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THE PROXIMAL AVERAGE FOR SADDLE FUNCTIONS AND
ITS SYMMETRY PROPERTIES WITH RESPECT TO PARTIAL

AND SADDLE CONJUGACY

RAFAL GOEBEL

Abstract. The concept of the proximal average for convex functions is extended
to saddle functions. Self-duality of the proximal average is established with re-
spect to partial conjugacy, which pairs a convex function with a saddle function,
and saddle function conjugacy, which pairs a saddle function with a saddle func-
tion.

1. Introduction

The proximal average of convex functions is an operation that produces a proper,
lower semicontinuous, and convex functions from a collection of proper, lower semi-
continuous, and convex functions. It was introduced in [4] and studied in detail, in
a broader framework, in [2]. For more intuition behind the concept, see [3]. For an
extension to non-convex but prox-bounded functions, see [6]. For further references,
see [2].

The proximal average avoids the pitfalls present when the arithmetic average of
convex functions with disjoint effective domains is considered, but does recover the
arithmetic average in the limit, when a certain parameter is driven to 0. A striking
feature of the proximal average of convex functions is its self-duality with respect to
convex conjugacy: the convex conjugate of the proximal average of a collection of
convex functions is the proximal average of the convex conjugates of the functions
in the collection.

This paper extends the concept of the proximal average from the setting of convex
functions to the setting of saddle functions, in a way that preserves the self-duality.
More specifically, the proximal average turns out to be self-dual with respect to
partial conjugacy, which pairs a convex function with a saddle function, and with
respect to saddle function conjugacy, which pairs a saddle function with its conju-
gate saddle function. The self-duality should provide a tool for further study of the
proximal average of saddle functions, by enabling translation of the properties of
the proximal average of convex function via partial conjugacy.

2. Background

2.1. Proximal average for convex functions. A convex function f : IRn → IR,
where IR = [−∞,∞], is proper if f(x) 6= −∞ for all x ∈ IRn and f(x) < ∞ for some
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x ∈ IRn. Given a proper, lower semicontinuous (lsc), and convex f : IRn → IR, its
conjugate function f∗ : IRn → IR is defined by

f∗(p) = sup
x∈IRn

{p · x− f(x)} .

The function f∗ is itself proper, lsc, and convex, and (f∗)∗ = f . For more back-
ground on convex functions, consult [9].

Consider proper, lsc, and convex functions f1, f2, . . . , fr : IRn → IR, numbers
λ1, λ2, . . . , λr > 0 such that

∑r
i=1 λi = 1, and µ > 0. Let f = (f1, f2, . . . , fr),

λ = (λ1, λ2, . . . , λr). The λ-weighted proximal average of f with parameter µ is

(2.1) Pµ(λ, f) = λ1 ✫(f1 + µ ✫j) λ2 ✫(f2 + µ ✫j) . . . λr ✫(fr + µ ✫j)− µj,

where ✫ is the operation of epi-multiplication, i.e., given α > 0, φ : IRn → IR,

α ✫φ(x) = αφ(x/α)

for all x ∈ IRn; is the operation of epi-addition or inf-convolution, i.e., given
φ1, φ2, . . . , φr : IRn → IR,

φ1 φ2 . . . φr(x) = inf {φ1(x1) + φ2(x2) + · · ·+ φr(xr) | x1 + x2 + · · ·+ xr = x}
for all x ∈ IRn; and j(x) = 1

2 |x|2 for all x ∈ IRn. For more background on the
operations of epi-multiplication and inf-convolution, consult [11]. Regarding the
proximal average, Theorem 5.1 and Corollary 5.2 in [2] state this:

Theorem 2.1. For proper, lsc, and convex functions f1, f2, . . . , fr : IRn → IR,
numbers λ1, λ2, . . . , λr > 0 such that

∑r
i=1 λi = 1, and µ > 0, the function Pµ(λ, f)

is a proper, lsc, and convex function. Furthermore,

(Pµ(λ, f))∗ = Pµ−1(λ, f∗),

where f∗ = (f∗1 , f∗2 , . . . , f∗r ).

Further properties, for example the convergence of Pµ(λ, f) to the arithmetical
average of functions fi when µ → 0 and to the epi-graphical average when µ →∞,
can be found in [2].

2.2. Saddle functions. In this article, a saddle function is a function h : IRm ×
IRn → IR such that h(x, y) is convex in x for each fixed y and concave in y for each
fixed x. A saddle function h is proper and closed if its convex parent f : IRm×IRn →
IR and its concave parent g : IRm× IRn → IR, obtained from h via partial conjugacy
formulas

(2.2) f(x, q) = sup
y∈IRn

{h(x, y) + 〈q, y〉} , g(p, y) = inf
x∈IRm

{h(x, y)− 〈p, x〉}

are such that f and −g are proper convex functions conjugate to each other, that
is,

(2.3) −g(p, y) = sup
x∈IRm,q∈IRn

{〈p, x〉+ 〈y, q〉 − f(x, q)} .

An alternative definition of a closed saddle function, one that relies on lower and
upper semicontinuous closures, can be found in [9, Section 34]. The equivalence
class [h] containing a proper and closed saddle function h consists of all proper and
closed saddle functions that have the same parents as h. This equivalence class can
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be also described as the set of all saddle functions h′ such that h ≤ h′ ≤ h, where
the lowest element h and the highest elements h of the class are given, respectively,
by

(2.4) h(x, y) = sup
p∈IRm

{g(p, y) + 〈x, p〉} , h(x, y) = inf
q∈IRn

{f(x, q)− 〈y, q〉} .

Each of the two formulas above yields a proper and closed saddle function for
every proper and upper semicontinuous function g and every proper and lower
semicontinuous function f , respectively. For a proper and closed saddle function h,
its domain dom h is the product set C×D, where C = {x ∈ IRm |h(x, y) < ∞ ∀y ∈
IRn}, D = {y ∈ IRn |h(x, y) > −∞ ∀x ∈ IRm}. Proper and closed saddle functions
from the same equivalence class have the same domains.

Given an equivalence class [h] of proper and closed saddle functions, the class
conjugate to it (in the saddle sense), denoted [h∗], has the lowest and the greatest
elements given by

(2.5)
h∗(p, q) = sup

x∈IRm
inf

y∈IRn
{〈p, x〉+ 〈q, y〉 − h(x, y)} ,

h∗(p, q) = inf
y∈IRn

sup
x∈IRm

{〈p, x〉+ 〈q, y〉 − h(x, y)} ,

where h is any function in [h]. In other words, the class conjugate to [h] comes from
a convex parent (p, y) 7→ −g(p,−y) and a concave parent (x, q) 7→ −f(x,−q). For
details, see [8], [9], and for the infinite-dimensional case, [10] and [1].

For a simple example of a saddle function, consider h(x, y) = aj(x) − bj(y) for
a, b > 0. The equivalence class [h] consists of a single element h. Then the convex
and concave parents of h are given, respectively, by f(x, q) = aj(x) + b−1j(q) and
g(p, y) = −a−1j(p)− bj(y). The class conjugate to h consists of a single element as
well, given by h∗(p, q) = a−1j(x)− b−1j(q). All the calculations follow simply from
the fact that, for convex conjugacy, (aj)∗ = a−1j. In particular, h∗ = h if a = b = 1.
A more interesting example of a saddle function is given by h(x, y) = x · y, in the
case of m = n. The convex and concave parents of h are given, respectively, by
f(x, q) = δ0(x + q) and g(p, y) = −δ0(y − p), where δ0 : IRn → IR is given by
δ0(0) = 0, δ0(x) = ∞ if x 6= 0. The saddle conjugate of h is given by h∗(p, q) = p · q,
so h = h∗.

The operation that generalizes the epi-addition, or inf-convolution, of convex
functions to the setting of saddle functions is that of extremal convolution. Following
[7], we say that the extremal convolution of [h1], [h2], . . . , [hr] is well-defined if all
the convex-concave functions of the form

(2.6) (x, y) 7→ supP
yi=y,yi∈Di

infP
xi=x,xi∈IRm

∑
hi(xi, yi),

and of the form

(2.7) (x, y) 7→ infP
xi=x,xi∈Ci

supP
yi=y,yi∈IRn

∑
hi(xi, yi)

where hi ∈ [hi] and Ci×Di = dom hi, i = 1, 2, . . . , r, belong to a single equivalence
class. That equivalence class is then denoted [h1 h2 . . . hr]. A sufficient con-
dition for the extremal convolution of [h1], [h2], . . . , [hr] to be a well-defined class
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of proper and closed saddle functions is that [h∗1], [h
∗
2], . . . , [h

∗
r ] be finite-valued; see

[7, Theorem 2]. In such a case, replacing hi by hi in (2.6) and hi by hi in (2.7)
yields, respectively, the least and the greatest elements of [h1 h2 . . . hr]; see
[7, Theorem 3].

3. Proximal average for saddle functions

Throughout this section, let [h1], [h2], . . . , [hr] be equivalence classes of proper
and closed saddle functions; let λ1, λ2, . . . , λr > 0 be such that

∑r
i=1 λi = 1; and let

µ, η > 0. For notational convenience, we will let jx, jy : IRm× IRn → IR be given by
jx(x, y) = j(x) and jy(x, y) = j(y). We will also write h for ([h1], [h2], . . . , [hr]).

3.1. Definition and main results. Extending the proximal average to the setting
of saddle functions requires replacing the inf-convolution in (2.1) by the extremal
convolution. In (2.1), the convex functions are augmented by a quadratic term
before the inf-convolution is taken. A similar procedure, in the saddle setting,
ensures that the extremal convolution is well-defined.

Lemma 3.1. Let h̃i = hi + µ ✫jx − η ✫jy, i = 1, 2, . . . , r. Then the extremal
convolution [(

λ1 ✫h̃1

) (
λ2 ✫h̃2

)
. . .

(
λr ✫h̃r

)]

is well-defined.

Proof. For i = 1, 2, . . . , r, given any choice of hi ∈ [hi], the function h̃i = hi+µ ✫jx−
η ✫jy is strongly convex in x, strongly concave is y, and hence h̃∗i is finite-valued;
see for example [9, Theorem 37.3]. The same conclusions apply to λi ✫h̃i. Now, [7,
Theorem 2] finishes the proof. ¤

The proximal average of [h1], [h2], . . . , [hr], with coefficients λ1, λ2, . . . , λr and
parameters µ, η > 0, is well-defined if all convex-concave functions on IRm × IRn of
the form
(3.1)

h− µ ✫jx + η ✫jy, where





h ∈
[(

λ1 ✫h̃1

) (
λ2 ✫h̃2

)
. . .

(
λr ✫h̃r

)]
,

h̃i = hi + µ ✫jx − η ✫jy, hi ∈ [hi], i = 1, 2, . . . , r,

belong to a single equivalence class. In such a case, the proximal average of
[h1], [h2], . . . , [hr] will be represented as

[P∪∩µ,η(λ,h)
]

=
[(

λ1 ✫h̃1

) (
λ2 ✫h̃2

)
. . .

(
λr ✫h̃r

)
− µ ✫jx + η ✫jy

]
.

Theorem 3.2. The proximal average of [h1], [h2], . . . , [hr], with coefficients λ1,
λ2, . . . , λr and parameters µ, η > 0, is well-defined.

Theorem 3.2 is proved, along with Theorem 3.3, in the next section, by showing
that the least and the greatest saddle functions of the form (3.1) are obtained via
partial conjugacy, as in (2.4), from a pair of functions, one convex and one concave,
related to one another as in (2.3). The general theory of saddle functions then
ensures that all saddle functions of the form (3.1) are equivalent.
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In fact, the pair of proper, lsc, and convex functions mentioned above, the con-
cave and convex parents of

[P∪∩µ,η(λ,h)
]
, turn out to be appropriately understood

proximal averages of the convex and the concave parents of [h1], [h2], . . . , [hr]. More
precisely, let fi and gi be, respectively, the convex and the concave parent of [hi],
i = 1, 2, . . . , r. Let P∪∪µ,η−1(λ, f) be the proximal average of the convex functions
f1, f2, . . . , fr with coefficients λ1, λ2, . . . , λr and parameters µ, η−1, defined by

(3.2) P∪∪µ,η−1(λ, f) =
(
λ1 ✫f̂1

) (
λ2 ✫f̂2

)
. . .

(
λr ✫f̂r

)
− µ ✫jx − 1

η
✫jy

where f̂i = fi + µ ✫jx + 1
η ✫jy, i = 1, 2, . . . , r. Let P∩∩µ−1,η(λ,g) be the proximal

average of the concave functions g1, g2, . . . , gr with coefficients λ1, λ2, . . . , λr and
parameters µ−1, η, defined by

P∩∩µ−1,η(λ,g) = −
(

(λ1 ✫(−ĝ1)) (λ2 ✫(−ĝ2)) . . . (λr ✫(−ĝr))− 1
µ

✫jx − η ✫jy

)

where ĝi = gi − 1
µ ✫jx − η ✫jy, i = 1, 2, . . . , r.

Theorem 3.3. The convex and the concave parents of the proximal average of[P∪∩µ,η(λ,h)
]

are, respectively, the functions P∪∪µ,η−1(λ, f) and P∩∩µ−1,η(λ,g).

A straightforward consequence of Theorem 3.3 is that the conjugate function,
in the saddle sense, to the proximal average of [h1], [h2], . . . , [hr], is the proximal
average of [h∗1], [h

∗
2], . . . , [h

∗
r ].

Corollary 3.4. The equivalence classes
[P∪∩µ,η(λ,h)

]
and

[
P∪∩µ−1,η−1(λ,h∗)

]
are con-

jugate to one another in the sense of saddle function conjugacy.

Proof. Theorem 3.3 says that the concave parent of
[P∪∩µ,η(λ,h)

]
is P∩∩µ−1,η(λ,g).

The convex parent of the class conjugate to
[P∪∩µ,η(λ,h)

]
is the function

(p, y) 7→ −P∩∩µ−1,η(λ,g)(p,−y); recall (2.5) and the comments following it. Now,
−P∩∩µ−1,η(λ,g)(p,−y) = P∪∪µ−1,η(λ,g′)(p, y) where g′(p, y) = −g(p,−y) and the func-
tions (p, y) 7→ −gi(p,−y) are convex parents of [hi]∗. Hence the class conjugate to[P∪∩µ,η(λ,h)

]
has, as its convex parents, the proximal average of convex parents of

[hi]∗. Another use of Theorem 3.3 shows that the class conjugate to
[P∪∩µ,η(λ,h)

]
is

exactly
[
P∪∩µ−1,η−1(λ,h∗)

]
. ¤

When, for every i = 1, 2, . . . , r, hi = aijx − bijy for some ai, bi > 0, the proximal
average can be found explicitly, thanks to the formula for the convex proximal
average of convex quadratic functions; see [2, Example 4.5]. Here, as an illustration,
we find the proximal average of the saddle functions h1, h2 on IRn × IRn given by:

h1(x, y) =
1
2
|x|2 − 1

2
|y|2, h2(x, y) = x · y,

with parameters µ = η = 1. One has:

h̃1(x, y) = |x|2 − |y|2, h̃2 = x · y +
1
2
|x|2 − 1

2
|y|2,

λ1 ✫h̃1(x, y) =
1
λ1
|x|2 − 1

λ1
|y|2, λ2 ✫h̃2(x, y) =

1
λ2

x · y +
1

2λ2
|x|2 − 1

2λ2
|y|2,
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and the proximal average P∪∩1,1 (λ,h)(x, y) is given by

inf
x1+x2=x

sup
y1+y2=y

{
1
λ1
|x1|2 +

1
2λ2

|x2|2 +
1
λ2

x2 · y2 − 1
λ1
|y1|2 − 1

2λ2
|y2|2

}

− 1
2
|x|2 +

1
2
|y|2.

The computation involves miminizing and maximizing linear-quadratic functions
and is straightforward. One obtains

P∪∩1,1 (λ,h)(x, y) =
1− λ2

2

1 + λ2
2

(
1
2
|x|2 − 1

2
|y|2

)
+

2λ2

1 + λ2
2

x · y.

Note that P∪∩1,1 (λ,h) = h1 when λ1 = 1 and λ2 = 0, while P∪∩1,1 (λ,h) = h2 when
λ2 = 1. An interesting feature of P∪∩1,1 (λ,h) is its self-duality with respect to saddle
conjugacy: P∪∩1,1 (λ,h)∗ = P∪∩1,1 (λ,h). This self-duality follows from h∗1 = h1, h∗2 =
h2, and Corollary 3.4 but can be also verified directly. For the case of n = 1, the self-
duality of such a function was noted in [5]. A geometric interpretation of P∪∩1,1 (λ,h),
for the case of n = 1, is that its graph is obtained from the graph of h1 through the
rotation, about the line x = y = 0, by the angle α such that sin 2α = 2λ2/(1 + λ2

2).
When λ2 = 1 and α = π/4, one obtains the graph of h2.

Theorem 3.3 suggests an alternative way to compute P∪∩1,1 (λ,h). The convex
parents of h1, h2 are given by, respectively,

f1(x, q) =
1
2
|x|2 +

1
2
|q|2, f2(x, q) = δ0(x + q).

The proximal average of f1, f2, P∪∪1,1 (λ, f) is given at (x, q) by

inf
x1+x2=x,q1+q2=q

{
1
λ1
|x1|2 +

1
λ1
|q1|2 + δ0(x2 + q2) +

1
2λ2

|x2|2 +
1
λ1
|q1|2

}

− 1
2
|x|2 − 1

2
|q|2,

which simplifies to

inf
x2

{
1
λ1
|x− x2|2 +

1
λ1
|q + x2|2 +

1
λ2
|x2|2

}
− 1

2
|x|2 − 1

2
|q|2.

A simpler than in the saddle case computation yields

P∪∪1,1 (λ, f)(x, q) =
1 + λ2

2

1− λ2
2

1
2
|x|2 − 2λ2

1− λ2
2

x · q +
1 + λ2

2

1− λ2
2

1
2
|q|2.

Then, the relationship P∪∩1,1 (λ,h)(x, y) = infq
{P∪∪1,1 (λ, f)(x, q)− y · q} yields the

same formula for P∪∩1,1 (λ,h) as obtained before.

3.2. A key proposition. Let H : IRm × IRn → IR be given, at each (x, y) ∈
IRm × IRn, by

H(x, y) = h(x, y)− µ ✫j(x) + η ✫j (y)



THE PROXIMAL AVERAGE FOR SADDLE FUNCTIONS 7

where h̃i = hi + µ ✫jx − η ✫jy, i = 1, 2, . . . , r, and

h(x, y) = infP
xi=x,xi∈λiCi

supP
yi=y,yi∈IRn

∑ (
λi ✫h̃i

)
(xi, yi).

Proposition 3.5. For all (x, y) ∈ IRm × IRn,

(3.3) inf
q∈IRn

{
P∪∪µ,η−1(λ, f)(x, q)− y · q

}
= H(x, y).

The remainder of this section is devoted to proving this result. The summation
symbol

∑
in what follows always means

∑r
i=1. The left hand side of (3.3) equals

infq infx:
P

xi=x infq:
P

qi=q H1(q,q,x), where q = (q1, q2, . . . , qr), x = (x1, x2, . . . , xr)
and

H1(q,q,x) =
∑ [

λifi

(
xi

λi
,
qi

λi

)
+

1
λiµ

j(x) +
η

λi
j(qi)

]
− 1

µ
j(x)− ηj(q)− y · q.

With no loss of generality, the infimum can be taken over x such that, for i =
1, 2, . . . , r, xi is such that there exists qi with

(
xi
λi

, qi

λi

)
∈ dom fi, and thus, over

xi ∈ λiCi, where Ci × Di = dom hi. This fact, switching the order of taking the
infima, and then using the first equation in (2.2), with the greatest element hi of
[h] in place of h, and with yi/λi taking place of y, turns the left hand side of (3.3)
to infx:

P
xi=x,xi∈λiCi

infq infq:
P

qi=q supy H2(q,x,y), where y = (y1, y2, . . . , yr) and

H2(q,q,x,y) =
∑ [

λihi

(
xi

λi
,
yi

λi

)
+

η

λi
j(qi) +

yi

λi
qi

]

−ηj(q)− y · q +
∑ 1

λiµ
j(xi)− 1

µ
j(x).

As xi ∈ λiCi, the function hi

(
xi
λi

, ·
)

is upper semicontinuous (see the discussion
above [9, Theorem 33.3]) and proper as a concave function, in the sense that it does
not take on the value ∞ and is not identically −∞ (see [9, Theorem 43.3]). Thus,
the first line in the formula for H2 above is a proper and closed saddle function
of (q,y) ∈ (IRm)r × (IRn)r. It is also strongly convex in q and, consequently, it
has no directions of recession in q; see [11, Theorem 8.7]. Then, [9, Theorem 37.3]
ensures that switching the order of the infimum and supremum is possible. Thus, the
left hand side of (3.3) becomes infx:

P
xi=x,xi∈λiCi

infq supy infq:
P

qi=q H2(q,q,x,y).
Some simplification is now possible, thanks to the following lemma.

Lemma 3.6.

(3.4) inf
q:
P

qi=q

∑ [
η

λi
j(qi) +

yi

λi
qi

]
=

1
η
j
(∑

yi

)
+ ηj(q)+ q ·

∑
yi−

∑ 1
ηλi

j(yi)

Proof. Let φi : IRn → IR be given by φi(qi) = η
λi

j(qi) + yi

λi
qi, i = 1, 2, . . . , r; let

Φ : IRnr → IR be the convex and finite-valued function given by Φ(q) =
∑

φi(qi);
let A : IRnr → IRn be given by Aq =

∑
qi; and let Ψ : IRn → IR be the indicator

function of q, i.e., Φ(y) = 0 if y = q, Φ(y) = ∞ if y 6= q, which makes Ψ proper, lsc,
and convex. The left hand side of (3.4) is

inf
q∈IRrn

{Φ(q) + Ψ(Aq)} .
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Since Φ is finite-valued, Fenchel Duality (see, for example, [9, Corollary 31.2.1])
yields that the infimum above equals

sup
v∈IRn

{−Ψ∗(v)− Φ∗(−A∗v)} = sup
v∈IRn

{
−q · v −

∑
φ∗i (−v)

}

= sup
v∈IRn

{
q · v −

∑
φ∗i (v)

}
.

Now,

φ∗i (v) = sup
q∈IRn

{
v · q − yi

λi
q − η

λi
j(q)

}
=

η

λi
sup
q∈IRn

{
λi

η

(
v − yi

λi

)
q − j(q)

}

=
η

λi
j

(
λi

η

(
v − yi

λi

))
=

λi

η
j

(
v − yi

λi

)

and

sup
v∈IRn

{
q · v −

∑
φ∗i (v)

}
= sup

v∈IRn

{
q · v −

∑ λi

η
j

(
v − yi

λi

)}

= sup
v∈IRn

{
q · v − 1

η
j(v) +

1
η
v ·

∑
yi

}
− 1

η

∑ 1
λi

j(yi)

=
1
η

sup
v∈IRn

{(∑
yi + ηq

)
· v − j(v)

}
− 1

η

∑ 1
λi

j(yi)

=
1
η
j
(∑

yi + ηq
)
− 1

η

∑ 1
λi

j(yi)

which expands to the right hand side of (3.4). ¤

Lemma 3.6 shows that the left hand side of (3.3) is infx:
P

xi=x,xi∈λiCi
infq supy H3(q,

x,y), where

H3(q,x,y) = q ·
(∑

yi − y
)

+
1
η
j
(∑

yi

)
+

∑ [
λihi

(
xi

λi
,
yi

λi

)
− 1

ηλi
j(yi)

]

− 1
µ

j(x) +
∑ 1

λiµ
j(xi).

Lemma 3.7 below shows that, for every xi ∈ λiCi,

inf
q

sup
y

H3(q,x,y) = sup
y:
P

yi=y
H4(x,y)

where

H4(x,y) =
∑ [

λihi

(
xi

λi
,
yi

λi

)
+

1
λiµ

j(xi)− 1
ηλi

j(yi)
]
− 1

µ
j(x) +

1
η
j (y) .

Consequently, the left hand side of (3.3) is

inf
x:
P

xi=x,xi∈λiCi

sup
y:
P

yi=y
H4(x,y).

This verifies (3.3).
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Lemma 3.7. Given xi ∈ λiCi, let φ : (IRn)r → IR be given by

−φ(y) =
1
η
j
(∑

yi

)
+

∑ [
λihi

(
xi

λi
,
yi

λi

)
− 1

ηλi
j(yi)

]
.

Then
inf
q

sup
y

{
q ·

(∑
yi − y

)
− φ(y)

}
= − inf

y:
P

yi=y
φ(y).

Proof. The function

y 7→
∑

λij

(
yi

λi

)
− j

(∑
yi

)
=

∑
λij

(
yi

λi

)
− j

(∑
λi

yi

λi

)

is convex, finite-valued, and hence continuous. Indeed, it is quadratic and, by
convexity of j, nonnegative. Furthermore, it is strongly convex in every direction
except y1/λ1 = y2/λ2 = · · · = yr/λr. Consequently, the function φ is convex,
proper, lower semicontinuous, and

inf
q

sup
y

{
q ·

(∑
yi − y

)
− φ(y)

}
= inf

q

{
φ∗

(
AT q

)− q · y}

= − sup
q

{
y · q − φ∗

(
AT q

)}
,

where A : (IRn)r → IRn is given by Ay =
∑

yi, and so AT q = (q, q, . . . , q) ∈ (IRn)r.
The statement of the lemma amounts to ψ∗(y) = infy:

P
yi=y φ(y) for the convex

function ψ : IRn → IR given by ψ(q) = φ∗
(
AT q

)
. This holds, by [11, Theorem

11.23], if 0 ∈ int
(
dom φ∗ − rgeAT

)
. Suppose that this constraint qualification fails:

there exist v = (v1, v2, . . . , vr) ∈ (IRn)r, v 6= 0, such that v · w − v · AT q ≤ 0
for all w ∈ dom φ∗, q ∈ IRn. In particular, v · w ≤ 0 for all w ∈ dom φ∗ while
0 = v · AT q for all q ∈ IRn. Since φ is strongly convex in every direction except
possibly y1/λ1 = y2/λ2 = · · · = yr/λr, the horizon function φ∞ of φ is such that
φ∞(y) = ∞ except possibly when y1/λ1 = y2/λ2 = · · · = yr/λr. By [11, Theorem
11.5], this horizon function is the support function of domφ∗. Thus, v · w ≤ 0
for all w ∈ dom φ∗ implies that v1/λ1 = v2/λ2 = · · · = vr/λr. But then 0 =
Av · q = (1 + λ2/λ1 + · · ·+ λr/λ1) v1 · q for all q ∈ IRn implies v = 0. This is a
contradiction. ¤

3.3. Proof of Theorems 3.2 and 3.3. Since the functions h̃i in the definition of
H are the greatest elements of [h̃i], i = 1, 2, . . . , r, the function H is the greatest
function of the form (3.1). The function H turns out to be a partial conjugate, as in
the second formula in (2.4), of a proper, lsc, and convex function P∪∪µ,η−1(λ, f). Thus
H is a proper and closed saddle function, and in particular, there exists a proper
and closed saddle function of the form (3.1).

Let H : IRm × IRn → IR be given, at each (x, y) ∈ IRm × IRn, by

H(x, y) = h(x, y)− µ ✫j(x) + η ✫j (y)

where h̃i = hi + µ ✫jx − η ✫jy, i = 1, 2, . . . , r, and

h(x, y) = supP
yi=y,yi∈Di

infP
xi=x,xi∈IRm

∑
h̃i(xi, yi).
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Since h̃i are the least elements of [h̃i], i = 1, 2, . . . , r, the function H is the least
function of the form (3.1). The function H turns out to be a partial conjugate, as in
the first formula in (2.4), of a proper, lsc, and convex function P∩∩µ−1,η(λ,g). Indeed,
arguments symmetric to those showing Proposition 3.5 imply the following: for all
(x, y) ∈ IRm × IRn,

(3.5) sup
p∈IRm

{
P∩∩µ−1,η(λ,g)(p, y)− x · p

}
= H(x, y).

Thus H is a proper and closed saddle function.
The proper and lsc convex functions P∪∪µ,η−1(λ, f) and −P∩∩µ−1,η(λ,g) turn out to

be conjugate to one another. This is a consequence of fi and −gi being conjugate
to one another, i = 1, 2, . . . , r, and the self-duality of the proximal average in the
convex setting, as summarized below.

Lemma 3.8. For all (p, y) ∈ IRm × IRn,
(
P∪∪µ,η−1(λ, f)

)∗
(p, y) : = sup

(x,q)∈IRm×IRn

{
p · x + y · q − P∪∪µ,η−1(λ, f)(x, q)

}

= P∪∪µ−1,η(λ, f∗)(p, y).

Proof. For the functions f̂i, i = 1, 2, . . . , r in (3.2), one has, for all (x, q) ∈ IRm×IRn,

f̂i(x, q) = fi(x, q) + µ ✫jx(x, q) +
1
η

✫jy(x, q) = fi(x, q) + µ ✫j(x) +
1
η

✫j(q)

= fi

(√
µ

x√
µ

,
1√
η

√
ηq

)
+ j

(
x√
µ

)
+ j (

√
ηq)

= gi (A(x, q)) + j (A(x, q))

where A(x, q) =
(

x√
µ ,
√

µq
)

and gi(x, q) = fi

(√
µx, 1√

η q
)

= fi

(
A−1(x, q)

)
. Thus,

for all (x, q) ∈ IRm × IRn,

P∪∪µ,η−1(λ, f)(x, q) = P∪∪1,1 (λ,g) (A(x, q)) .

Self-duality of the proximal average for convex functions, as stated in Theorem 2.1,
and [9, Theorem 12.3] combined with the fact that the linear mapping A is invertible
and self-adjoint,

(
P∪∪µ,η−1(λ, f)

)∗
(p, y) =

(P∪∪1,1 (λ,g)
)∗ (

A−1(p, y)
)

= P∪∪1,1 (λ,g∗)
(
A−1(p, y)

)
.

[9, Theorem 12.3] also gives that g∗i (p, y) = f∗i (A(p, y)). A calculation, similar to
the one carried out above for f̂i, finishes the argument. ¤

Conjugacy of the functions P∪∪µ,η−1(λ, f) and −P∩∩µ−1,η(λ,g), and their relationship
to H and H captured by (3.3) and (3.5) implies that all saddle functions H such
that H ≤ H ≤ H are proper, closed, and form an equivalence class. Since H and
H are, respectively, the least and the greatest saddle functions of the form (3.1),
the proof of Theorem 3.2 and Theorem 3.3 is complete.
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