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STRONG CONVERGENCE THEOREMS BY MONOTONE
HYBRID METHOD FOR A FAMILY OF HEMI-RELATIVELY

NONEXPANSIVE MAPPINGS IN BANACH SPACES

CHAKKRID KLIN-EAM, SUTHEP SUANTAI, AND WATARU TAKAHASHI

Abstract. In this paper, we prove a strong convergence theorem by using mono-
tone hybrid method for a family of hemi-relatively nonexpansive mappings. Using
this theorem, we get some new results for a hemi-relatively nonexpansive mapping
or a family of hemi-relatively nonexpansive mappings in a Banach space. Conse-
quently, we obtain strong convergence theorems for a nonexpansive mapping or
a family of nonexpansive mappings in a Hilbert space.

1. Introduction

Let E be a real Banach space with ‖ · ‖ and let C be a nonempty closed
convex subset of E. Then a mapping T of C into itself is called nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote by F (T ) the set of fixed points
of T , that is, F (T ) = {x ∈ C : x = Tx}. A mapping T of C into itself is called
quasi-nonexpansive if F (T ) is nonempty and ‖Tx− y‖ ≤ ‖x− y‖ for all x ∈ C and
y ∈ F (T ). It is easy to see that if T is nonexpansive with F (T ) 6= ∅, then it is
quasi-nonexpansive.

The theory of nonexpansive mappings is an important subject which can be ap-
plied widely in applied areas, in particular, in image recovery and signal processing
[3-4]. However, the Picard’s sequence {Tnx}∞n=1 of iterates of a nonexpansive map-
ping T at a point x ∈ C may not converge even in the weak topology. In 1953,
Mann [13] introduced an iterative scheme which is now known as Mann’s iteration
process. This iteration is defined as follows:

(1.1) xn+1 = αnxn + (1− αn)Txn, n ≥ 0,

where the initial guess x0 ∈ C is chosen arbitrarily and the sequence {αn} is in the
interval [0, 1]. However, we note that Mann’s iteration has only weak convergence
even in a Hilbert space.

In 2003, Nakajo and Takahashi [18] proposed the following modification of Mann’s
iteration process (1.1), by using the following hybrid method in mathematical pro-
gramming, for a single nonexpansive mapping T : C → C in a Hilbert space H: Let
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x1 = x ∈ C and define {xn} by




un = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

(1.2)

for all n ∈ N, where {αn} ⊂ [0, 1]. They proved that the sequence {xn} generated by
(1.2) converges strongly to a fixed point of T under an appropriate control condition
on the sequence {αn}.

In 2008, Takahashi, Takeuchi and Kubota [28] proposed the following modifica-
tion of the iteration method (1.2) for a family of nonexpansive mappings Tn : C → C
in a Hilbert space H: Let x1 = x ∈ C and define {xn} by





un = αnxn + (1− αn)Tnxn,

Cn = {z ∈ C : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

(1.3)

for all n ∈ N, where {αn} ⊂ [0, 1]. They proved strong convergence of the sequence
{xn} generated by (1.3) under an appropriate control condition on the sequence
{αn} and under the condition that the families {Tn}∞n=1 satisfies the NST-condition.

In 2008, Qin and Su [19] proposed the following modification of the iteration (1.2)
called the monotone hybrid method for a nonexpansive mapping T in a Hilbert space
as follows: Define {xn} by




x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1− αn)Txn,

Cn = {z ∈ Cn−1 ∩Qn−1 : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx

(1.4)

for all n ∈ N, where {αn} ⊂ [0, 1]. By using this method, they proved a strong
convergence theorem under a control condition on the sequence {αn} but the technic
they used in this paper is different from Nakajo and Takahashi [18]. More precisely,
they can show that the sequence {xn} generated by (1.4) is a Cauchy sequence,
without the use of demiclosedness principle, Opial’s condition and the Kadec-Klee
property.

Recently, Su, Wang and Shang [25] proposed the following monotone hybrid
method with generalized projection for a hemi-relatively noexpansive mapping T in
a Banach space: Define {xn} by




x1 = x ∈ C, C0 = Q0 = C,

un = J−1
(
αnJxn + (1− αn)JTxn

)
,

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

(1.5)
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where J is the duality mapping on E and {αn} ⊂ [0, 1]. They proved that if
lim sup

n→∞
αn < 1, then the sequence {xn} generated by (1.5) converges strongly to

ΠF (T )x0, where ΠF (T ) is the generalized projection from C onto F (T ).
Employing the ideas of Qin and Su [19] and of Takahashi et al. [28] and Su

et al. [25], we modify iterations (1.3), (1.4) and (1.5) for a countable family of
hemi-relatively nonexpansive mappings in a Banach space and prove a strong con-
vergence theorem in a Banach space. Using this theorem, we obtain some strong
convergence theorems for a countable family of hemi-relatively nonexpansive map-
pings in a Banach space. Consequently, we obtain strong convergence theorems for
a nonexpansive mapping or a family of nonexpansive mappings in a Hilbert space.

2. Preliminaries

Throughout this paper, all linear spaces are real. Let N and R be the sets of
all positive integers and real numbers, respectively. Let E be a Banach space and
let E∗ be the dual space of E. For a sequence {xn} of E and a point x ∈ E, the
weak convergence of {xn} to x and the strong convergence of {xn} to x are denoted
by xn ⇀ x and xn → x, respectively. The duality mapping J from E into 2E∗ is
defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, ∀x ∈ E.

Let S(E) be the unit sphere centered at the origin of E. Then the space E is
said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y ∈ S(E). It is also said to be uniformly smooth if the limit exists
uniformly in x, y ∈ S(E). A Banach space E is said to be strictly convex if ‖x+y

2 ‖ <
1 whenever x, y ∈ S(E) and x 6= y. It is said to be uniformly convex if for each
ε ∈ (0, 2], there exists δ > 0 such that ‖x+y

2 ‖ < 1 − δ whenever x, y ∈ S(E) and
‖x− y‖ ≥ ε. We know the following; see [26]:

(i) If E is smooth, then J is single-valued;
(ii) if E is reflexive, then J is onto;
(iii) if E is strictly convex, then J is one-to-one;
(iv) if E is strictly convex, then J is strictly monotone;
(v) if E is uniformly smooth, then J is uniformly norm-to-norm continuous on

each bounded subset of E.
Let E be a smooth, strictly convex and reflexive Banach space and let C be a

closed convex subset of E. Throughout this paper, define the function φ : E×E → R
by

(2.1) φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2, ∀y, x ∈ E.

Observe that, in a Hilbert space H, φ(x, y) = ‖x−y‖2 for all x, y ∈ H. It is obvious
from the definition of the function φ that, for all x, y ∈ E,

(1) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2,
(2)φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉,
(3)φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉 ≤ ‖x‖‖Jx− Jy‖+ ‖y − x‖‖y‖.
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Following Alber [1], the generalized projection ΠC from E onto C is a map that
assigns to an arbitrary point x ∈ E the minimum point x̄ of the functional φ(y, x),
that is, x̄ is the solution to the minimization problem

φ(x̄, x) = min
y∈C

φ(y, x).

Existence and uniqueness of the operator ΠC follow from the properties of the
functional φ(x, y) and strict monotonicity of the mapping J . In a Hilbert space, ΠC

is the metric projection of H onto C.
Let C be a closed convex subset of a Banach space E, and let T be a mapping

from C into itself. We denote by F (T ) the set of fixed points of T , that is, F (T ) =
{x ∈ C : x = Tx}. Recall that a self-mapping T : C → C is hemi-relatively
nonexpansive if φ(u, Tx) ≤ φ(u, x) for all x ∈ C and u ∈ F (T ).

A point u ∈ C is said to be an asymptotic fixed point of T [21] if C contains a
sequence {xn} which converges weakly to u and limn→∞ ‖xn−Txn‖ = 0. We denote
the set of all asymptotic fixed points of T by F̂ (T ). A hemi-relatively nonexpansive
mapping T : C → C is said to be relatively nonexpansive if F̂ (T ) = F (T ) 6= ∅. The
asymptotic behavior of a relatively nonexpansive mapping was studied in [2].

We need the following lemmas for the proofs of our main results.

Lemma 2.1 (Kamimura and Takahashi [8]). Let E be a uniformly convex and
smooth Banach space and let {xn} and {yn} be two sequences in E such that either
{xn} or {yn} is bounded. If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.2 (Matsushita and Takahashi [16]). Let C be a closed convex subset of a
smooth, strictly convex, and reflexive Banach space E and let T be a hemi-relatively
nonexpansive mapping from C into itself. Then F(T) is closed and convex.

Lemma 2.3 (Alber [1], Kamimura and Takahashi [8]). Let C be a closed convex
subset of a smooth, strictly convex and reflexive Banach space, x ∈ E and let z ∈ C.
Then, z = ΠCx if and only if 〈y − z, Jx− Jz〉 ≤ 0 for all y ∈ C.

Lemma 2.4 (Alber [1], Kamimura and Takahashi [8]). Let C be a closed convex
subset of a smooth, strictly convex and reflexive Banach space. Then

φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y), ∀x ∈ C, y ∈ E.

Lemma 2.5 (Kamimura and Takahashi [8]). Let E be a uniformly convex and
smooth Banach space and let r > 0. Then there exists a strictly increasing, contin-
uous and convex function g : [0,∞) → [0,∞) such that g(0) = 0 and

g(‖x− y‖) ≤ φ(x, y)

for all x, y ∈ Br(0), where Br(0) = {z ∈ E : ‖z‖ ≤ r}.
Lemma 2.6 (Zalinescu [29]). Let E be a uniformly convex Banach space and let
r > 0. Then there exists a strictly increasing, continuous and convex function
g : [0,∞) → [0,∞) such that g(0) = 0 and

‖tx + (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2 − t(1− t)g(‖x− y‖)
for all x, y ∈ Br(0) and t ∈ [0, 1], where Br(0) = {z ∈ E : ‖z‖ ≤ r}.
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Lemma 2.7 (Kohsaka and Takahashi [11]). Let E be a reflexive, strictly convex
and smooth Banach space, let z ∈ E and let {ti}m

i=1 ⊂ (0, 1) with
∑m

i=1 ti = 1. If
{xi}m

i=1 is a finite sequence in E such that

φ
(
z, J−1(

m∑

i=1

tiJxi)
)

=
m∑

i=1

tiφ(z, xi),

then x1 = x2 = · · · = xm.

3. NST-condition

Let E be a real Banach space and let C be a closed convex subset of E.
Motivated by Nakajo, Shimoji and Takahashi [17], we give the following definitions:
Let {Tn} and T be two families of hemi-relatively noexpansive mappings of C into
E such that

⋂∞
n=1 F (Tn) = F (T ) 6= ∅, where F (Tn) is the set of all fixed points of

Tn and T is the set of all common fixed points of T . Then , {Tn} is said to satisfy
the NST-condition with T if for each bounded sequence {xn} ⊂ C,

lim
n→∞ ‖xn − Tnxn‖ = 0 ⇒ lim

n→∞ ‖xn − Txn‖ = 0, for all T ∈ T .

In particular, if T = {T}, i.e., T consists of one mapping T , then {Tn} is said
to satisfy the NST-condition with T . It is obvious that {Tn} with Tn = T for all
n ∈ N satisfies the NST-condition with T = {T}.
Lemma 3.1. Let C be a closed convex subset of a uniformly smooth and uniformly
convex Banach space E and let T be a hemi-relatively nonexpansive mapping from
C into E with F (T ) 6= ∅. Let {βn} ⊂ [0, 1] satisfy lim inf

n→∞ βn(1−βn) > 0. For n ∈ N,
define a mapping Tn from C into E by

Tnx = J−1
(
βnJx + (1− βn)JTx

)

for all x ∈ C, where J is the duality mapping on E. Then, {Tn} is a countable
family of hemi-relatively nonexpansive mappings satisfying the NST-condition with
T .

Proof. First, we can show that F (Tn) = F (T ) for all n ∈ N. Then
⋂∞

n=1 F (Tn) =
F (T ) for all n ∈ N and Tn is a hemi-relatively nonexpansive mapping. Indeed, for
u ∈ F (Tn) and x ∈ C, we obtain that

φ(u, Tnx) = φ(u, J−1
(
βnJx + (1− βn)JTx

)
)

= ‖u‖2 − 2〈u, βnJx + (1− βn)JTx〉+ ‖βnJx + (1− βn)JTx‖2

≤ ‖u‖2 − 2βn〈u, Jx〉 − 2(1− βn)〈u, JTx〉+ βn‖x‖2 + (1− βn)‖Tx‖2

= βnφ(u, x) + (1− βn)φ(u, Tx)

≤ βnφ(u, x) + (1− βn)φ(u, x) = φ(u, x)

for all x ∈ C. Hence Tn is hemi-relatively nonexpansive.
Next, we show that limn→∞ ‖xn − Txn‖ = 0 whenever {xn} is a bounded

sequence in C such that limn→∞ ‖xn − Tnxn‖ = 0. To show this, suppose that
{xn} a bounded sequence in C such that limn→∞ ‖xn − Tnxn‖ = 0. Since {xn}
is bounded, we obtain that {Jxn} and {JTxn} are also bounded. Put r =
max{supn ‖xn‖, supn ‖Jxn‖, supn ‖JTxn‖}. Then there exists r > 0 such that
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{xn}, {Jxn}, {JTyn} ⊂ Br(0). Therefore Lemma 2.6 is applicable and we observe
that for u ∈ ⋂∞

n=1 F (Tn),

φ(u, Tnxn) = φ(u, J−1
(
βnJxn + (1− βn)JTxn

)
)

= ‖u‖2 − 2〈u, βnJxn + (1− βn)JTxn〉+ ‖βnJxn + (1− βn)JTxn‖2

≤ ‖u‖2 − 2βn〈u, Jxn〉 − 2(1− βn)〈u, JTxn〉+ βn‖xn‖2 + (1− βn)‖Txn‖2

− βn(1− βn)g(‖Jxn − JTxn‖)
= βnφ(u, xn) + (1− βn)φ(u, Txn)− βn(1− βn)g(‖Jxn − JTxn‖)
≤ βnφ(u, xn) + (1− βn)φ(u, xn)− βn(1− βn)g(‖Jxn − JTxn‖)
= φ(u, xn)− βn(1− βn)g(‖Jxn − JTxn‖).

That is, we have

(3.1) βn(1− βn)g(‖Jxn − JTxn‖) ≤ φ(u, xn)− φ(u, Tnxn).

Let {‖xnk
− Txnk

‖} be any subsequence of {‖xn − Txn‖}. Since {xnk
} is bounded,

there exists a subsequence {xn′j} of {xnk
} such that

lim
j→∞

φ(u, xn′j ) = lim sup
k→∞

φ(u, xnk
) = a,

where u ∈ ⋂∞
n=1 F (Tn). Using properties (2) and (3) of φ, we have

φ(u, xn′j ) = φ(u, Tn′jxn′j ) + φ(Tn′jxn′j , xn′j ) + 2〈u− Tn′jxn′j , JTn′jxn′j − Jxn′j 〉
≤ φ(u, Tn′jxn′j ) + ‖Tn′jxn′j‖‖JTn′jxn′j − Jxn′j‖+ ‖Tn′jxn′j − xn′j‖‖xn′j‖
+ 2‖u− Tn′jxn′j‖‖JTn′jxn′j − Jxn′j‖.

Since limn→∞ ‖xn − Tnxn‖ = 0 and E is uniformly smooth, we have

lim
n→∞ ‖Jxn − JTnxn‖ = 0.

So, it follows that

a = lim inf
j→∞

φ(u, xn′j ) ≤ lim inf
j→∞

φ(u, Tn′jxn′j ).

Since φ(u, Tnxn) ≤ φ(u, xn), we have

lim sup
j→∞

φ(u, Tn′jxn′j ) ≤ lim sup
j→∞

φ(u, xn′j ) = a.

Hence
lim

j→∞
φ(u, xn′j ) = lim

j→∞
φ(u, Tn′jxn′j ) = a.

Since lim infn→∞ βn(1− βn) > 0, it follows from (3.1) that

lim
n→∞ g(‖Jxnj − JTxnj‖) = 0.

By properties of the function g, we have limj→∞ ‖Jxn′j − JTxn′j‖ = 0.
Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we obtain
limj→∞ ‖xn′j − Txn′j‖ = 0 and then limn→∞ ‖xn − Txn‖ = 0. ¤
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Lemma 3.2. Let C be a closed convex subset of a uniformly smooth and uniformly
convex Banach space E and let S and T be hemi-relatively nonexpansive mappings
from C into E with F (S)∩F (T ) 6= ∅. Let {βn} ⊂ [0, 1] satisfy lim inf

n→∞ βn(1−βn) > 0.
For n ∈ N, define a mapping Tn from C into E by

Tnx = J−1
(
βnJSx + (1− βn)JTx

)

for all x ∈ C, where J is the duality mapping on E. Then, {Tn} is a countable
family of hemi-relatively nonexpansive mappings satisfying the NST-condition with
T = {S, T}.
Proof. First, we can easily show that

⋂∞
n=1 F (Tn) = F (T ) for all n ∈ N and Tn is a

hemi-relatively nonexpansive mapping. Indeed, note that F (T ) = F (S) ∩ F (T ) ⊂⋂∞
n=1 F (Tn) for all n ∈ N. For u ∈ F (S) ∩ F (T ) and x ∈ C, we obtain that

φ(u, Tnx) = φ(u, J−1
(
βnJSx + (1− βn)JTx

)
)

= ‖u‖2 − 2〈u, βnJSx + (1− βn)JTx〉+ ‖βnJSx + (1− βn)JTx‖2

≤ ‖u‖2 − 2βn〈u, JSx〉 − 2(1− βn)〈u, JTx〉+ βn‖Sx‖2 + (1− βn)‖Tx‖2

= βnφ(u, Sx) + (1− βn)φ(u, Tx)

≤ βnφ(u, x) + (1− βn)φ(u, x)

= φ(u, x).

Then, for all v ∈ F (Tn), we have

φ(u, v) = φ(u, Tnv) = φ(u, J−1
(
βnJSv + (1− βn)JTv

)
)

= ‖u‖2 − 2〈u, βnJSv + (1− βn)JTv〉+ ‖βnJSv + (1− βn)JTv‖2

≤ ‖u‖2 − 2βn〈u, JSx〉 − 2(1− βn)〈u, JTv〉+ βn‖Sv‖2 + (1− βn)‖Tv‖2

= βnφ(u, Sv) + (1− βn)φ(u, Tv)

≤ βnφ(u, v) + (1− βn)φ(u, v) = φ(u, v).

That is, we have

φ(u, J−1
(
βnJSv + (1− βn)JTv

)
) = βnφ(u, Sv) + (1− βn)φ(u, Tv) = φ(u, v).

By Lemma 2.7, we have v = Sv = Tv. So F (Tn) ⊂ F (S)∩F (T ) for all n ∈ N. This
implies that

⋂∞
n=1 F (Tn) = F (T ) for all n ∈ N.

Next, we show that limn→∞ ‖xn − Txn‖ = limn→∞ ‖xn − Sxn‖ = 0 if {xn} is
a bounded sequence in C such that limn→∞ ‖xn − Tnxn‖ = 0. By Lemma 2.6, we
have that for u ∈ ⋂∞

n=1 F (Tn),

φ(u, Tnxn) = φ(u, J−1
(
βnJSxn + (1− βn)JTxn

)
)

= ‖u‖2 − 2〈u, βnJSxn + (1− βn)JTxn〉+ ‖βnJSxn + (1− βn)JTxn‖2

≤ ‖u‖2 − 2βn〈u, JSxn〉 − 2(1− βn)〈u, JTxn〉+ βn‖Sxn‖2

+ (1− βn)‖Txn‖2 − βn(1− βn)g(‖JSxn − JTxn‖)
= βnφ(u, Sxn) + (1− βn)φ(u, Txn)− βn(1− βn)g(‖JSxn − JTxn‖)
≤ βnφ(u, xn) + (1− βn)φ(u, xn)− βn(1− βn)g(‖JSxn − JTxn‖)
= φ(u, xn)− βn(1− βn)g(‖JSxn − JTxn‖),
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where g : [0,∞) → [0,∞) is a continuous strictly increasing and convex function
with g(0) = 0. That is

(3.2) βn(1− βn)g(‖JSxn − JTxn‖) ≤ φ(u, xn)− φ(u, Tnxn).

Let {‖Sxnk
−Txnk

‖} be any subsequence of {‖Sxn−Txn‖}. Since {xnk
} is bounded,

there exists a subsequence {xn′j} of {xnk
} such that

lim
j→∞

φ(u, xn′j ) = lim sup
k→∞

φ(u, xnk
) = a,

where u ∈ ⋂∞
n=1 F (Tn). Using properties (2) and (3) of φ, we have

φ(u, xn′j ) = φ(u, Tn′jxn′j ) + φ(Tn′jxn′j , xn′j ) + 2〈u− Tn′jxn′j , JTn′jxn′j − Jxn′j 〉
≤ φ(u′, Tn′jxn′j ) + ‖Tn′jxn′j‖‖JTn′jxn′j − Jxn′j‖+ ‖Tn′jxn′j − xn′j‖‖xn′j‖
+ 2‖u− Tn′jxn′j‖‖JTn′jxn′j − Jxn′j‖.

Since limn→∞ ‖xn − Tnxn‖ = 0 and E is uniformly smooth, we have

lim
n→∞ ‖Jxn − JTnxn‖ = 0.

So, it follows that

a = lim inf
j→∞

φ(u, xn′j ) ≤ lim inf
j→∞

φ(u, Tn′jxn′j ).

Since φ(u, Tnxn) ≤ φ(u, xn), we have

lim sup
j→∞

φ(u, Tn′jxn′j ) ≤ lim sup
j→∞

φ(u, xn′j ) = a.

It follows that

lim
j→∞

φ(u, xn′j ) = lim
j→∞

φ(u, Tn′jxn′j ) = a.

Since lim infn→∞ βn(1− βn) > 0, it follows from (3.2) that

lim
n→∞ g(‖JSxn′j − JTxn′j‖) = 0.

By properties of the function g, we have limj→∞ ‖JSxn′j − JTxn′j‖ = 0.
Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we obtain
limj→∞ ‖Sxn′j − Txn′j‖ = 0 and then limn→∞ ‖Sxn − Txn‖ = 0. Since

‖Jxn − JSxn‖ ≤ ‖Jxn − JTnxn‖+ ‖JTnxn − JSxn‖
= ‖Jxn − JTnxn‖+ (1− βn)‖JSxn − JTxn‖,

we obtain limn→∞ ‖Jxn − JSxn‖ = 0. Hence, we have limn→∞ ‖Jxn − JTxn‖ = 0.
Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we obtain
limn→∞ ‖xn − Sxn‖ = 0 and hence, limn→∞ ‖xn − Txn‖ = 0. ¤
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4. Strong convergence theorem

In this section, we prove a strong convergence theorem for a family of hemi-
relatively nonexpansive mappings in a Banach space by using the monotone hybrid
method. Recall that an operator T in a Banach space is called closed, if xn → x
and Txn → y, then Tx = y.

Theorem 4.1. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed convex subset of E. Let {Tn} be a countable family of
hemi-relatively nonexpansive mappings from C into E and let T be a family of closed
hemi-relatively nonexpansive mappings from C into E such that

⋂∞
n=1 F (Tn) =

F (T ) 6= ∅. Suppose that {Tn} satisfies the NST-condition with T . Let {xn} be a
sequence generated by





x1 = x ∈ C, C0 = Q0 = C,

un = J−1
(
αnJxn + (1− αn)JTnxn

)
,

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

for all n ∈ N, where J is the duality mapping on E and {αn} is a sequence in [0, 1]
satisfying lim inf

n→∞ (1 − αn) > 0. Then, {xn} converges strongly to ΠF (T )x, where

ΠF (T ) is the generalized projection from C onto F (T ).

Proof. We first show that Cn and Qn are closed and convex for each n ∈ N. From
the definitions of Cn and Qn, it is obvious that Cn is closed and Qn is closed and
convex for each n ∈ N. Next, we prove that Cn is convex. This follows since
φ(z, un) ≤ φ(z, xn) is equivalent to

0 ≤ ‖xn‖2 − ‖un‖2 − 2〈z, Jxn − Jun〉,
which is affine in z, and hence Cn is convex. So, Cn ∩ Qn is a closed and convex
subset of E for all n ∈ N. It is clear that F (T ) ⊂ C = C0 ∩Q0. Next, we show that
F (T ) ⊂ Cn ∩Qn for all n ∈ N. Suppose that F (T ) ⊂ Ck−1 ∩Qk−1 for k ∈ N. Let
u ∈ F (T ). Since Tn are hemi-relatively nonexpansive mappings for all n ∈ N, we
have

φ(u, uk) = φ(u, J−1
(
αkJxk + (1− αk)JTkxk

)
)

= ‖u‖2 − 2〈u, αkJxk + (1− αn)JTkxk〉+ ‖αkJxk + (1− αn)JTkxk‖2

≤ ‖u‖2 − 2αn〈u, Jxk〉 − 2(1− αk)〈u, JTkxk〉+ αk‖xk‖2 + (1− αk)‖Tkxk‖2

= αkφ(u, xk) + (1− αk)φ(u, Tkxk)

≤ αkφ(u, xk) + (1− αk)φ(u, xk)

= φ(u, xk).

This implies that F (T ) ⊂ Ck. Since xk is the projection of x onto Ck−1 ∩Qk−1, by
Lemma 2.3 we have

〈xk − z, Jx− Jxk〉 ≥ 0, ∀z ∈ Ck−1 ∩Qk−1.
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Since F (T ) ⊂ Ck−1 ∩Qk−1, we have

〈xk − z, Jx− Jxk〉 ≥ 0, ∀z ∈ F (T ).

This together with definition of Qk implies that F (T ) ⊂ Qk and hence F (T ) ⊂
Ck ∩Qk. By induction, we obtain F (T ) ⊂ Cn ∩Qn for all n ∈ N. This implies that
{xn} is well defined. From xn = ΠQnx and xn+1 = ΠCn∩Qnx ∈ Cn ∩Qn ⊂ Qn, we
have

φ(xn, x) ≤ φ(xn+1, x), ∀n ≥ 0.

Therefore, {φ(xn, x)} is nondecreasing. It follows from Lemma 2.4 and xn = ΠQnx
that

φ(xn, x) = φ(ΠQnx, x) ≤ φ(u, x)− φ(u, ΠQnx) ≤ φ(u, x)

for all u ∈ F (T ) ⊂ Qn. Therefore, {φ(xn, x)} is bounded. Moreover, by the
definition of φ, we know that {xn} is bounded. So, the limit of {φ(xn, x)} exists.
For any positive integer k, we have from xn = ΠQnx that

φ(xn+k, xn) = φ(xn+k,ΠQnx) ≤ φ(xn+k, x)− φ(ΠQnx, x) = φ(xn+k, x)− φ(xn, x).

This implies that lim
n→∞φ(xn+k, xn) = 0. Using Lemma 2.5, we have that, for m,n ∈

N with m > n,

g(‖xm − xn‖) ≤ φ(xm, xn) ≤ φ(xm, x)− φ(xn, x),

where g : [0,∞) → [0,∞) is a continuous, strictly increasing and convex function
with g(0) = 0. Then the properties of the function g yield that {xn} is a Cauchy
sequence in C, so there exists w ∈ C such that xn → w. In view of xn+1 =
ΠCn∩Qnx ∈ Cn and the definition of Cn, we also have

φ(xn+1, un) ≤ φ(xn+1, xn).

It follows that lim
n→∞φ(xn+1, un) = lim

n→∞φ(xn+1, xn) = 0. Since E is uniformly
convex and smooth, we have from Lemma 2.1 that

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞ ‖xn+1 − un‖ = 0.

So, we have lim
n→∞ ‖xn − un‖ = 0. Since J is uniformly norm-to-norm continuous on

bounded sets, we have

(4.1) lim
n→∞ ‖Jxn+1 − Jxn‖ = lim

n→∞ ‖Jxn+1 − Jun‖ = lim
n→∞ ‖Jxn − Jun‖ = 0.

On the other hand, we have

‖Jxn+1 − Jun‖ = ‖Jxn+1 − αnJxn − (1− αn)JTnxn‖
= ‖αn(Jxn+1 − Jxn) + (1− αn)(Jxn+1 − JTnxn)‖
= ‖(1− αn)(Jxn+1 − JTnxn)− αn(Jxn − Jxn+1)‖
≥ (1− αn)‖Jxn+1 − JTnxn‖ − αn‖Jxn − Jxn+1‖.

This means that

‖Jxn+1 − JTnxn‖ ≤ 1
1− αn

(‖Jxn+1 − Jun‖+ αn‖Jxn − Jxn+1‖
)
.
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From (4.1) and lim inf
n→∞ (1− αn) > 0, we obtain that lim

n→∞ ‖Jxn+1 − JTnxn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖xn+1 − Tnxn‖ = 0.

From
‖xn − Tnxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tnxn‖,

we have
lim

n→∞ ‖xn − Tnxn‖ = 0.

Since {Tn} satisfies the NST-condition with T , we have that

lim
n→∞ ‖xn − Txn‖ = 0

for all T ∈ T . Since xn → w and T is closed, w is a fixed point of T . From Lemma
2.4, we have

φ(w, ΠF (T )x) + φ(ΠF (T )x, x) ≤ φ(w, x).

Since xn+1 = ΠCn∩Qnx and w ∈ F (T ) ⊂ Cn ∩Qn, we get from Lemma 2.4 that

φ(ΠF (T )x, xn+1) + φ(xn+1, x) ≤ φ(ΠF (T )x, x).

By the definition of φ, it follows that φ(w, x) ≤ φ(ΠF (T )x, x) and φ(w, x) ≥
φ(ΠF (T )x, x), hence φ(w, x) = φ(ΠF (T )x, x). Therefore, it follows from the unique-
ness of the ΠF (T )x that w = ΠF (T )x. This completes the proof. ¤

5. Deduced results

In this section, using Theorem 4.1, we obtain some new strong convergence
theorems for hemi-relatively nonexpansive mappings and a family of hemi-relatively
nonexpansive mappings in a Banach space.

Theorem 5.1 (Su, Wang and Shang [25, Theorem 3.1]). Let E be a uniformly
convex and uniformly smooth Banach space and let C be a nonempty closed convex
subset of E. Let T be a closed hemi-relatively nonexpansive mapping of C into E
such that F (T ) 6= ∅. Let {xn} be a sequence generated by





x1 = x ∈ C, C0 = Q0 = C,

un = J−1
(
αnJxn + (1− αn)JTxn

)
,

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

for all n ∈ N, where J is the duality mapping on E and {αn} is a sequence in [0, 1]
satisfying lim inf

n→∞ (1 − αn) > 0. Then, {xn} converges strongly to ΠF (T )x, where

ΠF (T ) is the generalized projection from C onto F (T ).

Proof. Define Tn = T for all n ∈ N. It obvious that {Tn} satisfies the NST-condition
with T . So, we obtain the desired result by using Theorem 4.1. ¤
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Theorem 5.2. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed convex subset of E. Let T be a closed hemi-relatively
nonexpansive mapping of C into E such that F (T ) 6= ∅. Let {xn} be a sequence
generated by





x1 = x ∈ C, C0 = Q0 = C,

un = J−1
(
αnJxn + (1− αn)(βnJxn + (1− βn)JTxn)

)
,

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

for all n ∈ N, where J is the duality mapping on E and {αn} and {βn} are sequences
in [0, 1] satisfying lim inf

n→∞ (1 − αn) > 0 and lim inf
n→∞ βn(1 − βn) > 0. Then, {xn}

converges strongly to ΠF (T )x, where ΠF (T ) is the generalized projection from C
onto F (T ).

Proof. Define Tnx = J−1
(
αnJx + (1 − αn)JTx

)
for all n ∈ N and x ∈ C. By

Lemma 3.1, we know that {Tn} satisfies the NST-condition with T . So, we obtain
the desired result by using Theorem 4.1. ¤

Theorem 5.3. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty closed convex subset of E. Let S and T be closed hemi-
relatively nonexpansive mappings of C into E such that F (S)∩F (T ) 6= ∅. Let {xn}
be a sequence generated by





x1 = x ∈ C, C0 = Q0 = C,

un = J−1
(
αnJxn + (1− αn)(βnJSxn + (1− βn)JTxn)

)
,

Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, un) ≤ φ(z, xn)},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

for all n ∈ N, where J is the duality mapping on E and {αn} and {βn} are sequences
in [0, 1] satisfying lim inf

n→∞ (1 − αn) > 0 and lim inf
n→∞ βn(1 − βn) > 0. Then, {xn}

converges strongly to ΠF (S)∩F (T )x, where ΠF (S)∩F (T ) is the generalized projection
from C onto F (S) ∩ F (T ).

Proof. Define Tnx = J−1
(
αnJSx + (1 − αn)JTx

)
for all n ∈ N and x ∈ C. By

Lemma 3.2, we know that {Tn} satisfies the NST-condition with T = {S, T}. So,
we obtain the desired result by using Theorem 4.1. ¤

6. Applications

In this section, we prove strong convergence theorems for families of nonex-
pansive mappings in Hilbert spaces. In a Hilbert space, we know that φ(x, y) =
‖x − y‖2 for all x, y ∈ H and every nonexpansive mapping with a fixed point is
hemi-relatively nonexpansive and closed. The following two lemmas are directly
obtained by Lemma 3.1 and Lemma 3.2, respectively.
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Lemma 6.1 ([28, Lemma 2.1]). Let C be a closed convex subset of a Hilbert space
H and let T be a nonexpansive mapping from C into itself with F (T ) 6= ∅. Let
{βn} ⊂ [0, 1] satisfy lim inf

n→∞ βn(1 − βn) > 0. For n ∈ N, define a mapping Tn of C

into itself by
Tnx = βnx + (1− βn)Tx

for all x ∈ C. Then, {Tn} is a countable family of nonexpansive mappings satisfying
the NST-condition with T .

Lemma 6.2 ([28, Lemma 2.3]). Let C be a closed convex subset of a Hilbert space H
and let S and T be nonexpansive mappings from C into itself with F (S)∩F (T ) 6= ∅.
Let {βn} ⊂ [0, 1] satisfy lim inf

n→∞ βn(1− βn) > 0. For n ∈ N, define a mapping Tn of
C into itself by

Tnx = βnSx + (1− βn)Tx

for all x ∈ C. Then, {Tn} is a countable family of nonexpansive mappings satisfying
the NST-condition with {S, T}.
Theorem 6.3. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let {Tn} and T be families of nonexpansive mappings of C into itself
such that

⋂∞
n=1 F (Tn) = F (T ) 6= ∅. Suppose that {Tn} satisfies the NST-condition

with T . Let {xn} be a sequence generated by



x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1− αn)Tnxn,

Cn = {z ∈ Cn−1 ∩Qn−1 : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

for all n ∈ N, where {αn} ⊂ [0, 1] satisfies lim inf
n→∞ (1−αn) > 0. Then, {xn} converges

strongly to ΠF (T )x, where ΠF (T ) is the metric projection from C onto F (T ).

Proof. In a Hilbert space, we know that φ(x, y) = ‖x − y‖2 for all x, y ∈ H. We
also know that every nonexpansive mapping with a fixed point is hemi-relatively
nonexpansive and closed. By using Theorem 4.1, we are easily able to obtain the
desired conclusion. ¤
Theorem 6.4 (Su and Qin [19]). Let H be a Hilbert space and let C be a nonempty
closed convex subset of H. Let T be a nonexpansive mapping of C into itself such
that F (T ) 6= ∅. Let {xn} be a sequence generated by




x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1− αn)Txn,

Cn = {z ∈ Cn−1 ∩Qn−1 : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

for all n ∈ N, where {αn} ⊂ [0, 1] satisfies lim inf
n→∞ (1−αn) > 0. Then, {xn} converges

strongly to ΠF (T )x, where ΠF (T ) is the metric projection from C onto F (T ).
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Proof. Define Tn = T for all n ∈ N. It obvious that {Tn} satisfies the NST-condition
with T . So, we obtain the desired result by using Theorem 6.3. ¤

Theorem 6.5. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let T be a nonexpansive mapping of C into itself such that F (T ) 6= ∅.
Let {xn} be a sequence generated by





x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1− αn)(βnxn + (1− βn)Txn),
Cn = {z ∈ Cn−1 ∩Qn−1 : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

for all n ∈ N, where {αn} and {βn} are sequences in [0, 1] satisfying lim inf
n→∞ (1−αn) >

0 and lim inf
n→∞ βn(1−βn) > 0. Then, {xn} converges strongly to ΠF (T )x, where ΠF (T )

is the metric projection from C onto F (T ).

Proof. Define Tnx = αnx + (1 − αn)Tx for all n ∈ N and x ∈ C. By Lemma 6.1,
we know that {Tn} satisfies the NST-condition with T . So, we obtain the desired
result by using Theorem 6.3. ¤

Theorem 6.6. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let S and T be nonexpansive mappings of C into itself such that
F (S) ∩ F (T ) 6= ∅. Let {xn} be a sequence generated by





x1 = x ∈ C, C0 = Q0 = C,

un = αnxn + (1− αn)(βnSxn + (1− βn)Txn),
Cn = {z ∈ Cn−1 ∩Qn−1 : ‖z − un‖ ≤ ‖z − xn‖},
Qn = {z ∈ Cn−1 ∩Qn−1 : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx

for all n ∈ N, where {αn} and {βn} are sequences in [0, 1] satisfying lim inf
n→∞ (1−αn) >

0 and lim inf
n→∞ βn(1− βn) > 0. Then, {xn} converges strongly to ΠF (S)∩F (T )x, where

ΠF (S)∩F (T ) is the metric projection from C onto F (S) ∩ F (T ).

Proof. Define Tnx = αnSx + (1− αn)Tx for all n ∈ N and x ∈ C. By Lemma 6.2,
we know that {Tn} satisfies the NST-condition with T = {S, T}. So, we obtain the
desired result by using Theorem 6.3. ¤
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