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ON THE EXISTENCE OF THREE NONTRIVIAL SMOOTH
SOLUTIONS FOR NONLINEAR ELLIPTIC EQUATIONS

NIKOLAOS S. PAPAGEORGIOU, EUGÉNIO M. ROCHA, AND VASILE STAICU

Abstract. We consider a nonlinear elliptic problem with a nonsmooth poten-
tial function. The nonlinear differential operator includes as special case the
p−Laplacian. Using a variational approach based on nonsmooth critical point
theory, we show the existence of at least three nontrivial smooth solutions. Two
of them have constant sign (one is positive and the other is negative).

1. Introduction

Let Z ⊆ RN be a bounded domain with a C2-boundary ∂Z. In this paper, we
study the following nonlinear elliptic equation:

(1.1)
{ −div a(z, Dx(z)) ∈ ∂j(z, x(z)) a.e. on Z,

x|∂Z = 0.

The map a : Z̄×RN → RN is strictly monotone in the second variable, satisfying ad-
ditional regularity conditions (see hypotheses H(a)). In particular, the p-Laplacian
differential operator satisfies these conditions. Also, j : Z ×R→ R is a measurable
function, which is locally Lipschitz in the second variable in general nonsmooth and
∂j(z, x) is the generalized subdifferential of the map x 7→ j(z, x). If j(z, ·) ∈ C1(R),
then ∂j(z, x) = {j′x (z, x)} .

Our goal is to prove a multiplicity result, establishing the existence of at least
three nontrivial smooth solutions for problem (1.1). Note that there are elliptic
systems, of the form −divDφ(∇x) = 0, with nowhere C1 solutions, see Müller-
Šverák [22]. The first section of this paper presents the background material needed
in the subsequent sections. In Section 3, we state the hypotheses for a and j and
we obtain two solutions of opposite and constant sign, relying on the (S)+ property
of some maximal monotone operator, the coercivity of the corresponding Euler
functional and the nonlinear maximum principle of Damascelli [8]. In Section 4,
by strengthening one of the hypotheses on j, and using a nonsmooth version of
the second deformation theorem, we find a third nontrivial solution. Examples of
functions verifying our hypotheses are also given.
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Recently multiplicity results producing three nontrivial solutions for problems
driven by the p-Laplacian and with a smooth potential (i.e. j(z, ·) ∈ C1(R)), were
proved by Zhang-Li [25], Zhang-Chen-Li [26], Liu-Liu [21], Liu [20], Papageorgiou-
Papageorgiou [23] and Carl-Motreanu [3]. On the other hand, problems driven by
more general p-Laplacian-like operators were investigated by De Napoli-Mariani [9],
Duc-Vu [10], Kristály-Lisei-Varga [16] (all considering a smooth potential) and by
Dabuleanu-Radulescu [7], Hu-Papageorgiou [15] (problems with a nonsmooth po-
tential). From the aforementioned works, only De Napoli-Mariani [9] and Kristály-
Lisei-Varga [16] prove multiplicity results. The multiplicity result of De Napoli-
Mariani [9] (see Theorem 4.1, p.1216) requires symmetry conditions on the map
x 7→ a(z, x) and on the right hand side single-valued nonlinearity x 7→ ∂j(z, x) =
f(z, x). Kristály-Lisei-Varga [16] do not make any symmetry hypothesis on the
data of the problem. Instead, they assume that the right hand side single-valued
nonlinearity is independent of z and x 7→ ∂j(z, x) = f(x) is strictly p-sublinear at
infinity and strictly p-superlinear at zero. They prove the existence of three solu-
tions, using an abstract multiplicity result of Bonanno [2]. However, among the
three solutions, one may be trivial. For a Neumann problem with p-Laplacian type
differential operator Gasinski-Papageorgiou [14] obtained two solutions when the
potential is bounded.

Here, in contrast to the works of De Napoli-Mariani [9] and Kristály-Lisei-Varga
[16], the potential function is nonsmooth, hence the right hand side is multivalued.
We do not impose any symmetry conditions and we require that x 7→ ∂j(z, x) is
p-linear both near infinity and near zero. Our multiplicity result establishes the
nontriviality of all solutions and we also show that two of them have constant sign
(one is positive and the other is negative). Our approach is variational based on
nonsmooth critical point theory. A major difficulty that we faced was the lack of
a strong maximum principle (nonlinear Hopf’s theorem), analogous to the one for
the p-Laplacian proved by Vazquez [24].

2. Preliminaries

The nonsmooth critical point theory that we use in the analysis of the problem
(1.1), is based on the subdifferential theory of locally Lipschitz functions due to
Clarke [4]. For the convenience of the reader, we recall some definitions and facts
from this theory.

Let X be a Banach space and X∗ its topological dual. By < ·, · > we denote the
duality brackets for the pair (X, X∗). Given a locally Lipschitz function ϕ : X → R,
the generalized directional derivative ϕ0(x;h) of ϕ at x ∈ X in the direction h ∈ X,
is defined by

ϕ0(x;h) = lim sup
x′→x
λ↓0

ϕ(x′ + λh)− ϕ(x′)
λ

.

It is easy to check that the function h 7→ ϕ0(x;h) is sublinear continuous and so
it is the support function of a nonempty, convex and w∗-compact set, ∂ϕ(x) ⊆ X∗,
defined by

∂ϕ(x) =
{
x∗ ∈ X∗ :< x∗, h >≤ ϕ0(x;h) for all h ∈ X

}
.
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The multifunction x 7→ ∂ϕ(x) is called the generalized subdifferential of ϕ. In
particular, if ϕ : X → R is continuous and convex, it is locally Lipschitz, and the
generalized subdifferential coincides with the subdifferential in the sense of convex
analysis ∂cϕ(x), defined by

∂cϕ(x) = {x∗ ∈ X∗ :< x∗, h >≤ ϕ(x + h)− ϕ(x) for all h ∈ X} .

Also, if ϕ ∈ C1(X), again ϕ is locally Lipschitz and we have ∂ϕ(x) = {ϕ′(x)}.
We say that x ∈ X is a critical point of the locally Lipschitz function ϕ : X → R,

if 0 ∈ ∂ϕ(x). It is easy to see that, if x ∈ X is a local extremum of ϕ (i.e. a local
minimum or a local maximum), then it is a critical point of ϕ.

A locally Lipschitz function ϕ : X → R satisfies the Palais-Smale condition at
level c ∈ R (the PSc-condition for short), if every sequence {xn}n≥1 ⊆ X such that

ϕ(xn) → c and m(xn) = inf{||x∗|| : x∗ ∈ ∂ϕ(xn)} → 0 as n → +∞
has a strongly convergent subsequence. We say that ϕ satisfies the PS-condition,
if it satisfies the PSc-condition for every c ∈ R.

In the minimax characterization of the critical values of ϕ, the following topolog-
ical notion plays a crucial role.

Definition 2.1. Let Y be a Hausdorff topological space and E0, E and D are
nonempty, closed subsets of Y with E0 ⊆ E. We say that the pair {E0, E} is a
linking with D in Y if and only if

(a) E0 ∩D = ∅
(b) for any γ ∈ C(E, Y ) such that γ|E0 = id|E0 , we have γ(E) ∩D 6= ∅.

This topological notion together with the PS-compactness condition, lead to the
following general minimax characterization of the critical values of a locally Lipschitz
function ϕ : X → R.

Theorem 2.2. If X is a Banach space, E0, E and D are nonempty closed subsets
of X such that

(i) the pair {E0, E} is linking with D in X;
(ii) ϕ : X → R is locally Lipschitz and supE0

ϕ < infD ϕ;
(iii) Γ = {γ ∈ C(E, X) : γ|E0 = id|E0};
(iv) c = infγ∈Γ supu∈E ϕ(γ(u));
(v) ϕ satisfies the PSc-condition;

then c ≥ infDϕ and c is a critical value of ϕ.

Remark. From this general minimax principle, by appropriate choices of the link-
ing sets, one can have nonsmooth versions of the mountain pass theorem, of the
saddle point theorem and of the generalized mountain pass theorem (see Gasinski-
Papageorgiou [12, pp.140–145]).

Definition 2.3. Let Y be a subset of the Banach space X. A continuous deforma-
tion of Y is a continuous map h : [0, 1]×Y → Y such that h(0, y) = y for all y ∈ Y .
If V ⊆ Y , then we say that V is a weak deformation retract of Y , if there exists a
continuous deformation h of Y such that

h(1, Y ) ⊆ V and h(t, V ) ⊆ V for all t ∈ [0, 1].
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Given a locally Lipschitz function ϕ : X → R and c ∈ R, we define the following
sets:

• the sublevel set of ϕ at c as

ϕc = {x ∈ X : ϕ(x) ≤ c};
• the strict sublevel set of ϕ at c as

ϕ̇c = {x ∈ X : ϕ(x) < c} ;

• the critical set of ϕ as

K[ϕ] = {x ∈ X : 0 ∈ ∂ϕ(x)};
• critical set of ϕ at c as

Kc[ϕ] = {x ∈ K[ϕ] : ϕ(x) = c}.
The next theorem is a partial extension to a nonsmooth setting of the so-called

second deformation theorem (see e.g. Gasinski-Papageorgiou [13, p.628]). The result
is due to Corvellec [5]. In fact, the result of Corvellec [5] is formulated in the more
general context of metric spaces and continuous functions using the notion of weak
slope. For our purposes, the following particular version of the result suffices.

Theorem 2.4. Suppose X is a Banach space, ϕ : X → R is locally Lipschitz
and satisfies the PS-condition, a ∈ R, b ∈ R ∪ {+∞}, ϕ has no critical points in
ϕ−1(a, b) and Ka[ϕ] is discrete and contains only local minimizers of ϕ. Then there
exists a continuous deformation h : [0, 1]× ϕ̇b → ϕ̇b such that

• h(t, ·)|Ka[ϕ] = id|Ka[ϕ] for all t ∈ [0, 1];

• h(1, ϕ̇b) ⊆ ϕ̇a ∪Ka[ϕ];
• ϕ(h(t, x)) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈ ϕ̇b.

In particular, the set ϕ̇a ∪Ka[ϕ] is a weak deformation retract of ϕ̇b.

Remark. In the smooth version of the second deformation theorem, the conclusion
is that ϕa is a strong deformation retract of ϕb\Kb[ϕ]. The set ϕa is a strong
deformation retract of ϕb\Kb[ϕ], if there exists a continuous deformation h : [0, 1]×
(ϕb\Kb[ϕ]) → ϕb such that h(t, x) = x for all t ∈ [0, 1] and all x ∈ ϕa and

h(1, ϕb\Kb[ϕ]) ⊆ ϕa

(see Gasinski-Papageorgiou [13, p.628]).
In the analysis of problem (1.1), we will also need some basic facts about the

spectrum of the negative p-Laplacian with Dirichlet boundary condition.
So, let 1 < p < ∞ and

∆pu = div(||Du||p−2Du)

be the p-Laplacian differential operator. We consider the following nonlinear eigen-
value problem:

(2.1)
{ −∆p x(z) = λ |x(z)|p−2x(z) a.e. on Z,

x|∂Z = 0,

for λ ∈ R. The least real number λ ∈ R, for which the above problem has a
nontrivial solution, is the first eigenvalue of (−∆p,W

1,p
0 (Z)) and it is denoted by λ1.
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We know that λ1 > 0 is isolated and simple (namely the corresponding eigenspace
is one-dimensional). Moreover, it admits the following variational characterization

(2.2) λ1 = inf
{ ||Dx||pp
||x||pp : x ∈ W1,p

0 (Z) and x 6= 0
}

.

The infimum in (2.2) is attained in the corresponding one-dimensional eigenspace.
If u1 ∈ W1,p

0 (Z) is the Lp-normalized eigenfunction, then from (2.2), we see that |u1|
also realizes the infimum. Hence, we may assume that u1 ≥ 0. Nonlinear regularity
theory (see e.g. Gasinski-Papageorgiou [13, pp.737–738]) implies that

u1 ∈ C1
0 (Z̄) =

{
u ∈ C1(Z̄) : u|∂Z = 0

}
.

This is an ordered Banach space with positive (order) cone

C+ =
{
x ∈ C1

0 (Z̄) : x(z) ≥ 0 for all z ∈ Z̄
}

,

and C+ has a nonempty interior

intC+ =
{

x ∈ C1
0 (Z̄) : x(z) > 0 for all z ∈ Z,

∂x

∂n

∣∣∣∣
∂Z

< 0
}

.

The nonlinear strong maximum principle (nonlinear Hopf’s theorem) due to Vazquez
[24] implies that u1 ∈ intC+. In fact, it is precisely the lack of such a result for
the more general nonlinear differential operator considered here, that causes serious
difficulties in the analysis of problem (1.1).

Using the Lusternik-Schnirelmann theory, in addition to λ1 > 0, we obtain a
whole strictly increasing sequence {λk}k≥1 ⊆ R+ of eigenvalues of problem (2.1),
such that λk → +∞ when k → +∞. These are the so-called LS-eigenvalues of
(−∆p,W

1,p
0 (Z)). If p = 2 (linear eigenvalue problem), then these are all the eigen-

values. For p 6= 2 (nonlinear eigenvalue problem), we do not know if this is true.
Nevertheless, since λ1 > 0 is isolated, we can define

λ∗2 = inf {λ : λ is an eigenvalue of (2.1) and λ > λ1} > λ1.

Because the set of eigenvalues of (2.1) is closed, λ∗2 is an eigenvalue of (−∆p,

W1,p
0 (Z)) (the second eigenvalue). In fact, λ∗2 = λ2, i.e. the second eigenvalue

and the second LS-eigenvalue coincide. Then λ2 has a variational characterization
provided by the Lusternik-Schnirelmann theory. However, for our purposes that
characterization is not satisfactory. Instead, we will use an alternative one due to
Cuesta-de Figueiredo-Gossez [6]. So, let

∂Bp
1 = {x ∈ Lp(Z) : ||x||p = 1} and S = W1,p

0 (Z) ∩ ∂Bp
1 ,

furnished with the relative W1,p
0 (Z)-topology and

Γ0 = {γ0 ∈ C([−1, 1], S) : γ0(−1) = −u1 and γ0(1) = u1} .

Then

(2.3) λ2 = inf
γ0∈Γ0

max
x∈γ0([−1,1])

||Dx||pp.
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Definition 2.5. Let X be a Banach space and A : X → X∗. We say that A is of
type (S)+, if for any sequence {xn}n≥1 ⊆ X such that

xn
w→ x in X and lim sup

n→+∞
< A(xn), xn − x >≤ 0,

one has xn → x in X.

In the sequel, by w→ we denote the weak convergence and by → the strong
convergence. Also, by < ·, · > we denote the duality brackets for the pair
(W1,p

0 (Z),W1,p
0 (Z)∗), recalling that W1,p

0 (Z)∗ = W−1,p′(Z), 1
p + 1

p′ = 1.

3. Solutions of constant sign

In this section, we produce two smooth solutions of constant sign for the prob-
lem (1.1). More precisely using hypotheses H(a) and H(j)1 stated below, we prove
the that problem (1.1) has at least two solutions x̂0, x̂1 ∈ C1(Z̄) such that x̂0(z) <
0 < x̂1(z) for all z ∈ Z.

In what follows, we describe the sets of hypotheses H(a) and H(j)1 and give
concrete examples of functions that satisfy them. Let M = Z̄ × RN and M0 =
Z̄ × (RN\{0}). The hypotheses on the map a are the following.

H(a): a(z, y) = DyG(z, y) where G ∈ C1(M)∩C2(M0), G(z,0)=0, a(z, 0) = 0 for

all z ∈ Z̄, and

(i) for every z ∈ Z̄, y 7→ a(z, y) is strictly monotone;

(ii) for every (z, y) ∈M0, we have

||Dya(z, y)|| ≤ c1||y||p−2

for some 1 < p < ∞ and some c1 ≥ 1;

(iii) for every (z, y) ∈M0 and ξ ∈ RN , we have

(Dya(z, y)y, y)RN ≥ c0||y||p and (Dya(z, y)ξ, ξ)RN ≥ ĉ0||y||p−2||ξ||2

for some c0, ĉ0 > 0.

In the above hypotheses by || · || we denote the Euclidean norm in RN .

Hypothesis H(a)(i) implies that for all z ∈ Z̄, the function y 7→ G(z, y) is strictly
convex. Moreover, observe that for all (z, y) ∈M, we have

a(z, y) =
∫ 1

0

d

dt
a(z, ty) dt =

∫ 1

0
Dya(z, ty)y dt,

so, using hypothesis H(a)(ii),

||a(z, y)|| ≤
∫ 1

0
||Dya(z, ty)y|| dt ≤ c1||y||p−1

∫ 1

0
tp−2 dt =

c1

p− 1
||y||p−1.(3.1)
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Then, for all (z, y) ∈M,

G(z, y) =
∫ 1

0

d

dt
G(z, ty) dt =

∫ 1

0
(a(z, ty), y)RN dt

≤ c1

p− 1
||y||p

∫ 1

0
tp−1 dt =

c1

p(p− 1)
||y||p.(3.2)

On the other hand using hypothesis H(a)(iii), for all (z, y) ∈M, we have

(a(z, y), y)RN =
∫ 1

0
(Dya(z, ty)y, y)RN dt ≥

∫ 1

0

c0

t2
tp||y||p dt =

c0

p− 1
||y||p.(3.3)

So, for all (z, y) ∈M, we have

G(z, y) =
∫ 1

0
(a(z, ty), y)RN dt ≥ c0

p− 1
||y||p

∫ 1

0
tp−1 dt =

c0

p(p− 1)
||y||p.(3.4)

Concluding,
c0

p(p− 1)
||y||p ≤ G(z, y) ≤ c1

p(p− 1)
||y||p.

Example. The following functions satisfy hypotheses H(a):
(i) a1(z, y) = a1(y) = ||y||p−2y;
(ii) a2(z, y) = Θ(z)||y||p−2y;
(iii) a3(z, y) = Θ(z)(1 + ||y||2)(p−2)/2y;
(iv) a4(z, y) = K(z)y;

where Θ ∈ C(Z̄), Θ(z) > 0 for all z ∈ Z̄, and K ∈ C(Z̄,R), K(z) > 0 for all z ∈ Z̄.
Note that a1 corresponds to the p-Laplacian differential operator (G(y) = 1

p ||y||p)
and a3 corresponds to the generalized mean curvature differential operator

div
(
1 + ||Dx||2)

p−2
2 Dx.

To obtain the first two nontrivial smooth solutions, which have opposite and
constant sign, we will need the following hypotheses on the nonsmooth potential j.

H(j)1: j : Z × R → R is a function such that j(z, 0) = 0, 0 ∈ ∂j(z, 0) a.e. on Z,

and

(i) for all x ∈ R, z 7→ j(z, x) is measurable;

(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;

(iii) for almost z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have

|u| ≤ α(z) + c|x|p−1

with α ∈ L∞(Z)+ and c > 0;

(iv) there exists Θ ∈ L∞(Z)+ such that Θ(z) ≤ c0
p−1λ1 a.e. on Z,

where the inequality is strict on a set of positive measure and

lim sup
|x|→∞

p j(z, x)
|x|p ≤ Θ(z)

uniformly for a.a. z ∈ Z;
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(v) there exist δ > 0 and ĉ > 0 such that

c1

p− 1
λ1|x|p ≤ p j(z, x) ≤ ĉ|x|p

for all a.a. z ∈ Z and all |x| ≤ δ;

(vi) for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have the

sign condition

ux ≥ 0.

Remark 3.1. Since hypothesis H (j)1 (vi) will only be used in Section 4, we denote
by H (j)′1 hypotheses H (j)1 without (vi) .

Example. The following function satisfies hypotheses H(j)1, where for simplicity
we have dropped the z-dependence:

j(x) =

{
c1

p(p−1)λ1|x|p if |x| ≤ 1
θ

p(p−1) |x|p + ξ ln(|x|) + 1
p(p−1)(λ1c1 − θ) if |x| > 1

,

with ξ > 0 and θ < c0
p−1λ1. Observe that, if ξ = 1

p−1(λ1c1 − θ), then we have
j ∈ C1(R).

Now, in order to prove the Proposition 3.5, we will need to establish several
intermediate results. Consider the nonlinear operator V : W1,p

0 (Z) → W−1,p′(Z)
defined by

< V (x), y >=
∫

Z
(a(z, Dx), Dy)RN dz

for all x, y ∈ W1,p
0 (Z).

Proposition 3.2. If hypotheses H(a) hold, then V is a maximal monotone operator
of type (S)+.

Proof. Due to hypothesis H(a)(i), the operator V is monotone. Also, it is easy
to see that V is demicontinuous, i.e. xn → x in W1,p

0 (Z) implies V (xn) w→ V (x)
in W−1,p′(Z). Therefore, V is maximal monotone (see Gasinski-Papageorgiou [13,
p.310]).

Next, we show that V is of type (S)+. To this end, let xn
w→ x in W1,p

0 (Z) and
suppose that

(3.5) lim sup
n→+∞

< V (xn), xn − x >≤ 0.

From (3.1), it follows that, for vn(·) = a(·, Dxn(·)) the sequence

{vn}n≥1 ⊆ Lp′(Z) is bounded.
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So, we may assume that vn
w→ v in Lp′(Z), which implies div vn

w→ div v in
W−1,p′(Z). Let y ∈ W1,p

0 (Z). Due to the monotonicity of a(z, ·), we have

0 ≤
∫

Z
(vn − a(z, Dy), Dxn −Dy)RN dz

=
∫

Z
(vn, Dxn −Dx)RN

dz +
∫

Z
[(vn, Dx−Dy)RN − (a(z, Dy), Dxn −Dy)RN ] dz

=< V (xn), xn − x > +
∫

Z
[(vn, Dx−Dy)RN − (a(z, Dy), Dxn −Dy)RN ] dz,

hence, using (3.5),

0 ≤
∫

Z
(v − a(z,Dy), Dx−Dy)RN dz

and

(3.6) 0 ≤< −div v − V (y), x− y > .

Since y ∈ W1,p
0 (Z) was arbitrary and V is maximal monotone, from the last

inequality it follows that

(3.7) −div v = V (x).

From the choice of the sequence {xn}n≥1 ⊆ W1,p
0 (Z) and considering (3.5), we

have

(3.8) lim sup
n→+∞

< V (xn)− V (x), xn − x >≤ 0.

On the other hand, due to the monotonicity of V

(3.9) lim inf
n→+∞ < V (xn)− V (x), xn − x >≥ 0.

Therefore, it follows that limn→+∞ < V (xn), xn − x >= 0, so defining

βn(z) = (a(z, Dxn(z))− a(z, Dx(z)), Dxn(z)−Dx(z))RN

we have

(3.10) lim
n→+∞

∫

Z
βn(z) dz = 0,

and due to the monotonicity of a(z, ·), we have βn ≥ 0 for all n ≥ 1. Therefore from
(3.10), it follows that, at least for a subsequence, we have βn(z) → 0 a.e. on Z and

(3.11) |βn(z)| ≤ k(z)

for a.a. z ∈ Z, all n ≥ 1, and with k ∈ L1(Z)+. Using (3.1), (3.3) and (3.11), we
obtain

k(z) ≥ βn(z) = (a(z, Dxn(z))− a(z, Dx(z)), Dxn(z)−Dx(z))RN

≥ c0

p− 1
(||Dxn(z)||p + ||Dx(z)||p)− c1

p− 1
||Dx(z)||p−1||Dxn(z)||

− c1

p− 1
||Dxn(z)||p−1||Dx(z)||(3.12)

for a.a. z ∈ Z and all n ≥ 1. From the above inequality, it follows that for all
z ∈ Z\N with |N |N = 0 (where | · |N denotes the Lebesgue measure on RN ), the
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sequence {Dxn(z)}n≥1 ⊆ RN is bounded. Passing to a suitable subsequence (which
in general depends on z ∈ Z\N ), we have Dxn(z) → ξ(z) for all z ∈ Z\N , which
implies

a(z, Dxn(z)) → a(z, ξ(z)) as n → +∞, with z ∈ Z\N .

But, we know that βn(z) → 0 a.e. on Z, so

(3.13) (a(z, ξ(z))− a(z,Dx(z)), ξ(z)−Dx(z))RN = 0 a.a. z ∈ Z.

Due to the strict monotonicity of y 7→ a(z, y) for all z ∈ Z̄ (see hypothesis H(a)(i))
and from (3.13), it follows that

ξ(z) = Dx(z) for all z ∈ Z\N .

Therefore, for the original sequence we have

(3.14) Dxn(z) → Dx(z) a.e. on Z.

On the other hand, from (3.12) it is clear that the sequence

(3.15) {||Dxn(·)||p}n≥1 ⊆ L1(Z)

is uniformly integrable. From (3.14), (3.15) and Vitali’s theorem (see Gasinski-
Papageorgiou [12, pp.715]), we infer that

||Dxn||pp → ||Dx||pp.
Recall that Dxn

w→ Dx in Lp(Z,RN ), a uniformly convex function space. So, from
the Kadec-Klee property, we conclude that

Dxn → Dx in Lp(Z,RN ),

hence
xn → x in W1,p

0 (Z),

and so finally
V is a (S)+ type operator.

¤

To characterize the two solutions, we will use truncation maps and the index set
S ={−1, 0,+1}. However, with the purpose of simplifying the notation, we use ”+“
for +1, ”−“ for −1, and ”±“ for the set S̄ ={−1,+1}⊂ S. So, we use x± to mean
”xs with s ∈ S̄“.

Define

τ±(x) =
{

0 if ± x ≤ 0
x if ± x > 0 ,

j±(z, x) = j(z, τ±(x))

and

js(z, x) =





j−(z, x) if s = −1
j(z, x) if s = 0
j+(z, x) if s = +1
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for all (z, x) ∈ Z × R and s ∈ S. Evidently, both j± are measurable in z ∈ Z and
locally Lipschitz in x ∈ R. Moreover, from the nonsmooth chain rule (see Clarke
[4, p.42]), if Υ± : Z × R→ 2R are the multifunctions defined by

Υ±(z, x) =




{0} if ± x < 0
{r ∂j(z, 0) : r ∈ [0, 1]} if x = 0
∂j(z, x) if ± x > 0

,

we have

(3.16) ∂j±(z, x) ⊆ Υ±(z, x).

We introduce the functional ϕ : W1,p
0 (Z) → R defined by

ϕ(x) =
∫

Z
G(z,Dx(z)) dz −

∫

Z
j(z, x(z)) dz,

and the functionals ϕs : W1,p
0 (Z) → R, for s ∈ S, defined by

ϕs(x) =
∫

Z
G(z, Dx(z)) dz −

∫

Z
js(z, x(z)) dz.

Note that ϕ0 is precisely ϕ.
The next Lemma is a direct consequence of the positivity of the principal eigen-

function u1 of (−∆p,W
1,p
0 (Z)) and of the variational characterization of λ1 > 0 (see

(2.2)), so its proof is omitted (see Gasinski-Papageorgiou [12, p.570]).

Lemma 3.3. If Θ ∈ L∞(Z)+ and Θ(z) ≤ c0
p−1λ1 a.e. on Z with strict inequality

on a set of positive measure, then there exists µ > 0 such that
c0

p− 1
||Dx||pp −

∫

Z
Θ(z)|x(z)|p dz ≥ µ||Dx||pp

for all x ∈ W1,p
0 (Z).

Using the above Lemma, we can prove the following Proposition.

Proposition 3.4. If hypotheses H(a) and H (j)′1 hold, then the functionals ϕs, for
s ∈ S, are locally Lipschitz and coercive.

Proof. Let IG : Lp(Z,RN ) → R and Is
j : Lp(Z) → R, for s ∈ S, be the integral

functionals defined by

IG(y) =
∫

Z
G(z, y(z)) dz,

Is
j (x) =

∫

Z
js(z, x(z)) dz,

for y ∈ Lp(Z,RN ) and x ∈ Lp(Z). Evidently, IG is continuous convex, hence it
is locally Lipschitz. Also, Is

j (s ∈ S) are Lipschitz continuous on bounded sets,
thus locally Lipschitz (see Clarke [4, p.83]). Let D ∈ L(W1,p

0 (Z), Lp(Z,RN )) be the
gradient operator and let ι : W1,p

0 (Z) → Lp(Z) be the embedding operator, which
is a compact operator. Then

ϕs(x) = (IG ◦D)(x)− (Is
j ◦ ι)(x) with s ∈ S
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for all x ∈ W1,p
0 (Z). Hence the functionals ϕs are locally Lipschitz and moreover,

we have

∂ϕs(x) = ∇(IG ◦D)(x)− ∂(Is
j ◦ ι)(x)

⊆ − div(∇IG(Dx))− ι∗∂Is
j (x)

⊆ V (x)− ι∗∂Is
j (x)(3.17)

for all x ∈ W1,p
0 (Z) (see Clarke [4, p.39 and p.45] and recall that D∗ = −div). By

virtue of hypothesis H(j)1(iv), given ε > 0, we can find M1 ≡ M1(ε) > 0 such that

(3.18) j(z, x) ≤ 1
p

(Θ(z) + ε) |x|p

for a.a. z ∈ Z and all |x| ≥ M1. On the other hand, from hypothesis H(j)1(iii)
and the mean value theorem for locally Lipschitz functions (see Clarke [4, p.41]),
we have

(3.19) |j(z, x)| ≤ c2

for a.a. z ∈ Z, all |x| ≤ M1 and for some c2 > 0. From (3.18) and (3.19), it follows
that

(3.20) j(z, x) ≤ 1
p
(Θ(z) + ε)|x|p + c2

for a.a. z ∈ Z and all x ∈ R. Hence, noting that j±(z, x) = 0 a.a. z ∈ Z and all
±x ≤ 0, we also have

(3.21) js(z, x) ≤ 1
p
(Θ(z) + ε)|x|p + c2 with s ∈ S,

for a.a. z ∈ Z and all x ∈ R. Then, for every x ∈ W1,p
0 (Z) and some c3 > 0, using

(3.21), we get

ϕs(x) =
∫

Z
G(z, Dx(z)) dz −

∫

Z
js(z, x(z)) dz

≥
∫

Z
G(z, Dx(z)) dz − 1

p

∫

Z
Θ(z)|x|p dz − ε

p
||x||pp − c3.

Therefore, using (3.4) and (3.20),

ϕs(x) ≥ c0

p(p− 1)
||Dx||pp −

1
p

∫

Z
Θ(z)|x|p dz − ε

p
||x||pp − c3,

and, applying Lemma 3.3,

ϕs(x) ≥ 1
p

(
µ− ε

λ1

)
||Dx||pp − c3.(3.22)

In particular, choosing ε < λ1µ, it follows that the functionals ϕs (s ∈ S) are
coercive. ¤

We have now all the necessary tools to prove the main result of this section.

Proposition 3.5. If hypotheses H(a) and H (j)′1 hold, then problem (1.1) has at
least two solutions x̂0, x̂1 ∈ C1(Z̄) such that x̂0(z) < 0 < x̂1(z) for all z ∈ Z.
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Proof. We will use the index set s ∈ S̄ = {−1,+1} ⊂ S to simultaneously find the
solutions x̂0 = xs|s=−1 and x̂1 = xs|s=+1.

Choose arbitrarily s ∈ S̄. The convexity of G(z, ·) implies that the integral
functional IG is weakly lower semicontinuous, hence the functionals x 7→ ϕs(x) are
weakly lower semicontinuous and coercive (see Proposition 3.4). So, by the theorem
of Weierstrass, we can find xs ∈ W1,p

0 (Z) such that

ϕs(xs) = inf
{

ϕs(x) : x ∈ W1,p
0 (Z)

}
.

Then,
0 ∈ ∂ϕs(xs)

which implies V (xs) = us for

(3.23) us ∈ Ns(xs) =
{

u ∈ Lp′(Z) : u(z) ∈ ∂js(z, xs(z)) a.e. on Z
}

(see (3.17) and Clarke [4, p.83]). Let ys = max{s xs, 0}. If on (3.23) we act with
−ys ∈ W1,p

0 (Z), then using (3.16), we obtain
∫

Z
(a(z, Dxs),−Dys)RN dz = 0.

Now, using hypothesis H(a)(iii),
c0

p− 1
||Dys||pp ≤ 0

so, ys(z) = 0 for a.a. z ∈ Z. Therefore, xs = τs(xs) and

(3.24) x̂0 = xs|s=−1 ≤ 0 and x̂1 = xs|s=+1 ≥ 0.

Also from (3.23), we obtain

(3.25) −div a(z, Dxs(z)) = us(z) a.e. on Z and xs|∂Z = 0.

Note that

(3.26) us ∈ ∂js(z, xs(z)) = ∂j(z, xs(z)) a.e. on {s xs > 0}.
From Stampacchia’s theorem (see Gasinski-Papageorgiou [13, p.195–196]), we have
Dxs(z) = 0 a.e. on {s xs > 0}. Since a(z, 0) = 0 for all z ∈ Z̄, it follows that

(3.27) us(z) = 0 ∈ ∂j(z, 0) a.e on {s xs > 0}.
Because s xs ≥ 0, we have

Z = {s xs > 0} ∪ {xs = 0}.
Hence, from (3.26) and (3.27), it follows that

(3.28) us(z) ∈ ∂j(z, xs(z)) a.e. on Z.

Now, (3.25) and (3.28) imply that xs ∈ W1,p
0 (Z) is a solution of problem (1.1).

From Theorem 7.1 of Ladyzhenskaya-Uraltseva [18, p.286], we have xs ∈ L∞(Z).
Therefore, from Theorem 1 of Lieberman [19], we infer that xs ∈ C1

0 (Z̄), s xs ≥ 0
with s ∈ S̄. Invoking the nonlinear maximum principle of Damascelli [8, p.507], we
have two possibilities: xs = 0 for all z ∈ Z; or s xs(z) > 0 for all z ∈ Z.
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Now, recall that u1 ∈ intC+ is the Lp-normalized principal eigenfunction of
(−∆p,W

1,p
0 (Z)). Let t > 0 be small and such that

(3.29) |tu1(z)| ≤ δ for all z ∈ Z̄.

Then using (3.2), for s ∈ S̄,

ϕs(tu1) =
∫

Z
G(z, tDu1(z)) dz −

∫

Z
js(z, tu1(z)) dz(3.30)

≤ c1t
p

p(p− 1)
||Du1||pp −

∫

Z
js(z, tu1(z)) dz.(3.31)

Hence, by hypothesis H(j)1(v) and (3.29),

ϕs(tu1) ≤ c1t
p

p(p− 1)
||Du1||pp −

c1t
p

p(p− 1)
λ1||u1||pp

thus, considering (2.2),

(3.32) ϕs(tu1) ≤ 0 = ϕs(0).

In the case xs = 0, we have

ϕs(xs) = ϕs(0) = 0 = ϕs(tu1)

for all t > 0 small, which implies that each point in the set

{tu1 : t ∈ [0, ε] and ε > 0}
is a minimizer of ϕs (s ∈ S̄). Therefore, we have a continuum of solutions, with
constant sign equal to sign(s), for problem (1.1), and so we are done.

Otherwise (i.e. s xs > 0), for each s ∈ S̄, xs ∈ C1
0 (Z̄) is a solution of problem (1.1)

with constant sign equal to sign(s) for all z ∈ Z. Therefore, x̂0 = xs|s=−1 ≡ x− < 0
and x̂1 = xs|s=+1 ≡ x+ > 0 are solutions of problem (1.1). ¤

4. Three nontrivial solutions

In this, section we obtain an additional solution for problem (1.1). We point
out that the nonlinear Hopf’s theorem does not apply to the general differential
operators considered in this work. In particular, there is no analog of the the-
orem of Vazquez [24] for our setting. Therefore, we are not able to locate local
minimizers of ϕ in intC+ and then appeal to the nonsmooth analog of the result
of Azorero-Manfredi-Alonso [11] (see also Gasinski-Papageorgiou [12, p.685] and
Kyritsi-Papageorgiou [17]). However, we manage to overcome this difficulty with
the help of the next Proposition.

Proposition 4.1. If hypotheses H(a) and H(j)1 hold, then every local minimizer
xs of ϕs (s ∈ S̄), with s xs(z) > 0 for all z ∈ Z, is also a local minimizer of ϕ.

Proof. Choose arbitrarily s ∈ S̄ = {−1,+1}. Suppose that xn → xs in W1,p
0 (Z).

We will show that

(4.1) ϕ(xn) ≥ ϕ(xs)
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for some n0 ≥ 1 and all n ≥ n0. Write xn = ζ+(xn) − ζ−(xn) where ζs(xn) =
max{s xn, 0}. Then using hypotheses H(j)1(iv)-(v)

ϕ(xn) =
∫

Z
G(z, Dζ+(xn)) dz +

∫

Z
G(z,−Dζ−(xn)) dz(4.2)

−
∫

Z
j+(z, xn) dz −

∫

Z
j−(z, xn) dz(4.3)

≥ ϕs(ζs(xn)) +
c0

p(p− 1)
||Dζ−s(xn)||pp − c4||ζ−s(xn)||pp(4.4)

for some c4 > 0. Since, by hypotheses s xs(z) > 0 for all z ∈ Z, we have

ζs(xn) → xs and ζ−s(xn) → 0 (both in W1,p
0 (Z)).

If ζ−s(xn) = 0 eventually (say for n ≥ n̂0 and with n̂0 ≥ n0), then from (4.2)

ϕ(xn) ≥ ϕs(ζs(xn)) ≥ ϕs(xs) = ϕ(xs)

for all n ≥ n̂0. Otherwise, for every n ≥ 1, we set

Zn = {z ∈ Z : s xn(z) < 0}.
Claim 1. Let | · |N stand for the Lebesgue measure on RN . Then |Zn|N → 0 as
n → +∞.

From the regularity of the Lebesgue measure, given ε > 0, we can find a compact
set Kε ⊆ Z such that

(4.5) |Kc
ε |N = |Z\Kε|N ≤ ε.

Then, since s xn < 0 on Zn by definition,

||xn − xs||pp =
∫

Z
|xn − xs|p dz ≥

∫

Kε∩Zn

|xn − xs|p dz ≥
∫

Kε∩Zn

|xs|p dz,

we have

||xn − xs||pp ≥ mε |Kε ∩ Zn|N ,(4.6)

where mε = inf{xs(z) ∈ R : z ∈ Kε} and smε > 0. From (4.6) and since xn → xs

in W1,p
0 (Z), we have

(4.7) |Kε ∩ Zn|N → 0 as n → +∞.

Note that Zn ⊆ (Kε ∩ Zn) ∪Kc
ε , together with (4.5), implies

|Zn|N ≤ |Kε ∩ Zn|N + |Kc
ε |N ≤ |Kε ∩ Zn|N + ε.

Hence, from (4.7),
lim sup
n→+∞

|Zn|N ≤ ε.

Because ε > 0 was arbitrary, we conclude that

|Zn|N → 0 as n → +∞,

concluding the proof of Claim 1.
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Claim 2. There exists n0 ≥ 1 such that
c0

p(p− 1)
||Dζ−s(xn)||pp > c4||ζ−s(xn)||pp

for all n ≥ n0.

We argue indirectly. Suppose the above claim is not true. Then, by passing to a
subsequence if necessary, we may assume that

(4.8)
c0

p(p− 1)
||Dζ−s(xn)||pp ≤ c4||ζ−s(xn)||pp for all n ≥ 1.

Let

yn =
ζ−s(xn)

||ζ−s(xn)||p , n ≥ 1.

By virtue of (4.8), {yn}n≥1 ⊆ W1,p
0 (Z) is bounded. So, we may assume that

yn
w→ y in W1,p

0 (Z) and yn → y in Lp(Z) as n → +∞.

Note that ||y||p = 1, y 6= 0, y ≥ 0. Therefore, we can find η > 0 small such that, if
Zη = {z ∈ Z : y(z) ≥ η}, then

(4.9) |Zη|N > 0.

We have

||yn − y||pp =
∫

Z
|yn − y|p dz ≥

∫

Zη\Zn

|yn − y|p dz

=
∫

Zη\Zn

|y|p dz ≥ ηp|Zη\Zn|N ≥ ηp (|Zη|N − |Zn|N ) .

Passing to the limit as n → +∞ and using Claim 1, we obtain |Zη|N = 0, which
contradicts (4.9). This ends the proof of Claim 2.

Now, returning to (4.2) and using Claim 2, we have

ϕ(xn) ≥ ϕs(ζs(xn)) for all n ≥ n0,

hence, by increasing n0 ≥ 1 if necessary,

ϕ(xn) ≥ ϕs(xs) = ϕ(xs).

So this proves (4.1) and completes the proof of the Proposition. ¤
The next Proposition is a consequence of Proposition 3.4.

Proposition 4.2. If hypotheses H(a) and H(j)1 hold, then all ϕs (s ∈ S) satisfy
the PS-condition.

Proof. Choose arbitrarily s ∈ S ≡ {−1, 0,+1}. Let {xn}n≥1 ⊆ W1,p
0 (Z) be a

sequence such that, for some M > 0,

(4.10) ∀n≥1 |ϕs(xn)| ≤ M and m(xn) → 0 as n → +∞.

Since ∂ϕs(xn) ⊆ W−1,p′(Z) is weakly compact and the norm functional in a
Banach space is lower semicontinuous, from the theorem of Weierstrass, we can find
x∗n ∈ ∂ϕs(xn) such that

‖x∗n‖W−1,p′ (Z) = m (xn) for all n ≥ 1
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where p′ = p
p−1 is the conjugate exponent of p. We know that

(4.11) x∗n = V (xn)− un

with
un ∈

{
u ∈ Lp′(Z) : u(z) ∈ Υs(z, xn(z)) a.e. on Z

}
.

Because of (4.10) and since ϕs is coercive (see proposition 3.4), we have that
{xn}n≥1 ⊆ W1,p

0 (Z) is bounded. Therefore, we may assume that

(4.12) xn
w→ x in W1,p

0 (Z) and xn → x in Lp(Z) as n → +∞.

From H (j)1 (iii) we have

|un (z)|p′ ≤ 2p′ ‖a‖p′
∞ + 2p′cp′ |x0 (z)|p a.e. on Z.

From this inequality and (4.12) it follows that {un}n≥1 is bounded in Lp′ (Z) .

If on (4.11) we act with xn − x ∈ W1,p
0 (Z) and consider (4.10), we get

(4.13)
∣∣∣∣< V (xn), xn − x > −

∫

Z
un(xn − x) dz

∣∣∣∣ ≤ εn||xn − x|| with εn ↓ 0.

Thus, if we pass to the limit as n →∞ in (4.13), we obtain

(4.14) < V (xn), xn − x >→ 0.

But from Proposition 3.2, we know that V is an (S)+-type operator. So, considering
(4.14), we infer that

xn → x ∈ W1,p
0 (Z).

Since s ∈ S wa arbitrarily chosen, this means that each ϕs (s ∈ S) satisfies the
PS-condition. ¤

In order to produce a third nontrivial smooth solution for the problem (1.1), we
need to strengthen hypothesis H(j)1(v) concerning the growth of the nonsmooth
potential j near the origin. So, the new hypotheses are the following:

H(j)2: j : Z × R → R is a function such that j(z, 0) = 0, 0 ∈ ∂j(z, 0) a.e. on Z,

and

(i) for all x ∈ R, z 7→ j(z, x) is measurable;

(ii) for almost all z ∈ Z, x 7→ j(z, x) is locally Lipschitz;

(iii) for almost z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have

|u| ≤ α(z) + c|x|p−1

with α ∈ L∞(Z)+ and c > 0;

(iv) there exists Θ ∈ L∞(Z)+ such that Θ(z) ≤ c0
p−1λ1 a.e. on Z,

where the inequality is strict on a set of positive measure and

lim sup
|x|→∞

p j(z, x)
|x|p ≤ Θ(z)

uniformly for a.a. z ∈ Z;
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(v) there exist δ > 0 and η > λ2 such that
c1 η

p− 1
||x||p ≤ j(z, x)

for all a.a. z ∈ Z and all |x| ≤ δ;

(vi) for almost all z ∈ Z, all x ∈ R and all u ∈ ∂j(z, x), we have the

sign condition

ux ≥ 0.

Now, we are ready to prove the main result of this work, namely the existence of
three nontrivial smooth solutions of problem (1.1).

Theorem 4.3. If hypotheses H(a) and H(j)2 hold, then problem (1.1) has at least
three nontrivial solutions x̂0, x̂1, x̂2 ∈ C1

0 (Z̄) and

x̂0(z) < 0 < x̂1(z) for all z ∈ Z.

Proof. From Proposition 3.5, we already have two solutions x̂0, x̂1 ∈ C1
0 (Z̄) such

that
x̂0(z) < 0 < x̂1(z) for all z ∈ Z.

By virtue of Proposition 3.4, x± is a minimizer of ϕ±. Proposition 4.1 implies
that both x± are local minimizers of ϕ. Without any loss of generality, we may
assume that both solutions are isolated local minimizers of ϕ, otherwise, we can
have a whole sequence of distinct nontrivial solutions of problem (1.1). Then, as in
Aizicovici-Papageorgiou-Staicu [1, proof of Proposition 29], we can find r > 0 such
that

ϕ(x±) < inf {ϕ(x) : ||x− x±|| = r} .

Without any loss of generality, we may assume that ϕ(x−) ≤ ϕ(x+) < 0 (see the
proof of Proposition 3.5). Then, define

E0 = {x±},
E =

{
x ∈ W1,p

0 (Z) : x−(z) ≤ x(z) ≤ x+(z) a.e. on Z
}

,

∂Br(x+) =
{

x ∈ W1,p
0 (Z) : ||x− x+|| = r

}
.

Is easy to verify that the pair {E0, E} is linking with ∂Br(x+) in W1,p
0 (Z) (see

Gasinski-Papageorgiou [13, p.642]). Also ϕ satisfies the PS-condition (Proposi-
tion 4.2). So, we can apply Theorem 2.2 and obtain x̂2 ∈ W1,p

0 (Z), a critical point
of ϕ, such that

(4.15) ϕ(x−) ≤ ϕ(x+) < inf {ϕ(x) : ||x− x+|| = r} = cr ≤ ϕ(x̂2).

From (4.15), we see that x̂2 6= x− and x̂2 6= x+. Moreover, since x̂2 is a critical
point of ϕ, we have 0 ∈ ∂ϕ(x̂2) so

(4.16) V (x̂2) = u0 with u0 ∈
{

u ∈ Lp′(Z) : u(z) ∈ ∂j(z, x̂2(z)) a.e. on Z
}

.

As before, from (4.16), it follows that x̂2 solves (1.1) and, by the nonlinear regularity
theory, we have x̂2 ∈ C1

0 (Z̄).
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It remains to show that x̂2 is nontrivial. To this end, observe that

(4.17) ϕ(x̂2) = inf
γ∈Γ

max
t∈[−1,1]

ϕ(γ(t))

with the set of paths Γ defined by

Γ =
{

γ ∈ C([−1, 1],W1,p
0 (Z)) : γ(−1) = x− and γ(1) = x+

}
.

If we can produce a path γ0 ∈ Γ such that ϕ|γ0 < 0, then from (4.17) we have

ϕ(x̂2) < 0 = ϕ(0), thus x̂2 6= 0.

In what follows, we concentrate our effort in producing the path γ0 ∈ Γ. Recall
that we have defined the set S = W1,p

0 (Z)∩∂Bp
1 , furnished with the relative W1,p

0 (Z)-
topology. Also, let Sc = S ∩ C1

0 (Z̄) endowed with the relative C1
0 (Z̄)-topology.

Evidently, Sc is dense in S. Therefore, if we set

Γ0 = {γ0 ∈ C([−1, 1], S) : γ(−1) = −u1 and γ0(1) = u1} ,

Γc
0 = {γ0 ∈ C([−1, 1], Sc) : γ(−1) = −u1 and γ0(1) = u1} ,

then we have that Γc
0 is dense in Γ0. Thus, given δ0 > 0, due to (2.3) we can find

γ̂0 ∈ Γc
0 such that

(4.18) max
{||Dx||pp : x ∈ γ̂0([−1,+1])

} ≤ λ2 + δ0.

If η > λ2 is as in hypothesis H(j)2(v), we choose δ0 > 0 such that

(4.19) λ2 + 2δ0 < η.

Also, we can find ε > 0 small such that

(4.20) |εx(z)| ≤ δ

for all z ∈ Z̄ and all x ∈ γ̂0([−1,+1]), where δ > 0 is as in hypothesis H(j)2(v).
Therefore, if x ∈ γ̂0([−1,+1]), then

ϕ(εx) =
∫

Z
G(z, εDx(Z)) dz −

∫

Z
j(z, εx(z)) dz

≤
∫

Z
G(z, εDx(z)) dz − ηc1ε

p

p(p− 1)
||x||pp.

by using (4.20) and hypothesis H(j)2(v). Now, considering (3.2), (4.18), (4.19) and
recalling that ||x||p = 1,

ϕ(εx) ≤ c1ε
p

p(p− 1)
(||Dx||pp − η||x||pp

)

≤ c1ε
p

p(p− 1)
(λ2 + δ0 − η)

< 0.(4.21)

Hence γ0 = εγ̂0, so γ0 is a continuous path joining −εu1 to εu1, and because of
(4.21), we have

(4.22) ϕ|γ0 < 0.
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Next, we use Theorem 2.4 (the nonsmooth second deformation theorem) to pro-
duce a continuous path joining ±εu1 to x±, along which ϕ± is negative. For this
purpose, let

(4.23) a = ϕ±(x±) = ϕ(x±) < 0 = ϕ±(0) = ϕ(0) = b.

We may assume that {0, x±} are the only critical points of ϕ±. Indeed, if û0 ∈
W1,p

0 (Z) is another critical point of ϕ± distinct from 0 and x±, then as before using
the nonlinear regularity theory, we can show that û0 ∈ C1

0 (Z̄), solves problem (1.1),
and ±û0(z) > 0 for all z ∈ Z (see Damascelli [8]). Therefore, we have produced
a third nontrivial smooth solution and so we are done. Otherwise, by virtue of
Theorem 2.4, we can find a continuous deformation h : [0, 1]× ϕ̇b± → ϕ̇b± such that

(a) h(t, ·)|Ka = id|Ka for all t ∈ [0, 1];
(b) h(1, ϕ̇b±) ⊆ ϕ̇a± ∪Ka;
(c) ϕ±(h(t, x)) ≤ ϕ±(x) for all t ∈ [0, 1] and all x ∈ ϕ̇b±,

where
Ka = {x ∈ W1,p

0 (Z) : 0 ∈ ∂ϕ±(x) and ϕ±(x) = a}
(recall that ϕ± satisfies the PS-condition, see Proposition 4.2). We now consider
the continuous path γ± : [0, 1] → ϕ̇b± defined by

γ±(t) = h(t,±εu1) for all t ∈ [0, 1].

Observe that, by definition of deformation, γ±(0) = h(0,±εu1) = ±εu1. On the
other hand, since ϕ̇a± = ∅ and Ka = {x±} (see (b)), γ± (1) = h(1,±εu1) = x±.
Further,

(4.24) ϕ±(γ±(t)) = ϕ±(h(t,±εu1)) ≤ ϕ±(±εu1) < 0

for all t ∈ [0, 1], see (c) and (4.22). Therefore, the continuous path γ± joins ±εu1

to x±, and because of (4.24), we can say that

(4.25) ϕ±|γ± < 0.

Due to hypothesis H(j)2(vi) (the sign condition), we have

j(z, x) ≥ 0

for all a.a. z ∈ Z and all x ∈ R. Hence

j(z, x) ≥ j±(z, x)

for all a.a. z ∈ Z and all x ∈ R, which implies

ϕ ≤ ϕ±.

Consequently, considering (4.25),

(4.26) ϕ|γ± ≤ ϕ±|γ± < 0.

This proves that x̂2 6= 0 (see (4.17)), x̂2 ∈ C1(Z̄) (by the nonlinear regularity
theory), and it is a solution of problem (1.1). ¤
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