. Denker and H. Hudzik, Uniformly non-l ${ }_{n}^{(1)}$ Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. Math. Sci. 101 (1991), 71-86
[5] S. Dhompongsa, A. Kaewkhao and S. Saejung, Uniform smoothness and U-convexity of ψ direct sums, J. Nonlinear Convex Anal. 6 (2005), 327-338.
[6] S. Dhompongsa, A. Kaewcharoen and A. Kaewkhao, Fixed point property of direct sums, Nonlinear Anal. 63 (2005), e2177-e2188.
[7] P. N. Dowling, On convexity properties of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 288 (2003), 540-543.
[8] P. N. Dowling and B. Turett, Complex strict convexity of absolute norms on \mathbb{C}^{n} and direct sums of Banach spaces, J. Math. Anal. Appl. 323 (2006), 930-937.
[9] M. Fujii, M. Kato, K.-S. Saito and T. Tamura, Sharp mean triangle inequality, to appear in Math. Inequal. Appl.
[10] D. P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc. 125 (1966), 114-146.
[11] D. P. Giesy and R. C. James, Uniformly non-ll $l_{n}^{(1)}$ and B-convex spaces, Studia Math. 48 (1973), 61-69.
[12] R. Grza̧ślewicz, H. Hudzik and W. Orlicz, Uniformly non- $\ell_{n}^{(1)}$ property in some Orlicz spaces, Bull. Acad. Polon. Sci. Math. 34 (1986), 161-171.
[13] H. Hudzik, Uniformly non-l ${ }_{n}^{(1)}$ Orlicz spaces with Luxemburg norm, Studia Math. 81 (1985), 271-284.
[14] H. Hudzik, A. Kamińska and W. Kurc, Uniformly non- $\ell_{n}^{(1)}$ Musielak-Orlicz spaces, Bull. Acad. Polon. Sci. Math. 35 (1987), 7-8.
[15] C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
[16] M. Kato, On Lorentz spaces $\ell_{p, q}\{E\}$, Hiroshima Math. J. 6 (1976), 73-93.
[17] M. Kato, L. E. Persson and Y. Takahashi, Clarkson type inequalities and their relations to the concepts of type and cotype, Collect. Math. 51 (2000), 327-346.
[18] M. Kato, K.-S. Saito and T. Tamura, On ψ-direct sums of Banach spaces and convexity, J. Aust. Math. Soc. 75 (2003), 413-422.
[19] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of ψ-direct sums of Banach spaces $X \oplus_{\psi} Y$, Math. Inequal. Appl. 7 (2004), 429-437.
[20] M. Kato, K.-S. Saito and T. Tamura, Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl. 10 (2007), 451-460.
[21] M. Kato and T. Tamura, Weak nearly uniform smoothness and worth property of ψ-direct sums of Banach spaces $X \oplus_{\psi} Y$, Comment. Math. Prace Mat. 46 (2006), 113-129.
[22] M. Kato and T. Tamura, Uniform non- ℓ_{1}^{n}-ness of ℓ_{1}-sums of Banach spaces, Comment. Math. Prace Mat. 47 (2007), 161-169.
[23] M. Kato and T. Tamura, Uniform non- ℓ_{1}^{n}-ness of ℓ_{∞}-sums of Banach spaces, Comment. Math. 49 (2009), 179-187.
[24] R. E. Megginson, An Introduction to Banach Space Theory, Springer, 1998.
[25] K.-I. Mitani and K.-S. Saito, A note on geometrical properties of Banach spaces using ψ-direct sums, J. Math. Anal. Appl. 327 (2007), 898-907.
[26] K.-I. Mitani, K.-S. Saito M. Kato and T. Tamura, On sharp triangle inequalities in Banach spaces, J. Math. Anal. Appl. 336 (2007), 1178-1186.
[27] K. Mitani, K.-S. Saito and T. Suzuki, Smoothness of absolute norms on \mathbb{C}^{n}, J. Convex Anal. 10 (2003), 89-107.
[28] K.-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of ψ-direct sums of Banach spaces, Math. Inequal. Appl. 8 (2005), 147-157.
[29] S. Saejung, Extreme points, smooth points and noncreasiness of ψ-direct sum of Banach spaces, Nonlinear Anal. 66 (2007), 2459-2469.
[30] K.-S. Saito and M. Kato, Uniform convexity of ψ-direct sums of Banach spaces, J. Math. Anal. Appl. 277 (2003), 1-11
[31] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^{2}, J. Math. Anal. Appl. 244 (2000), 515-532.
[32] K.-S. Saito, M. Kato and Y. Takahashi, On absolute norms on \mathbb{C}^{n}, J. Math. Anal. Appl. 252 (2000), 879-905.
[33] Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute norms on \mathbb{C}^{2} and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179-186.
[34] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978.

Manuscript received November 9, 2009 revised November 11, 2009

Mikio Kato

Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan E-mail address: katom@tobata.isc.kyutech.ac.jp

Kichi-Suke Saito
Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan E-mail address: saito@math.sc.niigata-u.ac.jp

Takayuki Tamura
Graduate School of Humanities and Social Sciences, Chiba University, Chiba 263-8522, Japan E-mail address: tamura@le.chiba-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 46B20, 46B99.
 Key words and phrases. Absolute norm, convex function, direct sum of Banach spaces, uniformly non- ℓ_{1}^{n} space, uniformly non-square space.

 The authors are supported in part by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (the first and third authors (20540179), the second author (20540158)).

