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A QUASI-FIXED POLYNOMIAL PROBLEM FOR A
POLYNOMIAL FUNCTION

HANG-CHIN LAI∗ AND YI-CHOU CHEN

Abstract. Let F : Rn × R → R be a real-valued polynomial function of the
form

F (x, y) =

sX
i=0

fi(x)yi, the degree of y in F (x, y) = s ≥ 1.

Given an irreducible real-valued polynomial function p(x), x ∈ Rn and a non-
negative integer m, we will find a polynomial function y(x) ∈ R[x] to satisfy the
following equation:

(∗) F (x, y(x)) = apm(x)

for some constant a ∈ R. The constant a is dependent on the solution y(x),
namely a quasi-fixed (polynomial) solution of the polynomial equation (∗).

In this paper, we prove that (i) If the equation (∗) has infinitely many quasi-
fixed solutions, then the leading coefficient of y in F (x, y) must be of the form:
fs(x) = cpk(x) for some c ∈ R, k ∈ N, and the solutions of (∗) are yλ(x) =
−fs−1(x)/sfs(x) + λpt(x), λ ∈ R and t = (m− k)/s. (ii) If the equation (∗) has
finitely many quasi-fixed solutions, the number of all quasi-fixed solutions does
not exceed the number s + 2.

1. Introduction and Preliminaries

In 1987, Lenstra [1] proved that for a polynomial function F (x, y) ∈ Q(α)[x, y],
there exists a polynomial function y(x) ∈ Q(α)[x] to satisfy the equation

F (x, y(x)) = 0.

This polynomial equation can be derived to a polynomial y(x) to satisfy the equation

F (x, y(x)) = x.

This means that x is a fixed point of the polynomial function F (x, y(x)).
In other words, one will search a polynomial y = y(x) such that

(1.1) F (x, y(x)) = x, x ∈ Q(α) (rational algebraic number).

Recently, Tung [2] studied this problem by considering:

(1.2) F (x, y(x)) = cxm, x ∈ K (field), m ∈ N
where F (x, y) ∈ K[x, y], c is a constant depending on y(x) and m ∈ N is a given
positive integer. From (1.1) and (1.2), we are motivated to consider an irreducible
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polynomial p(x) to instead of x in (1.2). That is a question to ask whether we could
solve a polynomial function y = y(x) to satisfy the polynomial equation:

(1.3) F (x, y(x)) = apm(x) x ∈ R (real number)

where a is a real constant depending on the solution y(x).

Remark. This variable x may be considered in a unique factorization domain of
algebra terminology.

Now we let F (x, y) be a polynomial function, p : R→ R an irreducible polynomial
in R and m ∈ N.

Definition 1.1. A polynomial function y = y(x) satisfying equation (1.3) is called
a quasi-fixed (polynomial) solution corresponding to some real number a. This a is
called a quasi-fixed value corresponding to the polynomial solutions y = y(x).

Since there may have many solutions corresponding to the number a, for conve-
nience, we use the following notations to represent different situations:

(1) QsF (a), the set of all quasi-fixed solutions y(x) corresponding to a fixed
quasi-fixed value a.

(2) QsF , the set of all quasi-fixed solutions satisfying equation (1.3).
(3) QvF , the set of all quasi-fixed values satisfying equation (1.3).

Evidently,

QsF =
⋃

a∈ QvF

(
QsF (a)

)
and QsF (a)

⋂
QsF (b)=∅ for any a 6= b in QvF .

In this paper, we consider a more general quasi-fixed polynomial problem in which
the x ∈ R is replaced by a vector x ∈ Rn and the polynomial p(x) is replaced by
the irreducible polynomial function p(x). Then we restate the equation (1.3) as the
following equation :

(1.4) F (x, y) = apm(x).

It is a new developed fixed point-like problem. We call the polynomial solution
y = y(x) for equation (1.4) as a quasi fixed (polynomial) solution. Precisely, we
rewrite as Definition 1.1 as following.

Definition 1.2. If the equation (1.4) is solvable and y(x) is a polynomial solution
of equation (1.4), then y(x) is called a quasi-fixed solution of the the polynomial
function F (x, y) given in (1.4) and call the constant a ∈ R a quasi-fixed value
corresponding to some solutions y(x) (not only one solution).

The number of all solutions to equation (1.4) may exist infinitely many, or finitely
many, or not solvable.

In Section 2, we derive some properties of quasi-fixed solutions of F (x, y). If
the equation (1.4) exists infinitely many or finitely many quasi-fixed solutions, the
relative properties will be described in Section 3.

Throughout the paper, we denote the polynomial function as the form:

F (x, y) = fs(x)ys + fs−1(x)ys−1 + · · ·+ f1(x)y + f0(x)

=
s∑

i=0

fi(x)yi.(1.5)
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2. Some Lemmas

For convenience, we explain some interesting properties of quasi-fixed polyno-
mial solutions as the following lemmas. Throughout this paper, p(x) is an irreducible
polynomial.

Lemma 2.1. Let y1(x) ∈ QsF (a), y2(x) ∈ QsF (b), a 6= b in QvF . Then

y1(x)− y2(x) = dpt(x) for some d ∈ R, t ∈ N.

Proof. Since y1(x) 6= y2(x) in QsF corresponds to a 6= b in QvF respectively, thus,

F (x, y1(x)) = apm(x) and F (x, y2(x)) = bpm(x).

Subtracting the above two equations and using binomial formula, it yields

F (x, y1(x))− F (x, y2(x))

= fs(x)[ys
1(x)− ys

2(x)] + fs−1(x)[ys−1
1 (x)− ys−1

2 (x)] + · · ·+ f1(x)[y1(x)− y2(x)]

= [y1(x)− y2(x)][fs(x)Gs(y1(x), y2(x)) + fs−1(x)Gs−1(y1(x), y2(x)) + · · ·+ f1(x)]

= [y1(x)− y2(x)]Q(x, y1(x), y2(x))

= (a− b)pm(x),

where

Gj(y1(x), y2(x)) = yj−1
1 (x)+yj−2

1 (x)y2(x)+· · ·+yj−1
2 (x), for j = s, s− 1, . . . , 2, 1.

Evidently, the factor y1(x)−y2(x) is divisible to the term (a−b)pm(x). Since a 6= b,

y1(x)− y2(x) = dpt(x) for some d ∈ R, and t ≤ m ∈ N.

This completes the proof. ¤
If two distinct quasi-fixed solutions corresponding the same value a in QvF , then

we have the following Lemma :

Lemma 2.2. Let y1(x) 6= y2(x) ∈QsF (a) and y1(x) − y2(x) = dpt(x) for some
d ∈ R, t ∈ N. Then any quasi-fixed solution y(x) /∈ QsF (a) can be represented by

y(x) = y1(x) + dpt(x) for some d ∈ R.

(This power t of pt(x) is independent of the choice y(x) /∈QsF (a).)

Proof. If y(x) /∈ QsF (a), by Lemma 2.1, there exist some d1, d2 ∈ R such that

y(x)− y1(x) = d1p
t1(x)

and y(x)− y2(x) = d2p
t2(x).

Then

d1p
t1(x)− d2p

t2(x) = (y(x)− y1(x))− (y(x)− y2(x))

= (y2(x)− y1(x)) = −d12p
t(x).

Since p(x) is irreducible, t1 = t2 = t, . It follows that

y(x)− y1(x) = dpt(x) for some d ∈ R.

¤
Lemma 2.3. Let a 6= b in QvF , and assume that
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(i) y1(x) 6= y2(x) in QsF (a) with y1(x)− y2(x) = c12p
t(x) for some c12 ∈ R.

(ii) another two solutions h1(x) 6= h2(x) in QsF (b) with h1(x)−h2(x) = d12p
t(x)

for some d12 ∈ R.
Then any y(x) ∈ QsF can be represented by

y(x) = y1(x) + dpt(x) for some d ∈ R.

Proof. 1◦ If y(x) /∈ QsF (a), by Lemma 2.2, for y1(x) ∈ QsF (a), we have

y(x) = y1(x) + dpt(x) for some d ∈ R.

2◦ If y(x) ∈ QsF (a), then y(x) /∈ QsF (b). Since h1(x) ∈ QsF (b), the Lemma
2.2 yields

(2.1) y(x) = h1(x) + dpt(x) for some d ∈ R.

Since y1(x) /∈ QsF (b), we also have

(2.2) y1(x) = h1(x) + d1p
t(x) for some d1 ∈ R.

From (2.1) and (2.2), it follows that

y(x) = h1(x) + dpt(x)

= (y1(x)− d1p
t(x)) + dpt(x)

= y1(x) + (d− d1)pt(x).

Hence any y(x) ∈ QsF can be represented by

y(x) = y1(x) + d̃pt(x), for d = d− d1 ∈ R.

This completes the proof. ¤

Lemma 2.4. Suppose that the cardinal number |QvF |≥ 3 and for any y(x) 6= h(x)
in QsF . Then there exists a fixed t ∈ N such that

y(x)− h(x) = dpt(x) for somed ∈ R.

Proof. Since |QvF |≥ 3, we may choose any three distinct quasi-fixed values a1, a2

and a3 in QvF , and three quasi-fixed solutions y1(x), y2(x) and y3(x) in QsF such
that

F (x, yi(x)) = aip
m(x), ı = 1, 2, 3.

According to the assumption of Lemma 2.1, we have

y1(x)− y2(x) = d12(p(x))t12 ,

y1(x)− y3(x) = d13(p(x))t13 ,

y2(x)− y3(x) = d23(p(x))t23 ,

for some d12, d13, d23 ∈ R and t12, t13, t23 ∈ N. Then

d13(p(x))t13 = y1(x)− y3(x)

=
(
y1(x)− y2(x)

)
+

(
y2(x)− y3(x)

)

= d12(p(x))t12 + d23(p(x))t23 .
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This reduces t12 = t13 = t23 = t.
Now for any y(x) ∈QsF , it corresponds a real number a ∈QvF such that

F (x, y(x)) = apm(x).

Since |QvF |≥ 3, we may suppose that a1, a2 and a3 are distinct. Thus, at least
two of the three values are distinct to a, say a1 6= a and a2 6= a. From Lemma 2.1,
we have

y(x)− y1(x) = d1p
t1(x) and y(x)− y2(x) = d2p

t2(x).

Thus

d12(p(x))t12 = y1(x)− y2(x) =
(
y1(x)− y(x)

)
+

(
y(x)− y2(x)

)

= −d1(p(x))t1 + d2(p(x))t2 .

This reduces t1 = t2 = t. It follows that

y(x) = y1(x) + d1p
t(x).

Similarly, any h(x) ∈QsF can be represented by

h(x) = y1(x) + d̃1p
t(x) for some d̃1 ∈ R.

Consequently,

y(x)− h(x) = (d1 − d̃1)pt(x) = dpt(x) with d = d1 − d̃1.

Hence

y(x) = h(x) + dpt(x).

¤

Lemma 2.5. Suppose that a 6= b in QvF . If there exist two distinct solutions
y1(x), y2(x) ∈ QsF (a) and another two distinct solutions h1(x), h2(x) ∈ QsF (b),
then there exists t ∈ N such that for any y(x) ∈ QsF , either y(x) = y1(x) + dpt(x)
for some d ∈ R or y1(x) + y2(x) = h1(x) + h2(x).

Proof. Let i, j ∈ {1, 2} and by Lemma 2.1, the difference yi(x) − hj(x) be of the
following forms

y1(x)− h1(x) = d11(p(x))t11 ,

y1(x)− h2(x) = d12(p(x))t12 ,

y2(x)− h1(x) = d21(p(x))t21 ,

y2(x)− h2(x) = d22(p(x))t22 ,

for some d11, d12, d21, d22 ∈ R and t11, t12, t21, t22 ∈ N. Then

d11(p(x))t11 − d21(p(x))t21 = y1(x)− y2(x) = d12(p(x))t12 − d22(p(x))t22 .



106 H.-C. LAI AND Y.-C. CHEN

1.◦ If t11 6= t12, then t11 = t22 and t12 = t21. Therefore, d11 = −d22 and
d21 = −d12. Thus

2
(
y1(x) + y2(x)

)
− 2

(
h1(x) + h2(x)

)

=
(
y1(x)− h1(x)

)
+

(
y2(x)− h2(x)

)
+

(
y2(x)− h1(x)

)
+

(
y1(x)− h2(x)

)

=
(
d11 + d22

)
(p(x))t11 +

(
d21 + d12

)
(p(x))t12 = 0.

It follows that

y1(x) + y2(x) = h1(x) + h2(x).

2.◦ If t11 = t12, then t11 = t12 = t21 = t22 = t. By Lemma 2.3, any y(x) ∈QsF

can be presented by

y(x) = y1(x) + dpt(x) for some d ∈ R.

¤

If there are three distinct solutions in QsF (a) and another two solutions in
QsF (b), then how about the results in Lemma 2.5?

To answer this question, we state a corollary as follows.

Corollary 2.6. Suppose that a 6= b in QvF . If there are three distinct solutions
y1(x), y2(x), y3(x) ∈ QsF (a) and other two distinct solutions h1(x), h2(x) ∈
QsF (b). Then there exists an integer t ∈ N such that any y(x) ∈ QsF can be
represented by

y(x) = y1(x) + dpt(x) for some d ∈ R.

( The power t of pt(x) is independent to the choice of y(x) ∈ QsF .)

Proof. By Lemma 2.5, if y1(x)+ y2(x) = h1(x)+h2(x) and y1(x)+ y3(x) = h1(x)+
h2(x), then y2(x) = y3(x). This contradicts three distinct solutions in QsF (a).
Hence for any y(x) in QsF , it is represented by:

y(x)− h(x) = dpt(x) for some d ∈ R.

¤

By the above preparations, the polynomial function y in F (x, y) with degy F = 1
as the form

F (x, y) = f1(x)y + f0(x),
then the solutions in the problem:

F (x, y) = apm(x)

have the following essential theorem.

Theorem 2.7. Let F (x, y) be a polynomial function with degy F = 1 as the form
F (x, y) = f1(x)y + f0(x) = apm(x) for some a ∈ R. ( The irreducible polynomial
function p(x) and m ∈ N are given.) Suppose that the cardinal number |QsF |≥
2(=degy F + 1). Then

(i) f1(x) = cpk(x) for some c ∈ R, k ∈ N.
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(ii) any solution of equation (1.4) is of the form :

y(x) = −f0(x)/f1(x) + λpm−k(x) for some λ ∈ R and

(iii) the cardinal number |QsF |= ∞.

Proof. Since |QsF |≥ 2, we see that there are two distinct solutions y1(x), y2(x) in
QsF such that

F (x, y1(x)) = apm(x)

and F (x, y2(x)) = bpm(x).

(i) According to the fundamental theorem of algebra, since degy F = 1, it may
have a 6= b. Thus,

F (x, y1(x)) = f1(x)y1(x) + f0(x) = apm(x)(2.3)

F (x, y2(x)) = f1(x)y2(x) + f0(x) = bpm(x).(2.4)

By (2.3)− (2.4), we get

f1(x)(y1(x)− y2(x)) = (a− b)pm(x).

It follows that f1(x) must have form

f1(x) = cpk(x)(2.5)

and y1 − y2 =
a− b

c
pm−k(x)

for some c 6= 0 in R and k ≤ m in N.

(ii) Since

f0(x) = apm(x)− f1(x)y1(x)(2.6)

= apm(x)− cpk(x)y1(x)

= pk(x)
(
apm−k(x)− cy1(x)

)

by (2.5) = f1(x)
(
a/c pm−k(x)− y1(x)

)
.(2.7)

Thus (2.7) implies f1(x) | f0(x), and (2.6) can be written as

y1(x) =
apm(x)− f0(x)

f1(x)
.(2.8)

Moreover, we derive

F (x, y) = f1(x)y + f0(x)

= f1(x)(y − y1(x)) + (f1(x)y1(x) + f0(x))

by (2.3) = f1(x)(y − y1(x)) + apm(x)

by (2.5) = cpk(x)(y − y1(x)) + apm(x).

Since y = y(x) ∈QsF and F (x, y(x)) = ãpm(x) for some ã ∈ R, we have

cpk(x)(y(x)− y1(x)) + apm(x) = F (x, y(x)) = ãpm(x).
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Hence

y(x)− y1(x) =
(ã− a)pm(x)

cpk(x)
=

ã− a

c
pm−k(x), and

y(x) = y1(x) +
ã− a

c
pm−k(x)

by (2.8) =
apm(x)− f0(x)

f1(x)
+

ã− a

c
pm−k(x)

=
−f0(x)
f1(x)

+
apm(x)
f1(x)

+
ã− a

c
pm−k(x)

by (2.5) =
−f0(x)
f1(x)

+
apm(x)
cpk(x)

+
ã− a

c
pm−k(x)

=
−f0(x)
f1(x)

+
ã

c
pm−k(x).

Therefore

y(x) =
−f0(x)
f1(x)

+ λpm−k(x) for some λ = ea
c ∈ R.

(iii) Actually in (ii), for any λ ∈ R, y(x) = −f0(x)
f1(x) +λpm−k(x) is also a quasi-fixed

solution for F (x, y). The reason is

F (x, y(x)) = f1(x)y(x) + f0(x)

= f1(x)[
−f0(x)
f1(x)

+ λpm−k(x)] + f0(x)

= λf1(x)pm−k(x)

by (2.5) = cpm(x).

This shows that (1.4) has infinitely many solutions(i.e. |QsF |= ∞).

¤

Remark. Notice that in this case of degy F = 1, and |QsF |< ∞, the solution
number can not be larger than 1, otherwise, like in Theorem 2.7, the case (iii)
means that “|QsF |≥ s + 2, then |QsF |= ∞”. We have to prove that if degy F ≥ 2,
any quasi-fixed value a may correspond to at most s quasi-fixed solutions y(x), that
is, if degy F = s and |QvF |= u < ∞, the cardinal |QsF |≤ su.

Question. Does the number su be best bound for |QsF |?
The answer is “ no”, we see the following theorem that the cardinal |QsF |≤ s+2

later.

Theorem 2.8. Let F (x, y) be a polynomial function of the form :

F (x, y) =
s∑

i=0

fi(x)yi, degy F = s ≥ 2,



A QUASI-FIXED POLYNOMIAL PROBLEM FOR A POLYNOMIAL FUNCTION 109

and let p(x) be an irreducible polynomial function. If |QsF |≥ s+3, then any solution
pair y(x) and h(x) in QsF , there is a t ∈ N such that

y(x)− h(x) = dpt(x) for some d ∈ R.

[It is remarkable that if | QsF |≥ s+3, then | QsF |= ∞(see Theorem 3.2 later).]

Proof. By assumption |QsF |≥ s+3, we may assume that the cardinal of quasi-fixed
values |QvF |≥ 2 because a quasi-fixed value a corresponds at most s quasi-fixed
solutions y(x) ∈QsF .

(i) If |QvF |≥ 3, by Lemma 2.4, we have

y(x)− h(x) = dpt(x) for some d ∈ R.

(ii) If |QvF |= 2, say QvF ={a, b}. Since
|QsF (a)|≤ s, |QsF (b)|≤ s and |QsF |=|QsF (a)|+|QsF (b)|≥ s + 3, then

| QsF (a) |≥ s + 3− | QsF (b) |≥ 3.

Similarly,
| QsF (b) |≥ s + 3− | QsF (a) |≥ 3.

By Corollary 2.6, we obtain

y(x)− h(x) = dpt(x) for some d ∈ R.

The proof is completed. ¤

3. Main Theorems

In this section, consider F (x, y) as (1.5) with degy F = s ≥ 2 and (1.4) has at
least s+1 distinct quasi-fixed solutions, that is, y1(x), y2(x), y3(x), · · · , ys+1(x), · · · .
Accordingly we could derive the following theorem.

Theorem 3.1. Suppose that yi(x) ∈ QsF , 1 ≤ i ≤ s + 1 as the form:

yi(x) = y1(x) + λip
t(x), λi ∈ R(3.1.)

for some nonnegative integer t independent of i. Then

F (x, y) =
s∑

j=0

cj

(
y − y1(x)

)j
(p(x))m−jt, for constants cj ∈ R, 0 ≤ j ≤ s.

Proof. Let yi(x) ∈ QsF be distinct quasi-fixed solutions of F (x, y) corresponding to
quasi-fixed values ai, 1 ≤ i ≤ s + 1 such that

(3.2) F (x, yi(x)) = aip
m(x).

As i = 1, F (x, y1(x)) = a1p
m(x). Use y− y1(x) dividing the function F (x, y) yields

F (x, y) = (y − y1(x))F1(x, y) + a1p
m(x).

where F1(x, y) is the quotient and a1p
m(x) is the remainder. Continuing this process

from i = 2 to s− 1, it follows that

Fi(x, y) = (y − yi+1(x))Fi+1(x, y) + di+1p
m−it(x)

with final step for i = s− 1 to get

Fs−1(x, y) = (y − ys(x))Fs(x) + dsp
m−(s−1)t(x),
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where Fs(x) does not contain the variable y since degy F = s. By the assumption
(3.2), as i = s, we have

F (x, ys+1(x)) = as+1p
m(x) and Fs(x) = λpm−st(x) for some λ ∈ R.

Consequently,

F (x, y) = (y − y1(x))F1(x, y) + a1p
m(x)

= (y − y1(x))
(
(y − y2(x))F2(x, y) + d2p

m−t(x)
)

+ a1p
m(x)

= · · · · · · · · · · · · · · ·

= (y − y1(x))
(

(y − y2(x))
(
· · ·

(
(y − ys(x))Fs(x) + dsp

m−(s−1)t(x)
)
· · ·

)

+ d2p
m−t(x)

)
+ a1p

m(x)

= (y − y1(x))
(

(y − y2(x))
(
· · ·

(
(y − ys(x))λpm−st + dsp

m−(s−1)t(x)
)
· · ·

)

+ d2p
m−t(x)

)
+ a1p

m(x).

By (3.1), we have yi(x) = y1(x) + λip
t(x), i = 2, 3, . . . , s + 1. Then F (x, y) can be

expanded to a power series as the following form:

F (x, y) =
(
y − y1(x)

)(
(y − y1(x)− λ2p

t(x))
(
· · ·

(
(y − y1(x)− λsp

t(x))λpm−st

+ dsp
m−(s−1)t(x)

)
· · ·

)
+ d2p

m−t(x)
)

+ a1p
m(x)

=
s∑

j=0

cj

(
y − y1(x)

)j
(p(x))m−jt

for some real numbers cj , j = 0, 1, . . . , s. ¤

Note that in the above Theorem, the leading coeficient of F (x, y), csp
m−st(x), is

contained to R[x]. This means that m− st ∈ N and t ≤ m/s.

Theorem 3.2. The following three conditions are equivalent:

(i) |QsF |≥ s + 3.

(ii) F (x, y) =
s∑

i=0
ci

(
y − y1(x)

)i
(p(x))m−it for some y1(x) ∈QsF , t ∈ N and

ci ∈ R for i = 0, 1, . . . , s.
(iii) |QsF |= ∞.

(In fact, if |QsF |= ∞, then |QsF |=the cardinal | R |.)
Proof. (i)⇒(ii) Since |QsF |≥ s + 3, by Theorem 2.8, for any pair of y(x) and h(x)
in QsF , there is t ∈ N such that

y(x)− h(x) = dpt(x) for some d ∈ R.
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By Theorem 3.1, we also get

F (x, y) =
s∑

i=0

ci

(
y − y1(x)

)i
(p(x))m−it

for some y1(x) ∈QsF and t ∈ N.
(ii)⇒(iii) Suppose that (ii) holds.Then

F (x, y1(x) + dpt(x)) =
s∑

i=0

ci

(
dpt(x))

)i
(p(x))m−it

=
( s∑

i=0

cid
i
)
pm(x)

= apm(x) for a =
s∑

i=0

cid
i ∈ R.

That is, y1(x)+dpt(x) ∈QsF for each d ∈ R. It follows that the cardinal |QsF |= ∞.
(iii)⇒(i) It is naturally obtained. ¤
According the above theorem, if the number of solutions exist finitely many, then

|QsF |≤ s + 2. Thus we state the following Corollary.

Corollary 3.3. If the number of all quasi-fixed solutions is finitely many, the num-
ber of all quasi-fixed solutions does not exceed an integer `. That is,

| QsF |≤ ` = s + 2 = degy F + 2, s = degy F.

Lemma 3.4. Suppose that

F (x, y) =
s∑

i=0

ci

(
y − y(x)

)i
(p(x))m−it(3.3)

for a solution y(x) ∈QsF , ci ∈ R, i = 0, 1, · · · , s and t ∈ N with t ≤ m/s. Then
h(x) ∈ R[x] is a quasi-fixed solution of F (x, y) if and only if

h(x) = y(x) + dpt(x) for some d ∈ R.

Proof. By Theorem 3.2,

F (x, y) =
s∑

i=0

ci

(
y − y(x)

)i
(p(x))m−it if and only if |QsF |≥ s + 3.

It follows from Theorem 2.8 that any quasi-fixed solution h(x) can be represented
as

h(x) = y(x) + dpt(x) for some d ∈ R.

The converse result follows from the proof of (ii) ⇒ (iii) in Theorem 3.2. ¤
Theorem 3.5. Let a polynomial function F (x, y) be given as (1.5):

F (x, y) = fs(x)ys + fs−1(x)ys−1 + · · ·+ f0(x),

and the quasi-fixed equation be given as (1.4):

F (x, y) = apm(x).
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If the cardinal number |QsF | is infinitely many, then for each quasi-fixed polynomial
solution must be of the form

−fs−1(x)
sfs(x)

+ λpt(x) for any λ ∈ R.

Proof. Assume |QsF |= ∞. By Theorem 3.2, we have

F (x, y) = fs(x)ys + fs−1(x)ys−1 + · · ·+ f0(x)

=
s∑

i=0

ci

(
y − y(x)

)i
(p(x))m−it, ci ∈ R, t ≤ m/s.

Comparing the coefficients of ys and ys−1 in both sides of the above identity, we get

fs(x) = csp
m−st(x)

and
fs−1(x) = −scsp

m−st(x)y(x) + cs−1p
m−(s−1)t(x).

Consequently,

y(x) =
cs−1

scs
pt(x)− fs−1(x)

sfs(x)
∈ R[x].

By Lemma 3.4, for each λ ∈ R, we have that any quasi-fixed solution can be
represented by

y(x) + dpt(x) =
cs−1

scs
pt(x)− fs−1(x)

sfs(x)
+ dpt(x)

= −fs−1(x)
sfs(x)

+ (d +
cs−1

scs
)pt(x)

= −fs−1(x)
sfs(x)

+ λpt(x).

This completes the proof. ¤
Finally, we provide two examples. The Example 1 is to explain the case of

|QsF |= s + 2 as Corollary 3.3. This shows that the finitely many number for |QsF |
of quasi-fixed solutions is bounded by s + 2.

Example 1.

Let F (x, y) = (x2 + x + 1)y2 − x6 − 3x5 − 6x4 − 7x3 − 10x2 − 7x− 5

and p(x) = x2 + x + 1, m = 2.

Then
F (x, y) = p(x)[y2 − p2(x)− 4], degy F = s = 2.

This polynomial function has exactly 4 = (s + 2) quasi-fixed solutions as follows:

F (x, p(x) + 2) = 4p2(x),

F (x,−p(x)− 2) = 4p2(x),

F (x, p(x)− 2) = −4p2(x),

F (x,−p(x) + 2) = −4p2(x).
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¤
The next example explains that the number of all quasi-fixed solutions of (1.4) is
infinitely many if the number of all quasi-fixed solutions exceeds s + 2.

Example 2. Let x = (x1, x2) ∈ R2, p(x) = x1 + x2, m = 2, and

F (x, y) = f2(x)y2 + f1(x)y + f0(x)

= y2 − (2x1x2 − x1 − x2)y + (x2
1x

2
2 − x2

1x2 − x1x
2
2 + x2

1 + 2x1x2 + x2
2).

We will solve all quasi-fixed solutions of F (x, y) = apm(x). This polynomial function
has exactly 5(≥ s + 3, since s = 2) quasi-fixed solutions as follows:

F (x1, x2, x1x2 − x1 − x2) = 1(x1 + x2)2,

F (x1, x2, x1x2) = 1(x1 + x2)2,

F (x1, x2, x1x2 + x1 + x2) = 3(x1 + x2)2,

F (x1, x2, x1x2 + 2x1 + 2x2) = 3(x1 + x2)2,

F (x1, x2, x1x2 + x1/2 + x2/2) = 3/4(x1 + x2)2.

By Theorem 3.2, we have |QsF |= ∞ and by Theorem 3.5, any quasi-fixed solution
is written as:

− f1(x)
sf2(x)

+ λpt(x) =
2x1x2 − x1 − x2

2
+ λp(x)

= x1x2 + (λ− 1/2)p(x)

= x1x2 + µp(x)

where µ = λ− 1/2 ∈ R is arbitrary.
This shows the quasi-fixed (polynomial) solutions have cardinal |QsF |= ∞. ¤

We would like to provide two open problems as follows.
Problem 1.: For a real-valued polynomial function F (x, y) : Rn × R → R.

Suppose that there has only finitely many quasi-fixed (polynomial) solu-
tions, that is, the number ` ≤ degy F + 2. Can one solve all quasi-fixed
(polynomial) solutions within reasonable time ? That means in a polyno-
mial time of t=size F+size p+m not the exponential time et. (cf. Lenstra
[1]).

Problem 2.: Does there exist a real-valued polynomial function F (x, y) such
that
(i) F (x, y) = a

(
p(x)

)m has infinitely many quasi-fixed solutions,

(ii) F (x, y) = a
(
p̃(x)

)m′
has infinitely many quasi-fixed solutions

for some irreducible polynomials p(x) 6= p̃(x) or some nonnegative integers
m 6= m′?
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