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TAKAHASHI’S AND FAN-BROWDER’S FIXED POINT
THEOREMS IN A VECTOR LATTICE

TOSHIHARU KAWASAKI, MASASHI TOYODA, AND TOSHIKAZU WATANABE

Abstract. The purpose of this paper is to show fixed point theorems using
the topology introduced by [2]. In particular, we obtain Takahashi’s fixed point
theorem in the case where the whole space is a vector lattice with unit. Using
Takahashi’s fixed point theorem in this space, we also obtain Fan-Browder’s fixed
point theorem.

Dedicated to Professor Wataru Takahashi on the celebration of his retirement

1. Introduction

There are many fixed point theorems in a topological vector space, for instance,
Takahashi’s fixed point theorem and Fan-Browder’s fixed point theorem in a topo-
logical vector space, Tychonoff’s fixed point theorem in a locally convex space,
Schauder’s fixed point theorem in a normed space, and so on; see for example [6].

Takahashi [5] proved the following; see also [6].

Takahashi’s fixed point theorem. Let X be a Hausdorff topological vector space,
Y a compact subset of X and Z a convex subset of Y . Suppose that a mapping f
from Z into 2Y satisfies
(0) f−1(y) is convex for any y ∈ Y ,
and there exists a mapping g from Z into 2Y satisfying the following conditions:
(1) g(z) is a subset of f(z) for any z ∈ Z;
(2) g−1(y) is non-empty for any y ∈ Y ;
(3) g(z) is an open subset of X for any z ∈ Z.
Then there exists z0 ∈ Z such that z0 ∈ f(z0).

In the mentioned above, f−1(y) = {x | y ∈ f(x)}.
In this paper, we consider fixed point theorems in a vector lattice. As known well

every topological vector space has a linear topology. On the other hand, although
every vector lattice does not have a topology, it has two lattice operators, which
are the supremum ∨ and the infimum ∧, and also an order is introduced from these
operators; see also [4, 7] about vector lattices. There are some methods how to
introduce a topology to a vector lattice. One method is to assume that the vector
lattice has a linear topology [1]. On the other hand, there is another method to
make up a topology in a vector lattice, for instance, in [2] one method is introduced
in the case of the vector lattice with unit.

The purpose of this paper is to show fixed point theorems using the topology
introduced by [2]. In particular, we obtain Takahashi’s fixed point theorem in the
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case where X is a vector lattice with unit. Using Takahashi’s fixed point theorem
in this space, we also obtain Fan-Browder’s fixed point theorem.

2. Topology in a vector lattice

In this section we introduce a topology in a vector lattice introduced by [2].
Let X be a vector lattice. e ∈ X is said to be an unit if e ∧ x > 0 for any x ∈ X

with x > 0. Let KX be the class of units of X. In the case where X is the set of
real numbers R, KR is the set of positive real numbers. Let X be a vector lattice
with unit and let Y be a subset of X. Y is said to be open if for any x ∈ Y and
for any e ∈ KX there exists ε ∈ KR such that [x− εe, x + εe] ⊂ Y . Let OX be the
class of open subsets of X. Y is closed if Y C ∈ OX . For e ∈ KX and for an interval
[a, b] we consider the following subset

[a, b]e = {x | there exists some ε ∈ KR such that x− a ≥ εe and b− x ≥ εe}.
By the definition of [a, b]e it is easy to see that [a, b]e ⊂ [a, b]. A mapping from
X ×KX into (0,∞) is said to be a gauge. Let ∆X be the class of gauges in X. For
x ∈ X and δ ∈ ∆X , O(x, δ) is defined by

O(x, δ) =
⋃

e∈KX

[x− δ(ξ, e)e, x + δ(ξ, e)e]e.

O(x, δ) is said to be a δ-neighborhood of x. Suppose that for any x ∈ X and for
any δ ∈ ∆X there exists U ∈ OX such that x ∈ U ⊂ O(x, δ).

Lemma 2.1. Let X be a vector lattice with unit and Y a subset of X. Then the
following are equivalent.
(1) Y is an open subset of X.
(2) There exists δ ∈ ∆X such that O(x, δ) is a subset of Y for any x ∈ Y .
(3) For any x ∈ Y there exists δ ∈ ∆X such that O(x, δ) is a subset of Y .

Proof. We first show that (1) implies (2). Suppose that Y ∈ OX . Let x ∈ Y
and e ∈ KX . Since Y ∈ OX , there exists a positive number δ(x, e) such that
[x−δ(x, e)e, x+δ(x, e)e] ⊂ Y . Then δ ∈ ∆X . Let y ∈ O(x, δ) arbitrary. Then there
exists e ∈ KX such that y ∈ [x− δ(x, e)e, x + δ(x, e)e]e. Then it follows that

y ∈ [x− δ(x, e)e, x + δ(x, e)e]e ⊂ [x− δ(x, e)e, x + δ(x, e)e] ⊂ Y.

Therefore O(x, δ) ⊂ Y . It is obvious that (2) implies (3). So next we show that (3)
implies (1). Suppose that for any x ∈ Y there exists δ ∈ ∆X such that O(x, δ) ⊂ Y .
For any e ∈ KX let δ < δ(x, e). Then [x− δe, x + δe] ⊂ [x− δ(x, e)e, x + δ(x, e)e]e.
By the definition of O(x, δ), we have

[x− δe, x + δe] ⊂ [x− δ(x, e)e, x + δ(x, e)e]e ⊂ O(x, δ) ⊂ Y.

Therefore Y ∈ OX . �

For a subset Y of X we denote by cl(Y ) and int(Y ), the closure and the interior
of Y , respectively. Let X and Y be vector lattices with unit, x0 ∈ Z ⊂ X and f
a mapping from Z into Y . f is said to be continuous in the sense of topology at
x0 if for any V ∈ OY with f(x0) ∈ V there exists U ∈ OX with x0 ∈ U such that
f(U ∩ Z) ⊂ V .
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3. Fixed point theorems

In this section we show Takahashi’s fixed point theorem and Fan-Browder’s fixed
point theorem using the topology introduced in Section 2.

Let X be a vector lattice with unit. X is said to be Hausdorff if for any x1, x2 ∈ X
with x1 6= x2 there exists O1, O2 ∈ OX such that x1 ∈ O1, x2 ∈ O2 and O1∩O2 = ∅.
A subset Y of X is said to be compact if for any open covering of Y there exists a
finite sub-covering. A subset Y of X is said to be normal if for any closed subsets F1

and F2 with F1 ∩F2 ∩ Y = ∅ there exists O1, O2 ∈ OX such that F1 ⊂ O1, F2 ⊂ O2

and O1 ∩O2 ∩ Y = ∅. Moreover the following hold.
(1) Let X be a Hausdorff vector lattice with unit and Y a compact subset of X.

Then Y is normal.
(2) Let X be a vector lattice with unit and Y a normal and closed subset of X.

If Y ⊂
⋃n

i=1 Oi, where Oi ∈ OX , then there exists a continuous function βi in
the sense of topology from Y into [0, 1] for each i such that βi(y) = 0 for any
y ∈ OC

i ∩ Y and
∑n

i=1 βi(y) = 1.
A vector lattice is said to be Archimedean if it holds that x = 0 whenever there

exists y ∈ X with y ≥ 0 such that 0 ≤ rx ≤ y for any r ∈ KR. A mapping N from
X × KX to [0,∞] is defined by N(x, e) = sup{r | r|x| ≤ e}. Moreover we consider
the following condition:
(UA) For any e ∈ KX and for any {x1, · · · , xm} which is a linearly independent

subset of X there exists M ∈ KR such that N (
∑m

i=1 kixi, e) ≤ M for any
k1, · · · , km ∈ R with

∑m
i=1 k2

i = 1.

Lemma 3.1. Every Archimedean vector lattice satisfies the condition (UA).

Proof. By [7, Theorem IV.11.1] for any Archimedean vector lattice X there exists
the completion X̂ of X. By [7, Theorem V.4.2] for the complete vector lattice X̂
there exists an extremally disconnected compact set Ω and a vector sublattice Y of
C∞(Ω) such that X̂ is isomorphic to Y , where

C∞(Ω) =
{

f

∣∣∣∣ f is continuous from Ω into [−∞,∞] and
f−1({±∞}) is nowhere dense

}
.

Therefore it may be assumed that X is a vector sublattice of C∞(Ω). Then

N

(
m∑

i=1

kixi, e

)
= sup

{
r

∣∣∣∣∣ r
∣∣∣∣∣

m∑
i=1

kixi(ω)

∣∣∣∣∣ ≤ e(ω) for any ω ∈ Ω

}

= inf
{

e(ω)
|
∑m

i=1 kixi(ω)|

∣∣∣∣ ω ∈ Ω
}

.

Let S =
{
(k1, · · · , km) |

∑m
i=1 k2

i = 1
}

and Eω a mapping from S into [0,∞] defined
by Eω(k1, · · · , km) = e(ω)

|∑m
i=1 kixi(ω)| . Then for any (k1, · · · , km) ∈ S there exists

ω ∈ Ω such that e(ω) 6= ∞ and
∑m

i=1 kixi(ω) 6= 0. Actually assume that there
exists (k1, · · · , km) ∈ S such that e(ω) = ∞ or

∑m
i=1 kixi(ω) = 0 for any ω ∈ Ω.

Let Ω′ = {ω |
∑m

i=1 kixi(ω) 6= 0}. Since each xi is continuous, Ω′ is open. On the
other hand, since Ω′ ⊂ {ω | e(ω) = ∞}, Ω′ is nowhere dense. It is a contradiction.
Therefore for any (k1, · · · , km) ∈ S there exists ω ∈ Ω such that e(ω) 6= ∞ and
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i=1 kixi(ω) 6= 0. Let Tω = {(k1, · · · , km) | (k1, · · · , km) ∈ S,

∑m
i=1 kixi(ω) 6= 0}.

Then
⋃

ω∈{ω|e(ω) 6=∞} Tω = S. Since S is compact and each Tω is open, there exists
ω1, · · · , ωp ∈ {ω | e(ω) 6= ∞} such that

⋃p
j=1 Tωj = S. Let E(k1, · · · , km) =

min{Eωj (k1, · · · , km) | j = 1, · · · , p}. Then E is continuous on S. Let M =
max{E(k1, · · · , km) | (k1, · · · , km) ∈ S}. Then

N

(
m∑

i=1

kixi, e

)
= inf

{
e(ω)

|
∑m

i=1 kixi(ω)|

∣∣∣∣ ω ∈ Ω
}

≤ E(k1, · · · , km) ≤ M.

Therefore X satisfies the condition (UA). �

To prove our main result, we need the following lemma.

Lemma 3.2. Let X be an Archimedean vector lattice with unit and {x1, · · · , xn} a
subset of X. Then co{x1, · · · , xn} is homeomorphic to a compact and convex subset
of Rn.

Proof. Suppose that {x1, · · · , xm} is a linearly independent subset of {x1, · · · , xn}
and xj =

∑m
i=1 aj,ixi for j = m + 1, · · · , n. Let X0 = Span{x1, · · · , xm}, ei =

(0, · · · , 0,
i
1, 0, · · · , 0) ∈ Rm for any i = 1, 2, · · · ,m and f a mapping from X0 into

Rm defined by f (
∑m

i=1 cixi) =
∑m

i=1 ciei. Then f is bijective clearly.
Since by Lemma 3.1 X satisfies the condition (UA), for any e ∈ KX there exists

M ∈ KR such that |ki| ≤ M for any i if |
∑m

i=1 kixi| ≤ e. Actually it is shown
as follows. It may be assumed that

∑m
i=1 k2

i 6= 0. Let e ∈ KX . Since X satisfies

the condition (UA), there exists M ∈ KR such that N

(∑m
i=1

ki√∑m
i=1 k2

i

xi, e

)
≤ M .

Since √√√√ m∑
i=1

k2
i

∣∣∣∣∣∣
m∑

i=1

ki√∑m
i=1 k2

i

xi

∣∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

kixi

∣∣∣∣∣ ≤ e,

by the definition of N

|ki| ≤

√√√√ m∑
i=1

k2
i ≤ N

 m∑
i=1

ki√∑m
i=1 k2

i

xi, e

 ≤ M

for any i. Take ε ∈ KR arbitrary and let Vε = (c1−ε, c1 +ε)×· · ·× (cm−ε, cm +ε).
Take δ ∈ ∆X satisfying δ (

∑m
i=1 cixi, e) ≤ ε

M . If
∑m

i=1(ci + hi)xi ∈ O (
∑m

i=1 cixi, δ),
then |hi| < ε for any i. Therefore

f

(
m∑

i=1

(ci + hi)xi

)
=

m∑
i=1

(ci + hi)ei ∈ Vε.

Let U = int (O (
∑m

i=1 cixi, δ)). Then f(U ∩X0) ⊂ Vε proving that f is continuous
in the sense of topology.

Conversely f−1 is continuous in the sense of topology. In fact, take U ∈ OX

arbitrary. By Lemma 2.1 there exists δ ∈ ∆X such that O (
∑m

i=1 cixi, δ) ⊂ U . Take
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e ≥
∑m

i=1 |xi| and ε ∈ KR with ε ≤ δ (
∑m

i=1 cixi, e). If
∑m

i=1(ci + hi)ei ∈ Vε, then
|
∑m

i=1 hixi| < εe. Therefore

f−1

(
m∑

i=1

(ci + hi)ei

)
=

m∑
i=1

(ci + hi)xi ∈ O

(
m∑

i=1

cixi, δ

)
∩X0 ⊂ U ∩X0

proving that f−1 is continuous in the sense of topology.
Therefore X0 is homeomorphic to Rm ⊂ Rn and moreover co{x1, · · · , xn} is

homeomorphic to co{e1, · · · , em,
∑m

i=1 am+1,iei, · · · ,
∑m

i=1 an,iei}. �

By the above lemma we can show the following Takahashi’s fixed point theorem
in a vector lattice.

Theorem 3.3. Let X be a Hausdorff Archimedean vector lattice with unit, Y a
compact subset of X and Z a convex subset of Y . Suppose that a mapping f from
Z into 2Y satisfies
(0) f−1(y) is convex for any y ∈ Y ,
and there exists a mapping g from Z into 2Y satisfying the following conditions:
(1) g(z) is a subset of f(z) for any z ∈ Z;
(2) g−1(y) is non-empty for any y ∈ Y ;
(3) g(z) is an open subset of X for any z ∈ Z.
Then there exists z0 ∈ Z such that z0 ∈ f(z0).

Proof. By (2) it holds that Y ⊂
⋃

z∈Z g(z). By (3) it holds that g(z) ∈ OX . Since
Y is compact, there exists z1, · · · , zn ∈ Z such that Y ⊂

⋃n
i=1 g(zi). Since Y is

normal, there exists a continuous function βi in the sense of topology from Y into
[0, 1] satisfying βi(y) = 0 for any y ∈ g(zi)C and

∑n
i=1 βi(y) = 1. Let p be a

mapping from Y into Z defined by p(y) =
∑n

i=1 βi(y)zi. Then p is continuous in
the sense of topology. Since by (1) it holds that g−1(y) ⊂ f−1(y), by (0) it holds
that p(y) ∈ f−1(y). Let Z0 = co{z1, · · · , zn}. By Lemma 3.2 Z0 is homeomorphic
to a compact and convex subset K of Rn. Put a mapping h from Z0 into K as this
homeomorphism. Then h ◦ p ◦ h−1 is continuous in the sense of topology from K
into K. Therefore by Brouwer’s fixed point theorem there exists x0 ∈ K such that
h(p(h−1(x0))) = x0. Let z0 = h−1(x0). Then p(z0) = z0. Since p(z0) ∈ f−1(z0), it
holds that z0 ∈ f−1(z0) proving that z0 ∈ f(z0). �

In the above theorem, putting Z = Y and g = f , the following theorem is
obtained. It is Fan-Browder’s fixed point theorem in a vector lattice.

Theorem 3.4. Let X be a Hausdorff Archimedean vector lattice with unit and Y
a compact convex subset of X. Suppose that a mapping f from Y into 2Y satisfies
the following conditions:
(1) f−1(y) is non-empty and convex for any y ∈ Y ;
(2) f(y) is an open subset of X for any y ∈ Y .
Then there exists y0 ∈ Y such that y0 ∈ f(y0).

In the above theorem, changing from f to f−1, the following theorem is obtained;
see [6].
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Theorem 3.5. Let X be a Hausdorff Archimedean vector lattice with unit and Y
a compact convex subset of X. Suppose that a mapping f from Y into 2Y satisfies
the following conditions:
(1) f−1(y) is an open subset of X for any y ∈ Y ;
(2) f(y) is non-empty and convex for any y ∈ Y .
Then there exists y0 ∈ Y such that y0 ∈ f(y0).

Moreover the following holds. For the sake of completeness, we show its proof.

Theorem 3.6. Let X be a Hausdorff Archimedean vector lattice with unit, Y a
compact convex subset of X and A ⊂ Y × Y . Suppose that A satisfies the following
conditions:
(1) {x | (x, y) ∈ A} is closed for any y ∈ Y ;
(2) {y | (x, y) 6∈ A} is convex for any x ∈ Y ;
(3) (x, x) ∈ A for any x ∈ Y .
Then there exists x0 ∈ Y such that {x0} × Y ⊂ A.

Proof. Assume that {x} × Y 6⊂ A for any x ∈ Y . Then there exists y ∈ Y such
that (x, y) 6∈ A. Let f(x) = {y | (x, y) 6∈ A}. Then f(x) is non-empty and by (2)
it is convex. Moreover by (1) f−1(y) = {x | (x, y) 6∈ A} ∈ OX . By Theorem 3.5
there exists x0 ∈ Y such that x0 ∈ f(x0), that is, (x0, x0) 6∈ A. It is a contradiction.
Therefore there exists x0 ∈ Y such that {x0} × Y ⊂ A. �
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