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A STRONG CONVERGENCE THEOREM FOR A
PROXIMAL-TYPE ALGORITHM IN REFLEXIVE BANACH

SPACES

SIMEON REICH AND SHOHAM SABACH

Abstract. We establish a strong convergence theorem for a proximal-type al-
gorithm which approximates (common) zeroes of maximal monotone operators
in reflexive Banach spaces. This algorithm employs a well-chosen convex func-
tion. The behavior of the algorithm in the presence of computational errors and
in the case of zero free operators is also analyzed. Finally, we mention several
corollaries, variations and applications.

1. Introduction

In this paper X denotes a real reflexive Banach space with norm ‖·‖ and X∗ stands
for the (topological) dual of X endowed with the induced norm ‖·‖∗. We denote
the value of the functional ξ ∈ X∗ at x ∈ X by 〈ξ, x〉. An operator A : X → 2X∗

is
said to be monotone if for any x, y ∈ dom A, we have

ξ ∈ Ax and η ∈ Ay =⇒ 〈ξ − η, x− y〉 ≥ 0.

(Recall that the set dom A = {x ∈ X : Ax 6= ∅} is called the effective domain of
such an operator A.) A monotone operator A is said to be maximal if graph A, the
graph of A, is not a proper subset of the graph of any other monotone operator.
In this paper f : X → (−∞,+∞] is always a proper, lower semicontinuous and
convex function, and f∗ : X∗ → (−∞,+∞] is the Fenchel conjugate of f . The set
of nonnegative integers will be denoted by N.

The problem of finding an element x ∈ X such that 0∗ ∈ Ax is very important
in Optimization Theory and related fields. For example, if A is the subdifferential
∂f of f , then A is a maximal monotone operator and the equation 0∗ ∈ ∂f (x) is
equivalent to the problem of minimizing f over X. One of the methods for solving
this problem in Hilbert space is the well-known proximal point algorithm. Let H
be a Hilbert space and let I denote the identity operator on H. The proximal point
algorithm generates, for any starting point x0 = x ∈ H, a sequence {xn}n∈N in H
by the rule

(1.1) xn+1 = (I + λnA)−1 xn, n = 0, 1, 2, . . . ,
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where {λn}n∈N is a given sequence of positive real numbers. Note that (1.1) is
equivalent to

0 ∈ Axn+1 +
1
λn

(xn+1 − xn) , n = 0, 1, 2, . . . .

This algorithm was first introduced by Martinet [26] and further developed by Rock-
afellar [34], who proves that the sequence generated by (1.1) converges weakly to
an element of A−1 (0) when A−1 (0) is nonempty and lim infn→+∞ λn > 0. Further-
more, Rockafellar [34] asks if the sequence generated by (1.1) converges strongly.
This question was answered in the negative by Güler [22], who presented an example
of a subdifferential for which the sequence generated by (1.1) converges weakly but
not strongly; see [6] for a more recent and simpler example. More recently, Solodov
and Svaiter [37] have modified the proximal point algorithm in order to generate a
strongly convergent sequence. They introduce the following algorithm:

(1.2)



x0 ∈ H,

0 = vn + 1
λn

(yn − xn) , vn ∈ Ayn,

Hn = {z ∈ H : 〈vn, z − yn〉 ≤ 0} ,

Wn = {z ∈ H : 〈x0 − xn, z − xn〉 ≤ 0} ,

xn+1 = PHn∩Wn(x0), n = 0, 1, 2, . . . .

Here, for each x ∈ H and each nonempty, closed and convex subset C of H, the
mapping PC is defined by ‖x− PCx‖ = inf {‖x− z‖ : z ∈ C}. This mapping is
called the metric projection of H onto C. They prove that if A−1 (0) is nonempty
and lim infn→+∞ λn > 0, then the sequence generated by (1.2) converges strongly
to PA−1(0). Kamimura and Takahashi [25] generalize this result to those Banach
spaces X which are both uniformly convex and uniformly smooth. They introduce
the following algorithm [21]:

(1.3)



x0 ∈ X,

0∗ = vn + 1
λn

(Jyn − Jxn) , vn ∈ Ayn,

Hn = {z ∈ X : 〈vn, z − yn〉 ≤ 0} ,

Wn = {z ∈ X : 〈Jx0 − Jxn, z − xn〉 ≤ 0} ,

xn+1 = QHn∩Wn(x0), n = 0, 1, 2, . . . ,

where J is the normalized duality mapping of the space X. Here, for each nonempty,
closed and convex subset C of X, QC is a certain generalization of the metric
projection PC in H. They prove that if A−1 (0∗) is nonempty and lim infn→+∞ λn >
0, then the sequence generated by (1.3) converges strongly to QA−1(0∗). Other
developments regarding the proximal point algorithm can be found, for example, in
[4, 6, 9, 10, 14, 16, 18, 20, 23, 24, 27, 29, 30, 31, 35, 38].

In the present paper we study an extension of algorithms (1.2) and (1.3) to all
reflexive Banach spaces using a well-chosen convex function f . More precisely, we
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consider the following algorithm introduced by Gárciga Otero and Svaiter [21]:

(1.4)



x0 ∈ X,

0∗ = ξn + 1
λn

(∇f(yn)−∇f(xn)) , ξn ∈ Ayn,

Hn = {z ∈ X : 〈ξn, z − yn〉 ≤ 0} ,

Wn = {z ∈ X : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0} ,

xn+1 = projfHn∩Wn
(x0), n = 0, 1, 2, . . . ,

where {λn}n∈N is a given sequence of positive real numbers, ∇f is the gradient of
f and projfC is the Bregman projection (see Section 2.4) of X onto C induced by f .
Algorithm (1.4) is more flexible than (1.3) because it leaves us the freedom of fitting
the function f to the nature of the operator A (especially when A is the subdiffer-
ential of some function) and of the space X in ways which make the application of
(1.4) simpler than that of (1.3). It should be observed that if X is a Hilbert space
H, then using in (1.4) the function f (x) = (1/2) ‖x‖2, one obtains exactly algo-
rithm (1.2). If X is not a Hilbert space, but still a uniformly convex and uniformly
smooth Banach space X, then setting f (x) = (1/2) ‖x‖2 in (1.4), one obtains ex-
actly (1.3). We also note that the choice f (x) = (1/2) ‖x‖2 in some Banach spaces
may make the computations in algorithm (1.3) quite difficult. These computations
can be simplified by an appropriate choice of f . For instance, if X = `p or X = Lp

with p ∈ (1,+∞), and f (x) = (1/p) ‖x‖p in (1.4), then the computations become
simpler than those required in (1.3), which corresponds to f (x) = (1/2) ‖x‖2. We
propose an extension of algorithm (1.4) (see algorithm (3.1)) which approximates
a common zero of several maximal monotone operators and which allows computa-
tional errors. Our main result (Theorem 3.1) is formulated and proved in Section
3. The next section is devoted to several preliminary definitions and results. The
behavior of the algorithm when the operator A is zero free is analyzed in Section 4
(see Theorem 4.2). The fifth section contains three corollaries of Theorems 3.1 and
4.2. In the sixth and last section we present an application of Theorems 3.1 and
4.2.

2. Preliminaries

2.1. Some facts about Legendre functions. Legendre functions mapping a gen-
eral Banach space X into (−∞,+∞] are defined in [3]. According to [3, Theorems
5.4 and 5.6], since X reflexive, the function f is Legendre if and only if it satisfies
the following two conditions:

(L1) The interior of the domain of f , int dom f , is nonempty, f is Gâteaux
differentiable (see below) on int dom f and

dom∇f = int dom f ;

(L2) The interior of the domain of f∗, int dom f∗, is nonempty, f∗ is Gâteaux
differentiable on int dom f∗ and

dom∇f∗ = int dom f∗.
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Since X is reflexive, we always have (∂f)−1 = ∂f∗ (see [7, p. 83]). This fact,
when combined with conditions (L1) and (L2), implies the following equalities:

∇f = (∇f∗)−1,

ran∇f = dom ∇f∗ = int dom f∗

and
ran∇f∗ = dom ∇f = int dom f.

Also, conditions (L1) and (L2), in conjunction with [3, Theorem 5.4], imply that the
functions f and f∗ are strictly convex on the interior of their respective domains.

Several interesting examples of Legendre functions are presented in [2] and [3].
Among them are the functions 1

s ‖·‖
s with s ∈ (1,∞), where the Banach space X

is smooth and strictly convex and, in particular, a Hilbert space.
The function f is called cofinite if dom f∗ = X∗.

2.2. A property of gradients. For any convex function f : X → (−∞,+∞] we
denote by dom f the set {x ∈ X : f (x) < +∞}. For any x ∈ dom f and y ∈ X, we
denote by f◦(x, y) the right-hand derivative of f at x in the direction y, that is,

f◦(x, y) := lim
t↘0

f(x + ty)− f(x)
t

.

The function f is said to be Gâteaux differentiable at x if limt→0 (f(x + ty)− f(x)) /t
exists for any y. The function f is said to be Fréchet differentiable at x if this limit
is attained uniformly in ‖y‖ = 1. Finally, f is said to be uniformly Fréchet differen-
tiable on a subset E of X if the limit is attained uniformly for x ∈ E and ‖y‖ = 1.
We will need the following result.

Proposition 2.1. If f : X → R is uniformly Fréchet differentiable and bounded on
bounded subsets of X, then ∇f is uniformly continuous on bounded subsets of X
from the strong topology of X to the strong topology of X∗.

Proof. If this result were not true, there would be bounded sequences
{xn}n∈N and {yn}n∈N, and a positive number ε such that ‖xn − yn‖ → 0 and
〈∇f (xn)−∇f (yn) , wn〉 ≥ 2ε, where {wn}n∈N is a sequence in X with ‖wn‖ = 1
for each n ∈ N. Since f is uniformly Fréchet differentiable, there is a positive
number δ such that

f (yn + twn)− f (yn)− t 〈∇f (yn) , wn〉 ≤ εt

for all 0 < t < δ and n ∈ N. We also have

〈∇f (xn) , (yn + twn)− xn〉 ≤ f (yn + twn)− f (xn) , n ∈ N.

In other words,

t 〈∇f (xn) , wn〉 ≤ f (yn + twn)− f (yn) + 〈∇f (xn) , xn − yn〉+ f (yn)− f (xn) .

Hence

2εt ≤ t 〈∇f (xn)−∇f (yn) , wn〉 ≤ [f (yn + twn)− f (yn)− t 〈∇f (yn) , wn〉]
+ 〈∇f (xn) , xn − yn〉+ f (yn)− f (xn)

≤ εt + 〈∇f (xn) , xn − yn〉+ f (yn)− f (xn) .
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Since ∇f is bounded on bounded subsets of X (see [12, Proposition 1.1.11, p. 17]),
it follows that 〈∇f (xn) , xn − yn〉 converges to zero, while f (yn)− f (xn) → 0 since
f is uniformly continuous on bounded subsets (see [1, Theorem 1.8, p. 13]). But
this would yield that 2εt ≤ εt, a contradiction. �

2.3. Some facts about totally convex functions. Let f : X → (−∞,+∞] be
convex. The function Df : dom f × int dom f → [0,+∞] defined by

Df (y, x) := f(y)− f(x)− f◦(x, y − x),

is called the Bregman distance with respect to f (cf. [17]). If f is a Gâteaux differ-
entiable function, then the Bregman distance has the following important property,
called the three point identity : for any x, y, z ∈ int dom f ,

(2.1) Df (x, y) + Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉 .
Recall that, according to [12, Section 1.2, p. 17] (see also [11]), the function f is
called totally convex at a point x ∈ int dom f if its modulus of total convexity at x,
that is, the function υf : int dom f × [0,+∞) → [0,+∞], defined by

(2.2) υf (x, t) := inf {Df (y, x) : y ∈ dom f, ‖y − x‖ = t} ,

is positive whenever t > 0. The function f is called totally convex when it is totally
convex at every point x ∈ int dom f . In addition, the function f is called totally
convex on bounded sets if υf (E, t) is positive for any nonempty bounded subset E
of X and for any t > 0, where the modulus of total convexity of the function f on
the set E is the function υf : int dom f × [0,+∞) → [0,+∞] defined by

υf (E, t) := inf {υf (x, t) : x ∈ E ∩ dom f} .

Examples of totally convex functions can be found, for example, in [12, 15]. The
following proposition summarizes some properties of the modulus of total convexity.

Proposition 2.2 (cf. [12, Propostion 1.2.2, p. 18]). Let f be a proper, convex and
lower semicontinuous function. If x ∈ int dom f , then

(i) The domain of υf (x, ·) is an interval of the form [0, τf (x)) or [0, τf (x)] with
τf (x) ∈ (0,+∞].

(ii) If c ∈ [1,+∞) and t ≥ 0, then υf (x, ct) ≥ cυf (x, t).
(iii) The function υf (x, ·) is superadditive, that is, for any s, t ∈ [0,+∞), we

have υf (x, s + t) ≥ υf (x, s) + υf (x, t).
(iv) The function υf (x, ·) is increasing; it is strictly increasing if and only if f

is totally convex at x.

The following proposition follows from [14, Proposition 2.3, p. 39] and [39, The-
orem 3.5.10, p. 164].

Proposition 2.3. If f is Fréchet differentiable and totally convex, then f is cofinite.

The next proposition turns out to be very useful in the proof of our main result.

Proposition 2.4 (cf. [32, Proposition 2.2, p. 3]). If x ∈ dom f , then the following
statements are equivalent:

(i) The function f is totally convex at x;
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(ii) For any sequence {yn}n∈N ⊂ dom f ,

lim
n→+∞

Df (yn, x) = 0 ⇒ lim
n→+∞

‖yn − x‖ = 0.

Recall that the function f is called sequentially consistent (see [15]) if for any
two sequences {xn}n∈N and {yn}n∈N in X such that the first one is bounded,

lim
n→+∞

Df (yn, xn) = 0 ⇒ lim
n→+∞

‖yn − xn‖ = 0.

Proposition 2.5 (cf. [12, Lemma 2.1.2, p. 67]). If dom f contains at least two
points, then the function f is totally convex on bounded sets if and only if the
function f is sequentially consistent.

2.4. The resolvent of A relative to f . Let A : X → 2X∗
be an operator and

assume that f Gâteaux differentiable. The operator

Prtf
A := (∇f + A)−1 : X∗ → 2X

is called the protoresolvent of A, or, more precisely, the protoresolvent of A relative
to f . This allows us to define the resolvent of A, or, more precisely, the resolvent of
A relative to f , introduced and studied in [5], as the operator Resf

A : X → 2X given
by Resf

A := Prtf
A ◦∇f . This operator is single-valued when A is monotone and f is

strictly convex on int dom f . If A = ∂ϕ, where ϕ is a proper, lower semicontinuous
and convex function, then we denote

Proxf
ϕ := Prtf

∂ϕ and proxf
ϕ := Resf

∂ϕ.

If C is a nonempty, closed and convex subset of X, then the indicator function ιC
of C, that is, the function

ιC (x) :=
{

0 if x ∈ C
+∞ if x /∈ C

is proper, convex and lower semicontinuous, and therefore ∂ιC exists and is a maxi-
mal monotone operator with domain C. The operator proxf

ιC is called the Bregman
projection onto C with respect to f (cf. [8]) and we denote it by projfC . Note that
if X is a Hilbert space and f(x) = 1

2 ‖x‖
2, then the Bregman projection of x onto

C, i.e., argmin {‖y − x‖ : y ∈ C}, is the metric projection PC .
Recall that the Bregman projection of x onto the nonempty, closed and convex

set K ⊂ dom f , is the necessarily unique vector projfK(x) ∈ K satisfying

Df

(
projfK(x), x

)
= inf {Df (y, x) : y ∈ K} .

Similarly to the metric projection in Hilbert spaces, Bregman projections with
respect to totally convex and differentiable functions have variational characteriza-
tions.

Proposition 2.6 (cf. [15, Corollary 4.4, p. 23]). Suppose that f is totally convex
on int dom f . Let x ∈ int dom f and let K ⊂ int dom f be a nonempty, closed and
convex set. If x̂ ∈ K, then the following conditions are equivalent:

(i) The vector x̂ is the Bregman projection of x onto K with respect to f ;
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(ii) The vector x̂ is the unique solution of the variational inequality

〈∇f (x)−∇f (z) , z − y〉 ≥ 0, ∀y ∈ K;

(iii) The vector x̂ is the unique solution of the inequality

Df (y, z) + Df (z, x) ≤ Df (y, x) , ∀y ∈ K.

3. A strong convergence theorem for a proximal-type algorithm

In this section we study the following algorithm when Z :=
⋂N

i=1 A−1
i (0∗) 6= ∅:

(3.1)



x0 ∈ X,

ηi
n = ξi

n + 1
λi

n

(
∇f(yi

n)−∇f(xn)
)
, ξi

n ∈ Aiy
i
n,

H i
n =

{
z ∈ X :

〈
ξi
n, z − yi

n

〉
≤ 0

}
,

Hn := ∩N
i=1H

i
n,

Wn = {z ∈ X : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0} ,

xn+1 = projfHn∩Wn
(x0), n = 0, 1, 2, . . . ,

where, for each i = 1, 2, . . . , N ,
{
λi

n

}
n∈N is a given sequence of positive real numbers

and
{
ηi

n

}
n∈N is the sequence of errors corresponding to the approximate solutions

of the resolvent equation. Note that if ηi
n = 0∗, then

yi
n = Resf

λi
nAi

(xn) .

Theorem 3.1. Let Ai : X → 2X∗
, i = 1, 2, . . . , N , be N maximal monotone

operators such that Z :=
⋂N

i=1 A−1
i (0∗) 6= ∅. Let f : X → R be a Legendre

function which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of X. Then, for each x0 ∈ X, there are sequences {xn}n∈N which
satisfy(3.1). If, for each i = 1, 2, . . . , N , lim infn→+∞ λi

n > 0, and the sequences of
errors

{
ηi

n

}
n∈N ⊂ X∗ satisfy limn→+∞ λi

nηi
n = 0∗ and lim supn→+∞

〈
ηi

n, yi
n

〉
≤ 0,

then each such sequence {xn}n∈N converges strongly to projfZ(x0) as n → +∞.

Proof. Note that dom∇f = X because dom f = X and f is Legendre. Hence it
follows from [5, Corollary 3.14(ii), p. 606] that dom Resf

λA = X. We begin with
the following claim.

Claim 1: There are sequences {xn}n∈N which satisfy (3.1).
As a matter of fact, we will prove that, for each x0 ∈ X, there exists a sequence

{xn}n∈N which is generated by (3.1) with ηi
n = 0∗ for all i = 1, 2, . . . , N and n ∈ N.

It is obvious that H i
n are closed and convex sets for any i = 1, 2, . . . , N . Hence

Hn is also closed and convex. It is also obvious that Wn is a closed and convex
set. Let u ∈ Z. Since dom Resf

λi
0Ai

= X, there exists
(
yi
0, ξ

i
0

)
∈ X ×X∗ such that

0∗ = ξi
0 + 1

λi
0

(
∇f(yi

0)−∇f(x0)
) (

yi
0 = Resf

λi
0Ai

(x0)
)

and ξi
0 ∈ Aiy

i
0. Since Ai is

monotone, it follows that 〈
ξi
0, y

i
0 − u

〉
≥ 0,
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which implies that u ∈ H i
0. Since this holds for any i = 1, 2, . . . , N , it follows that

u ∈ H0. It is also obvious that u ∈ W0 = X. Thus u ∈ H0 ∩ W0, and therefore
x1 = projfH0∩W0

(x0) is well defined. Now suppose that u ∈ Hn−1 ∩Wn−1 for some
n ≥ 1. Let xn = projfHn−1∩Wn−1

(x0). Again, there exists
(
yi

n, ξi
n

)
∈ X × X∗ such

that 0∗ = ξi
n+ 1

λi
n

(
∇f(yi

n)−∇f(xn)
)

and ξi
n ∈ Ayi

n. The monotonicity of Ai implies
that u ∈ H i

n. Since this holds for any i = 1, 2, . . . , N , it follows that u ∈ Hn. Now
it follows from Proposition 2.6(ii) that

〈∇f(x0)−∇f(xn), u− xn〉

=
〈
∇f(x0)−∇f

(
projfHn−1∩Wn−1

(x0)
)

, u− projfHn−1∩Wn−1
(x0)

〉
≤ 0,

which implies that u ∈ Wn. Therefore u ∈ Hn∩Wn, and hence xn+1 = projfHn∩Wn
(x0)

is well defined. Thus the sequence we constructed is indeed well defined and satisfies
(3.1), as claimed.

From now on we fix an arbitrary sequence {xn}n∈N satisfying (3.1). It is clear
from the proof of Claim 1 that Z ⊂ Hn ∩Wn for each n ∈ N.

Claim 2: The sequence {xn}n∈N is bounded.

It follows from the definition of Wn and Proposition 2.6(ii) that projfWn
(x0) = xn.

Furthermore, by Proposition 2.6(iii), for each u ∈ Z, we have

Df (xn, x0) = Df

(
projfWn

(x0), x0

)
(3.2)

≤ Df (u, x0)−Df

(
u, projfWn

(x0)
)

≤ Df (u, x0) .

Hence the sequence {Df (xn, x0)}n∈N is bounded by Df (u, x0) for any u ∈ Z.
Therefore the sequence {νf (x0, ‖xn − x0‖)}n∈N is bounded by Df (u, x0), because
from the definition of the modulus of total convexity (see (2.2)) and from (3.2) we
get that

(3.3) νf (x0, ‖xn − x0‖) ≤ Df (xn, x0) ≤ Df (u, x0).

Since the function f is totally convex, the function νf (x, ·) is strictly increasing
and positive on (0,∞) (cf. Proposition 2.2(iv)). This implies, in particular, that
νf (x, 1) > 0 for all x ∈ X. Now suppose by way of contradiction that the sequence
{xn}n∈N is not bounded. Then there exists a sequence {nk}k∈N of positive real
numbers such that

lim
k→+∞

‖xnk
‖ = +∞.

Consequently, limk→+∞ ‖xnk
− x0‖ = +∞. This shows that the sequence

{νf (x0, ‖xn − x0‖)}n∈N is not bounded. Indeed, there exists some k0 > 0 such that
‖xnk

− x0‖ > 1 for any k > k0 and then, by Proposition 2.2(ii), we see that

νf (x0, ‖xnk
− x0‖) ≥ ‖xnk

− x0‖ · νf (x0, 1) → +∞,

because, as noted above, νf (x0, 1) > 0. This contradicts (3.3). Hence the sequence
{xn}n∈N is indeed bounded, as claimed.
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Claim 3: Every weak subsequential limit of {xn}n∈N belongs to Z.

It follows from the definition of Wn and Proposition 2.6(ii) that projfWn
(x0) = xn.

Since xn+1 ∈ Wn, it follows from Proposition 2.6(iii) that

Df

(
xn+1,projfWn

(x0)
)

+ Df

(
projfWn

(x0), x0

)
≤ Df (xn+1, x0)

and hence

(3.4) Df (xn+1, xn) + Df (xn, x0) ≤ Df (xn+1, x0) .

Therefore the sequence {Df (xn, x0)}n∈N is increasing and since it is also bounded
(see Claim 2), limn→+∞Df (xn, x0) exists. Thus from (3.4) it follows that

(3.5) lim
n→+∞

Df (xn+1, xn) = 0.

Proposition 2.5 now implies that limn→+∞ (xn+1 − xn) = 0. For any i = 1, 2, . . . , N ,
it follows from the three point identity (see (2.1)) that

Df (xn+1, xn)−Df

(
yi

n, xn

)
= Df

(
xn+1, y

i
n

)
+

〈
∇f(xn)−∇f(yi

n), yi
n − xn+1

〉
≥

〈
∇f(xn)−∇f(yi

n), yi
n − xn+1

〉
=

〈
λi

n

(
ξi
n − ηi

n

)
, yi

n − xn+1

〉
= λi

n

〈
ξi
n, yi

n − xn+1

〉
− λi

n

〈
ηi

n, yi
n − xn+1

〉
≥ −λi

n

〈
ηi

n, yi
n − xn+1

〉
because xn+1 ∈ H i

n. We now have

Df

(
yi

n, xn

)
≤ Df (xn+1, xn) +

〈
λi

nηi
n, yi

n − xn+1

〉
= Df (xn+1, xn) + λi

n

〈
ηi

n, yi
n

〉
−

〈
λi

nηi
n, xn+1

〉
≤ Df (xn+1, xn) + λi

n

〈
ηi

n, yi
n

〉
+

∥∥λi
nηi

n

∥∥
∗ ‖xn+1‖ .

Hence

lim sup
n→+∞

Df

(
yi

n, xn

)
≤ lim sup

n→+∞
Df (xn+1, xn)

+ lim sup
n→+∞

λi
n

〈
ηi

n, yi
n

〉
+ lim sup

n→+∞

∥∥λi
nηi

n

∥∥
∗ ‖xn+1‖ .

Since limn→+∞ λi
nηi

n = 0∗, lim supn→+∞
〈
ηi

n, yi
n

〉
≤ 0, and limn→+∞Df (xn+1, xn) =

0 (by (3.5)), we see that lim supn→+∞Df

(
yi

n, xn

)
≤ 0. Hence limn→+∞Df

(
yi

n, xn

)
=

0. Proposition 2.5 now implies that limn→+∞
(
yi

n − xn

)
= 0. Now let

{
xnj

}
j∈N

be a weakly convergent subsequence of {xn}n∈N and denote its weak limit by

v. Then
{

yi
nj

}
j∈N

also converges weakly to v for any i = 1, 2, . . . , N . Since

lim infn→+∞ λi
n > 0 and limn→+∞ ηi

n = 0∗, it follows from Proposition 2.1 that

(3.6) ξi
n =

1
λi

n

(
∇f(xn)−∇f(yi

n)
)

+ ηi
n → 0∗,

for any i = 1, 2, . . . , N . Since ξi
n ∈ Ayi

n and Ai is monotone, it follows that〈
η − ξi

n, z − yi
n

〉
≥ 0
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for all (z, η) ∈ graph (Ai). This, in turn, implies that

〈η, z − v〉 ≥ 0

for all (z, η) ∈ graph (Ai). Therefore, using the maximal monotonicity of Ai, we
now obtain that v ∈ A−1

i (0∗) for each i = 1, 2, . . . , N . Thus v ∈ Z and this proves
Claim 3.

Claim 4: The sequence {xn}n∈N converges strongly to projfZ(x0).

Let ũ = projfZ(x0). Since xn+1 = projfHn∩Wn
(x0) and Z is contained in Hn ∩Wn,

we have Df (xn+1, x0) ≤ Df (ũ, x0). The three point identity (see (2.1)) yields

Df (xn, ũ) = Df (xn, x0) + Df (x0, ũ)− 〈∇f(ũ)−∇f(x0), xn − x0〉
≤ Df (ũ, x0) + Df (x0, ũ)− 〈∇f(ũ)−∇f(x0), xn − x0〉
= 〈∇f(ũ)−∇f(x0), ũ− x0〉 − 〈∇f(ũ)−∇f(x0), xn − x0〉
= 〈∇f(ũ)−∇f(x0), ũ− xn〉 .

Now let {xni}i∈N be a weakly convergent subsequence of {xn}n∈N and denote
its weak limit by v. We already know (see Claim 3) that v ∈ Z. It follows from
Proposition 2.6(ii) that

lim sup
i→+∞

Df (xni , ũ) ≤ 〈∇f(ũ)−∇f(x0), ũ− v〉 ≤ 0.

Hence
lim

i→+∞
Df (xni , ũ) = 0.

Proposition 2.4 now implies that xni → ũ. It follows that the whole sequence
{xn}n∈N converges strongly to ũ = projfZ(x0), as claimed. This completes the proof
of Theorem 3.1. �

4. Zero free operators

Suppose now that the operators Ai, i = 1, 2, . . . , N , have no common zero. If
{xn}n∈N is a sequence satisfying (3.1), then limn→+∞ ‖xn‖ = +∞. This is because
if {xn}n∈N were to have a bounded subsequence, then it would follow from Claim
3 in the proof of Theorem 3.1 that the operators Ai, i = 1, 2, . . . , N , did share a
common zero. In the case of a single zero free operator A, we can prove that such
a sequence always exists.

To this end, we first recall the duality mapping of the space X, i.e., the mapping
J : X → 2X∗

which is defined by

Jx =
{

ξ ∈ X∗ : 〈ξ, x〉 = ‖x‖2 = ‖ξ‖2
∗

}
.

We continue with the following lemma.

Lemma 4.1. If A : X → 2X∗
is a maximal monotone operator with a bounded

effective domain, then A−1 (0∗) 6= ∅.
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Proof. Let {εn}n∈N be a sequence of positive numbers which converges to zero. The
operator A + εnJ is surjective for any n ∈ N because A is a maximal monotone
operator (see [19, Theorem 3.11, p. 166]). Therefore, for any n ∈ N, there exists
xn ∈ dom A such that 0∗ ∈ (A + εnJ) xn. Consequently, for any n ∈ N, there are
ξn ∈ Axn and ηn ∈ Jxn such that ξn + εnηn = 0∗. Therefore we have

‖ξn‖∗ = εn ‖ηn‖∗ = εn ‖xn‖ → 0

because {xn}n∈N is a bounded sequence. Hence there exists a subsequence {xnk
}k∈N

of {xn}n∈N which converges weakly to some x0 ∈ X. Since A is monotone we have

(4.1) 〈ζ − ξnk
, v − xnk

〉 ≥ 0, k ∈ N,

for any (v, ζ) ∈ graphA. Letting k → +∞ in (4.1), we obtain 〈ζ, v − x0〉 ≥ 0 for all
(v, ζ) ∈ graphA and from the maximality of A it follows that x0 ∈ A−1 (0∗). Hence
A−1 (0∗) 6= ∅, as claimed. �

Theorem 4.2. Let A : X → 2X∗
be a maximal monotone operator. Let f : X → R

be a Legendre function which is bounded, uniformly Fréchet differentiable and to-
tally convex on bounded subsets of X. Then, for each x0 ∈ X, there are sequences
{xn}n∈N which satisfy (3.1) with N = 1. If lim infn→+∞ λn > 0, and the sequence
of errors {ηn}n∈N ⊂ X∗ satisfies limn→+∞ λnηn = 0∗ and lim supn→+∞ 〈ηn, yn〉 ≤ 0,
then either A−1 (0∗) 6= ∅ and each such sequence {xn}n∈N converges strongly
to projf

A−1(0∗)
(x0) or A−1 (0∗) = ∅ and each such sequence {xn}n∈N satisfies

limn→+∞ ‖xn‖ = +∞.

Proof. In view of Theorem 3.1, we only need to consider the case where A−1 (0∗) =
∅. First of all we prove that in this case, for each x0 ∈ X, there is a sequence
{xn}n∈N which satisfies (3.1) with ηn = 0∗ for all n ∈ N.

We prove this by induction. We first check that the initial step (n = 0) is well
defined. The problem

0∗ ∈ Ax +
1
λ0

(∇f(x)−∇f(x0))

always has a solution (y0, ξ0) because it is equivalent to the problem x =Resf
λ0A (x0)

and this problem does have a solution since dom Resf
λA = X (see Proposition 2.3

and [5, Theorem 3.13(iv), p. 606]). Now note that W0 = X. Since H0 cannot be
empty, the next iterate x1 can be generated; it is the Bregman projection of x0 onto
H0 = W0 ∩H0.

Note that whenever xn is generated, yn and ξn can further be obtained because
the proximal subproblems always have solutions. Suppose now that xn and (yn, ξn)
have already been defined for n = 0, . . . , n̂. We have to prove that xn̂+1 is also well
defined. To this end, take any z0 ∈ dom A and define

ρ = max {‖yn − z0‖ : n = 0, . . . , n̂}

and

h(x) =
{

0, ‖x− z0‖ ≤ ρ + 1
+∞, otherwise.
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Then h : X → (−∞,+∞] is a proper, convex and lower semicontinuous function,
its subdifferential ∂h is maximal monotone (see [28, Theorem 2.13, p. 124]), and

A′ = A + ∂h

is also maximal monotone (see [33]). Furthermore,

A′ (z) = A (z) for all ‖z − z0‖ < ρ + 1.

Therefore ξn ∈ A′yn for n = 0, . . . , n̂. We conclude that xn and (yn, ξn) also satisfy
the conditions of Theorem 3.1 applied to the problem 0∗ ∈ A′ (x). Since A′ has
a bounded effective domain, this problem has a solution by Lemma 4.1. Thus it
follows from Claim 1 in the proof of Theorem 3.1 that xn̂+1 is well defined. Hence
the whole sequence {xn}n∈N is well defined, as asserted.

If {xn}n∈N were to have a bounded subsequence, then it would follow from Claim 3
in the proof of Theorem 3.1 that A had a zero. Therefore if A−1 (0∗) = ∅, then
limn→+∞ ‖xn‖ = +∞, as asserted. �

Remark 4.3. In both Theorems 3.1 and 4.2 we can replace the assumptions that
lim infn→+∞ λn > 0 and f is uniformly Fréchet differentiable on bounded subsets
of X with the assumption that limn→+∞ λn = +∞. This is because in this case
{∇f(xn)−∇f(yn)}n∈N is bounded and therefore (3.6) continues to hold.

5. Consequences of the strong convergence theorem

Algorithm (1.4) is a special case of algorithm (3.1) when N = 1 and ηn = 0∗ for
all n ∈ N. Hence as a direct consequence of Theorem 3.1 we obtain the following
result (cf. [21]) .

Corollary 5.1. Let A : X → 2X∗
be a maximal monotone operator. Let f : X → R

be a Legendre function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of X, and suppose that lim infn→+∞ λn > 0. Then for
each x0 ∈ X, the sequence {xn}n∈N generated by (1.4) is well defined, and either
A−1 (0∗) 6= ∅ and {xn}n∈N converges strongly to projf

A−1(0∗)
(x0) as n → +∞, or

A−1 (0∗) = ∅ and limn→+∞ ‖xn‖ = +∞.

Notable corollaries of Theorems 3.1 and 4.2 occur when the space X is both
uniformly smooth and uniformly convex. In this case the function f(x) = 1

2 ‖x‖
2 is

Legendre (cf. [3, Lemma 6.2, p.24]) and uniformly Fréchet differentiable on bounded
subsets of X. According to [13, Corollary 1(ii), p. 325], f is sequentially consistent
since X is uniformly convex and hence f is totally convex on bounded subsets of
X. Therefore Theorems 3.1 and 4.2 hold in this context and lead us to the following
two results which, in some sense, complement Theorem 8 in [25] (see also Theorem
1 in [37]).

Corollary 5.2. Let X be a uniformly smooth and uniformly convex Banach space
and let A : X → 2X∗

be a maximal monotone operator. Then, for each x0 ∈ X, the
sequence {xn}n∈N generated by (1.3) is well defined. If lim infn→+∞ λn > 0, then
either A−1 (0∗) 6= ∅ and {xn}n∈N converges strongly to QA−1(0∗)(x0) as n → +∞,
or A−1 (0∗) = ∅ and limn→+∞ ‖xn‖ = +∞.
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Corollary 5.3. Let X be a Hilbert space and let A : X → 2X be a maximal
monotone operator. Then, for each x0 ∈ X, the sequence {xn}n∈N generated by
(1.2) is well defined. If lim infn→∞ λn > 0, then either A−1 (0) 6= ∅ and {xn}n∈N
converges strongly to PA−1(0)(x0) as n → +∞, or A−1 (0) = ∅ and limn→+∞ ‖xn‖ =
+∞.

These corollaries also hold, of course, in the presence of computational errors as
in Theorems 3.1 and 4.2.

6. An application of the strong convergence theorem

Let g : X → (−∞,+∞] be a proper, convex and lower semicontinuous function.
Recall that the subdifferential ∂g of g is defined for any x ∈ X by

∂g (x) := {ξ ∈ X∗ : 〈ξ, y − x〉 ≤ g (y)− g (x) ∀y ∈ X} .

Using Theorem 3.1 and the subdifferential of g, we obtain an algorithm for finding
a minimizer of g.

Proposition 6.1. Let g : X → (−∞,+∞] be a proper, convex and lower semicon-
tinuous function which attains its minimum over X. If f : X → R is a Legendre
function which is bounded, uniformly Fréchet differentiable, and totally convex on
bounded subsets of X, and {λn}n∈N is a positive sequence with lim infn→+∞ λn > 0,
then, for each x0 ∈ X, the sequence {xn}n∈N generated by

x0 ∈ X,

0∗ = ξn + 1
λn

(∇f(yn)−∇f(xn)) , ξn ∈ ∂g (yn) ,

Hn = {z ∈ X : 〈ξn, z − yn〉 ≤ 0} ,

Wn = {z ∈ X : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0} ,

xn+1 = projfHn∩Wn
(x0), n = 0, 1, 2, . . . ,

converges strongly to a minimizer of g as n → +∞. If g does not attain its minimum
over X, then limn→+∞ ‖xn‖ = +∞.

Proof. The subdifferential ∂g of g is a maximal monotone operator since g is a
proper, convex and lower semicontinuous function (see [28, Theorem 2.13, p. 124]).
Since the zero set of ∂g coincides with the set of minimizers of g, Proposition 6.1
follows immediately from Theorems 3.1 and 4.2. �

Note that in this case

yn = arg min
x∈X

{
g (x) +

1
λn

Df (x, xn)
}

is equivalent to

0∗ ∈ ∂g (yn) +
1
λn

(∇f(yn)−∇f(xn)) .
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