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GLOBAL BIFURCATION OF A NEUMANN PROBLEM

IN-SOOK KIM AND YUN-HO KIM

Abstract. We are concerned with global bifurcation of a nonlinear Neumann
problem

−div (w(x)|∇u|p−2∇u) = (µm(x)− 1)|u|p−2u + f(λ, x, u,∇u)

when µ is not an eigenvalue of the corresponding problem with f = 0 in the weak
formulation.

1. Introduction

Some bifurcation problems for a nonlinear equation of the form

−div (w(x)|∇u|p−2∇u) = λm(x)|u|p−2u + f(λ, x, u)

subject to Dirichlet boundary conditions are given in [1]. Recently, a global bifur-
cation result of nonlinear Neumann problem

−div (|∇u|p−2∇u) = λm(x)|u|p−2u + f(λ, x, u)

was obtained in [4], based on the work of Huang [3]. While bifurcation from the
first eigenvalue was dealt with in [1,4], global bifurcation of the p-Laplacian with
Dirichlet boundary conditions

−div (|∇u|p−2∇u) = µ|u|p−2u + f(λ, x, u,∇u)

was investigated in [7] when µ is not an eigenvalue in some sense, by applying
nonlinear spectral theory for homogeneous operators.

In the present paper, we study the following boundary value problem

(B)

{
−div (w(x)|∇u|p−2∇u) = (µm(x)− 1)|u|p−2u + f(λ, x, u,∇u) in Ω
∂u
∂n = 0 on ∂Ω

when µ is not an eigenvalue of

(E)

{
−div (w(x)|∇u|p−2∇u) = (µm(x)− 1)|u|p−2u in Ω
∂u
∂n = 0 on ∂Ω

in the weak formulation. Here Ω is a bounded domain in RN with smooth boundary,
p > 1, w is a weight function, m belongs to L∞(Ω), f : R × Ω × R × RN → R
satisfies a Carathéodory condition, and ∂u

∂n denotes the outer normal derivative of
u with respect to ∂Ω.
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Let w be a positive measurable function in Ω that satisfies

w
− 1

p−1 ∈ L1, loc(Ω), w−s ∈ L1(Ω) for some s ∈
(N

p
,∞

)
∩

[ 1
p− 1

,∞
)
.

Let X = W 1,p(w,Ω) be the weighted Sobolev space endowed with the norm

‖u‖X =
( ∫

Ω
w|∇u|p dx +

∫
Ω
|u|p dx

) 1
p
,

where | · | denotes the Euclidean norm on RN and R1, respectively. Let 〈·, ·〉 :
X∗ × X → R be the usual pairing of X and its dual X∗. Define three operators
J : X → X∗, G : X → X∗, and F : R×X → X∗ by setting

〈J(u), ϕ〉 =
∫

Ω
( w|∇u|p−2∇u · ∇ϕ + |u|p−2u ϕ ) dx,

〈G(u), ϕ〉 =
∫

Ω
m|u|p−2u ϕ dx,

〈F (λ, u), ϕ〉 =
∫

Ω
f(λ, x, u,∇u) ϕ dx.

A pair (λ, u) in R ×X is said to be a weak solution of (B) if u is a solution of the
operator equation

J(u)− µG(u) = F (λ, u).

A real number µ is said to be an eigenvalue of (E) if the equation J(u) = µG(u)
has a nontrivial solution.

2. Main result

Let 1 < p < ∞, p′ = p/(p− 1), and ps = ps/(s + 1). Assume that
(f1) f : R× Ω× R× RN → R satisfies the Carathéodory condition in the sense

that f(λ, ·, u, v) is measurable for all (λ, u, v) ∈ R× R× RN and f(·, x, ·, ·)
is continuous for almost all x ∈ Ω.

(f2) For each bounded interval I ⊂ R, there are a function aI ∈ Lq(Ω) and a
nonnegative constant bI such that

|f(λ, x, u, v)| ≤ aI(x) + bI(|u|
p
q + |v|

ps
q )

for almost all x ∈ Ω and for all (λ, u, v) ∈ I ×R×RN , where the conjugate
exponent of q > 1 is strictly less than p∗.

(f3) There exist a function a ∈ Lp′(Ω) and a locally bounded function b :
[0,∞) → R with limr→∞ b(r)/rp−1 = 0 such that

|f(0, x, u, v)| ≤ a(x) + b(|u|+ |v|)
s

s+1

for almost all x ∈ Ω and for all (u, v) ∈ R× RN .

The following key tool for achieving the main result is proved in [5].

Lemma 2.1. Let X be a Banach space and Y a normed space. Suppose that
J : X → Y is a homeomorphism and G : X → Y is a compact continuous map, and
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F : R×X → Y is a compact continuous map such that the composition J−1 ◦G is
odd. If the set ⋃

t∈[0,1]

{u ∈ X : J(u)−G(u) = tF (0, u)}

is bounded, then the set

{(λ, u) ∈ R×X : J(u)−G(u) = F (λ, u)}

has a noncompact connected set C which intersects {0} ×X.

From now on we give some of fundamental properties of the integral operators
J, F and G defined in Section 1.

Lemma 2.2. The operator J : X → X∗ is a homeomorphism.

Proof. The continuity of J follows from the continuity of superposition operators,
via the inequality

‖J(v)− J(u)‖X∗ ≤
( ∫

Ω
|w

1
p′ |∇v|p−2∇v − w

1
p′ |∇u|p−2∇u |p′ dx

) 1
p′

+
( ∫

Ω
| |v|p−2v − |u|p−2u |p′ dx

) 1
p′ .

We now claim that the following estimate holds:

〈J(u)− J(v), u− v〉 ≥ (‖u‖p−1
X − ‖v‖p−1

X )(‖u‖X − ‖v‖X)

for all u, v ∈ X. Indeed, from Hölder’s inequality and the inequality

a
1
p′ c

1
p + b

1
p′ d

1
p ≤ (a + b)

1
p′ (c + d)

1
p

for any positive numbers a, b, c, d, it follows that

〈J(u), v〉 =
∫

Ω
(w|∇u|p−2∇u · ∇v + |u|p−2uv) dx

≤
( ∫

Ω
w|∇u|p dx

) 1
p′

( ∫
Ω

w|∇v|p dx
) 1

p +
( ∫

Ω
|u|p dx

) 1
p′

( ∫
Ω
|v|p dx

) 1
p

≤
( ∫

Ω
w|∇u|p dx +

∫
Ω
|u|p dx

) 1
p′

( ∫
Ω

w|∇v|p dx +
∫

Ω
|v|p dx

) 1
p

= ‖u‖p−1
X ‖v‖X

and in a similar manner
〈J(v), u〉 ≤ ‖v‖p−1

X ‖u‖X ,

which imply

〈J(u)− J(v), u− v〉 = ‖u‖p
X + ‖v‖p

X − 〈J(u), v〉 − 〈J(v), u〉

≥ ‖u‖p
X + ‖v‖p

X − ‖u‖p−1
X ‖v‖X − ‖v‖p−1

X ‖u‖X .

Since J is thus strictly monotone and coercive on the reflexive Banach space X,
Browder’s theorem says that it is bijective; see e.g. [9]. By the uniform convexity of
X and the above inequality claimed, an analogous argument to the proof of Lemma
3.3 in [1] establishes that J−1 is continuous on X∗. This completes the proof. �
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In proving the following result, a basic idea is to use a continuity result on su-
perposition operators due to Väth [8], as in the proof of Theorem 4.1 in [6]

Lemma 2.3. Under assumptions (f1) and (f2), the operator F : R ×X → X∗ is
continuous and compact. The operator G : X → X∗ is continuous and compact.

Proof. A linear operator I1 : R×X → R× Lp(Ω)× Lps(Ω, RN ) defined by

I1(λ, u) := (λ, u,∇u)

is bounded. In fact, it follows from Hölder’s inequality that∫
Ω
|∇u|

ps
s+1 dx =

∫
Ω
|∇u|

ps
s+1 w

s
s+1 (x)w− s

s+1 (x) dx

≤
( ∫

Ω
w(x)|∇u|p dx

) s
s+1

( ∫
Ω

w−s(x) dx
) 1

s+1

≤ ||u||
ps

s+1

X ||w−s||
1

s+1

L1(Ω).

Let Ψ : Y = R× Lp(Ω)× Lps(Ω, RN ) → Lq(Ω) be defined by

Ψ(λ, u, v)(x) := f(λ, x, u(x), v(x)).

If I is a bounded interval in R and aI ∈ Lq(Ω) and bI ∈ [0,∞) are chosen from (f2),
then we have

||Ψ(λ, u, v)||qLq(Ω) ≤
∫

Ω
(3 max{|aI |, bI |u|

p
q , bI |v|

ps
q })qdx

≤ 3q
(
||aI ||qLq(Ω) + (bI)q||u||pLp(Ω) + (bI)q||v||ps

Lps (Ω,RN )

)
.

Thus, Ψ is bounded. Since Y is a generalized ideal space and Lq(Ω) is a regular
ideal space, Theorem 6.4 of [8] implies that Ψ is continuous on Y . The inclusion
I2 : X ↪→ Lq′(Ω) is continuous and compact (see [1]) and so is the adjoint operator
I∗2 : Lq(Ω) → X∗ given by

〈I∗2 (u), ϕ〉 =
∫

Ω
u ϕ dx.

From the relation F = I∗2 ◦ Ψ ◦ I1 it follows that F is continuous and compact. In
particular, if we set f(λ, x, u, v) = m(x)|u|p−2u, then G is continuous and compact.
This completes the proof. �

We will now observe the behavior of F (0, ·) at infinity, as in [5,7].

Lemma 2.4. Under assumptions (f1) and (f3), the operator F (0, ·) : X → X∗ has
the following property:

lim
||u||X→∞

||F (0, u)||X∗

||u||p−1
X

= 0.

Proof. Let ε > 0. Choose a positive constant R such that |b(r)| ≤ εrp−1 for all
r ≥ R. Since b is locally bounded, there is a nonnegative constant CR such that
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|b(r)| ≤ CR for all r ∈ [0, R]. Let u ∈ X. If we set ΩR = {x ∈ Ω : |u(x)|+ |∇u(x)| ≤
R}, we have by Minkowski’s and Jensen’s inequalities( ∫

Ω
|f(0, x, u(x),∇u(x))|p′dx

) 1
p′

≤ ||a||Lp′ (Ω) +
( ∫

Ω
|b

(
|u(x)|+ |∇u(x)|

)
|p′ dx

) 1
p′

≤ ||a||Lp′ (Ω) +
( ∫

ΩR

(CR)p′ dx
) 1

p′ +
( ∫

Ω\ΩR

ε
p′s
s+1

(
|u(x)|+ |∇u(x)|

)ps dx
) 1

p′
.

From the proof of Lemma 2.3 and Minkowski’s inequality we know that( ∫
Ω\ΩR

ε
p′s
s+1

(
|u(x)|+ |∇u(x)|

)ps dx
) 1

p′ ≤ ε
s

s+1
(
||u||Lps (Ω) + c1||u||X

) ps
p′

≤ ε
s

s+1
(
c2||u||Lp(Ω) + c1||u||X

) (p−1)s
s+1

≤ ε
s

s+1 c3 ||u||p−1
X

for all u ∈ X with ||u||X ≥ 1, where c1, c2, and c3 are some positive constants.
Hence we obtain ( ∫

Ω
|f(0, x, u(x),∇u(x))|p′dx

) 1
p′

≤ ||a||Lp′ (Ω) + CR(meas Ω)
1
p′ + ε

s
s+1 c3 ||u||p−1

X

for all u ∈ X with ||u||X ≥ 1. It follows from Hölder’s inequality that

|〈F (0, u), ϕ〉| ≤
( ∫

Ω
|f(0, x, u(x),∇u(x))|p′dx

) 1
p′ ||ϕ||Lp(Ω)

≤
(
||a||Lp′ (Ω) + CR(meas Ω)

1
p′ + ε

s
s+1 c3 ||u||p−1

X

)
||ϕ||X

for all u, ϕ ∈ X with ||u||X ≥ 1. Consequently, we get

lim
||u||X→∞

||F (0, u)||X∗

||u||p−1
X

= 0.

�

Lemma 2.5. If µ is not an eigenvalue of (E), we have

lim inf
||u||X→∞

||J(u)− µG(u)||X∗

||u||p−1
X

> 0.

Proof. By Lemmas 2.2 and 2.3, J : X → X∗ is a homeomorphism and G : X → X∗

is compact and they are odd and positively homogeneous of order p− 1. Applying
nonlinear spectral theory for homogeneous operators given in [2], we arrive at the
conclusion. �
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Finally, we can prove a global bifurcation result for the above Neumann problem
(B).

Theorem 2.6. Suppose that conditions (f1)–(f3) are satisfied. If µ is not an
eigenvalue of (E), then there exists a noncompact connected set C intersecting {0}×
X such that each point (λ, u) in C is a weak solution of the above problem (B). In
the case where f(0, ·, ·) = 0, we have (0, 0) ∈ C.

Proof. Note that J is a homeomorphism, G and F are compact continuous opera-
tors, and J−1 ◦ (µG) is odd. Since µ is not an eigenvalue of (E), Lemmas 2.4 and
2.5 imply that for some δ > 0, there is a positive constant R such that

||J(u)− µG(u)||X∗ > δ||u||p−1
X > ||F (0, u)||X∗

for all u ∈ X with ||u||X ≥ R and hence

||J(u)− µG(u)||X∗ > ||tF (0, u)||X∗

for all u ∈ X with ||u||X ≥ R and for all t ∈ [0, 1]. Hence, the set⋃
t∈[0,1]

{u ∈ X : J(u)− µG(u) = tF (0, u)}

is bounded. By Lemma 2.1, we conclude that the solution set

{(λ, u) ∈ R×X : J(u)− µG(u) = F (λ, u)}

contains a noncompact connected set C which intersects {0} ×X. If f(0, ·, ·) = 0,
we have

{u ∈ X : J(u)− µG(u) = 0} = {0} and thus (0, 0) ∈ C

because µ is not an eigenvalue of (E). This completes the proof. �
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