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APPLICATION OF A DISCRETE FIXED POINT THEOREM TO
THE COURNOT MODEL

JUN-ICHI SATO

Abstract. In this paper, we apply a discrete fixed point theorem, which is
based on monotonicity of a set-valued mapping, due to the author and Kawasaki
(Taiwanese J. Math., 2009) to the Cournot model, giving us a Cournot model
in which the production of the firms assumes integral values, 0, 1, 2 and so
on. To handle this, we define a discrete Cournot-Nash equilibrium, and prove its
existence.

1. Introduction

The Cournot model is a well-known market competition model. In this duopoly
market model, each firm sets its production levels and the market then decides the
price accordingly. This model and the concept of a non-cooperative equilibrium were
introduced by Cournot [2]; See also Aubin [1, Section 7.9] for more details on the
original Cournot model. However, in some situations, such as when the production
is on a small scale, this model is somewhat inappropriate since the equilibrium,
which is the optimal production of each firm, is real-valued. We therefore introduce
a discretized Cournot model in which each firm’s production is an integer value,
and show the existence of an equilibrium for such a model in this paper.

For the original Cournot model, classical fixed point theorems such as Kakutani’s
and Brouwer’s ensure the existence of an equilibrium. According to this relation-
ship, we expect that discrete fixed point theorems should play a central role in
demonstrating the existence of an equilibrium for a discretized Cournot model. In
fact, in economics, Vives [12] applied Tarski’s fixed point theorem [11] to an ex-
tended Cournot model. As a result, he showed the existence of an equilibrium; the
equilibrium set is a complete lattice in the model. However, in his model, each
firm’s production was a continuous variable, so the equilibrium is also allowed to be
real-valued.

Therefore, in this paper, we consider exactly the situation of integer valued pro-
duction. More precisely, we apply the discrete fixed point theorem from [9] to the
Cournot model, and this enables us to consider integer valued production. Note
that this discrete fixed point theorem is based on the monotonicity of a certain
set-valued mapping.
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This paper is organized as follows: In Section 2, we introduce a discretized
Cournot model and present our main result. In Section 3, we present some ex-
amples for which our required assumptions are satisfied. In Section 4, we prove our
main theorem.

2. The model and the main result

Throughout this paper, i is an element of {1, 2}, {−i} means {1, 2} \ {i}, Ci (i =
1, 2) are firms entered into the market, and qi ∈ Qi is the production of Ci, where
Qi := {0, 1, . . . , mi} (mi ∈ N). We denote by Qi the interval [0,mi]. Furthermore,
we denote by p(q1 + q2) the price of the production lot as follows:

p(q1 + q2) := max{r(q1 + q2), 0},
where r is a smooth function defined on some open interval containing [0,m1 +m2].
Note that, for example, if we take r = a − b(q1 + q2) (a, b > 0), then the model
reflects the classical situation. ci ∈ N is the average value of the cost, that is, it
costs firm Ci, ci to produce one unit. Firm Ci aims to maximize its profit function

πi(qi, q−i) := max{(p(q1 + q2)− ci)qi, 0}.
Definition 2.1. We call a pair (q∗1, q

∗
2) ∈ Q1×Q2 a discrete Cournot-Nash equilib-

rium, if for each i ∈ {1, 2}
πi(q∗i , q

∗
−i) ≥ πi(qi, q

∗
−i), ∀qi ∈ Qi.

Here we denote by φi(q−i), the set of best responses of firm Ci to q−i, restricted to
integers, that is,

φi(q−i) =
{

qi ∈ Qi : πi(qi, q−i) = max
qi∈Qi

πi(qi, q−i)
}

.

Further, we set φ(q1, q2) := φ1(q2)×φ2(q1). Then q∗ = (q∗1, q
∗
2) is a discrete Cournot-

Nash equilibrium if and only if q∗ ∈ φ(q∗). Similarly, we define ϕ(q1, q2) := ϕ1(q2)×
ϕ2(q1) for (q1, q2) ∈ Q1 ×Q2, where

ϕi(q−i) =

{
qi ∈ Qi : πi(qi, q−i) = max

qi∈Qi

πi(qi, q−i)

}
.

In this paper, we assume the following (H1)–(H5):
(H1): r(0) > 0;
(H2): r(q1 + q2) is twice continuously differentiable;
(H3): r(q1 +q2) is monotone decreasing on [0,m1 +m2], and strictly monotone

decreasing on the interval {q1 + q2 ∈ [0,m1 + m2] : r(q1 + q2) > 0};
(H4): πi(qi, q−i) is unimodal with respect to qi;
(H5): if firm Ci produces its upper bound mi for some q−i ∈ Qi, then mi ∈

ϕi(q−i − ε) for any ε > 0.
Note that by (H1), {q1 + q2 ∈ [0,m1 + m2] : r(q1 + q2) > 0} is not empty, and by
(H4), the mapping ϕi is single-valued.

The main result of this paper is stated in the next theorem:
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Theorem 2.2 (Main theorem). Assume (H1)–(H5). Further, we assume that for
each i ∈ {1, 2} and given q−i ∈ [0,m−i], if qi ∈ argmaxt∈Qi

πi(t, q−i) is an element
of (0,mi), then qi satisfies one of the following three conditions:

(i) r′′(q1 + q2) < 0 and qi 6= −2r′(q1 + q2)
r′′(q1 + q2)

,

(ii) r′′(q1 + q2) = 0,

(iii) r′′(q1 + q2) > 0 and 0 ≤ qi ≤ −r′(q1 + q2)
r′′(q1 + q2)

,

where r′(q1 + q2) and r′′(q1 + q2) stand for the first and second derivatives of r at
q1 + q2, respectively.

Then there exists a discrete Cournot-Nash equilibrium. In other words, there
exists q∗ := (q∗1, q

∗
2) ∈ Q such that q∗ ∈ φ(q∗).

Remark 2.3. We do not require that the price function be convex. Furthermore,
the theorem includes the classical situation where the price function is concave; see
Examples 3.1 and 3.2 below.

3. Examples

In this section, we give a few examples of price functions that satisfy the assump-
tion of the main theorem. In these examples, m1 = m2 = 10.

Example 3.1. Let r(q1 + q2) = −1/5(q1 + q2)2 + 2 and c1 = c2 = 1. Then

p(q1 + q2) =

{
−1

5
(q1 + q2) + 2, if 0 ≤ q1 + q2 ≤ 10

0, if 10 < q1 + q2,

This example satisfies assumptions (ii) and (H1)–(H5); see Figure 1 left. Figure 1
right is a graph of Ci’s profit function. It is clear that π1(q1, q2) is unimodal with
respect to q1.
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Figure 1. The price function and C1’s profit function

Example 3.2. Let r(q1 + q2) = −(q1 + q2)2 + 100 and c1 + c2 = 10. Then

p(q1 + q2) =
{ −(q1 + q2)2 + 100, if 0 ≤ q1 + q2 ≤ 10

0, if 10 < q1 + q2,



422 JUN-ICHI SATO

This example satisfies assumptions (i) and (H1)–(H5).
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Figure 2. The price function and C1’s profit function

Example 3.3. Let r(q1 + q2) = − arctan(q1 + q2 − 10) + 2 and c1 = c2 = 2. Then
p(q1 + q2) = r(q1 + q2) on [0, 20]. This example satisfies assumptions (i)–(iii) and
(H1)–(H5).
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Figure 3. Neither concave nor convex price function and C1’s profit function

4. Proof of Theorem 2.2

We prove this theorem in three steps. First, we analyze the behavior of the
best responses for the case where each firm’s production is continuously variable.
Second, we discretize the results obtained in Step 1 to handle the case where each
firm’s production is integral. Finally, using the discrete fixed point theorem from [9]
and the results of Step 2, we demonstrate the existence of a discrete Cournot-Nash
equilibrium.

Step 1: Analysis of the behavior of ϕi(q−i). We first note that the domain of ϕi(·)
is continuous. In this step, we prove the following lemma.

Lemma 4.1. ϕi(q−i) (i = 1, 2) is monotone decreasing with respect to q−i.

In order to prove the lemma above, we require the following lemma, which will
first be proven.
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Lemma 4.2. Assume that there exists q0
−i ∈ [0,m−i] such that 0 ∈ ϕi(q0

−i). Then
we have ϕi(q0

−i + ε) = {0} for every positive ε.

Proof. Since by 0 ∈ ϕi(q0
−i) and (H3), we get

ci ≥ p(0 + q0
−i) ≥ r(0 + q0

−i) ≥ r(0 + q0
−i + εi),

that is, r(0 + q0
−i + ε) ≤ ci. Therefore, Ci does not produce anything, that is,

ϕi(q0
−i + ε) = {0}. ¤

Proof of Lemma 4.1. We first temporarily set the domain of q−i to (−δ,m−i + δ),
where δ is a sufficiently small positive constant. We define the following sets:

R−
−i :=

{
q−i ∈ (−δ,m−i + δ) : r′′(q1 + q2) < 0, qi ∈ argmax

t∈[0,mi]
πi(t, q−i)

}
,

R0
−i :=

{
q−i ∈ (−δ,m−i + δ) : r′′(q1 + q2) = 0, qi ∈ argmax

t∈[0,mi]
πi(t, q−i)

}
,

R+
−i :=

{
q−i ∈ (−δ,m−i + δ) : r′′(q1 + q2) > 0, qi ∈ argmax

t∈[0,mi]
πi(t, q−i)

}
,

and note that these sets can be empty and that they depend on qi.
For any q−i ∈ (−δ,m−i + δ), if qi ∈ ϕi(q−i), then one of (I)–(III) holds: (I)

qi ∈ (0,mi), (II) qi = 0, or (III) qi = mi, because qi ∈ [0,mi]. We hence distinguish
these three cases.

(I) The case where qi ∈ (0,mi): Since qi 6= 0, we have p(q1 + q2) > ci > 0. Then

πi(q1, q2) = (p(q1 + q2)− ci)qi = (r(q1 + q2)− ci)qi.

This implies that πi(q1, q2) is twice differentiable in both variables. Thus, qi is a
solution of the following equation:

(4.1)
∂πi(q1, q2)

∂qi
= r′(q1 + q2)qi + r(q1 + q2)− ci = 0.

We set h(qi) := r′(q1 + q2)qi + r(q1 + q2)− ci, then

(4.2)
∂2πi(q1, q2)

∂q2
i

= h′(q−i) = r′′(q1 + q2)qi + 2r′(q1 + q2).

Further, we distinguish three cases: (a) q−i ∈ R−
−i, (b) q−i ∈ R0

−i, or (c) q−i ∈ R+
−i.

(I-a) The case where q−i ∈ R−
−i: By assumption (i), we have r′′(q1+q2)qi+2r′(q1+

q2) 6= 0, that is, h′(qi) 6= 0. Therefore, by the implicit function theorem, (4.1) is
uniquely solved in a neighborhood of (q−i, ci), say, U(q−i), such that qi = qi(q−i).
In other words,

(4.3) r′(qi(q−i) + q−i)qi(q−i) + r(qi(q−i) + q−i)− ci = 0.

Differentiating (4.3) with respect to q−i, we obtain

r′′ ·
(

∂qi

∂q−i
+ 1

)
qi + r′ · ∂qi

∂q−i
+ r′ ·

(
∂qi

∂q−i
+ 1

)
= 0,
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which is equivalent to

(4.4)
∂qi

∂q−i
= − r′′ · qi + r′

r′′ · qi + 2r′
.

Since r′′ · qi + 2r′ < r′′ · qi + r′ < 0 is satisfied, it follows that

(4.5) r′′ · qi + r′ < 0 and r′′ · qi + 2r′ < 0.

From (4.4), (4.5) and (4.2), we obtain ∂qi/∂q−i < 0 in U(q−i) and ∂2πi/∂q2
i < 0.

(I-b) The case where q−i ∈ R0
−i: From assumption (ii), (H2) and (4.2), we have

2r′ < r′ < 0 and h′ 6= 0, and ∂2πi/∂q2
i < 0 also holds. Thus, by a discussion similar

to the case where q ∈ R−
−i, we obtain ∂qi/∂q−i < 0 in U(q−i).

(I-c) The case where q−i ∈ R+
−i: From assumption (iii) and (H2), it follows that

r′′ · qi + 2r′ < r′′ · qi + r′ ≤ 0. Thus, by (4.2), we get h′ 6= 0 and ∂2πi/∂q2
i < 0.

Therefore, by similar discussion as for the case where q ∈ R−
−i, we obtain ∂qi/∂q−i ≤

0 in U(q−i).
Since {U(q−i) : 0 ≤ q−i ≤ m−i} is an open covering of [0,m−i], there exists a finite

subcovering {Uj}m
j=1, where Uj := U(qj

−i) for some qj
−i ∈ [0,m−i] (j = 1, . . . , m).

Also, from the uniqueness of the implicit function in the neighborhood Uj , the
implicit functions qi are smoothly connected and ∂qi/∂q−i ≤ 0 in [0,m−i]. Finally,
by the unimodality of πi with respect to qi and the fact that ∂2πi/∂q2

i < 0, we get
qi(q−i) = ϕi(q−i).

(II) The case where qi = 0: There exists q0
−i ∈ [0,m−i] such that ϕi(q0

−i) = 0.
Therefore, by Lemma 4.2, we get ϕi(q−i) = 0 for any q−i ∈ [q0

−i,m−i].

(III) The case where qi = mi: There exists qM
−i ∈ [0,m−i] such that ϕi(qM

−i) = mi.
Therefore, by (H5), we get ϕi(q−i) = mi for any q−i ∈ [0, qM

−i].

By (I)–(III), ϕi(q−i) is monotone decreasing with respect to q−i, which proves
the claim.

Step 2: Discretization of the result of Step 1. In this step, we prove that if ϕi(q−i)
is monotone decreasing, then φi(q−i) also has a monotone decreasing-like property.

Lemma 4.3. Assume that ϕi(q−i) ≥ ϕi(q−i + 1) for some q−i ∈ Q−i. Then there
exist α ∈ φi(q−i) and β ∈ φi(q−i + 1) such that α ≥ β.

Proof. By the unimodality of πi with respect to qi,

φi(q−i) =




{dϕi(q−i)e}, if πi(dϕi(q−i)e, q−i) > πi(bϕi(q−i)c, q−i)
{dϕi(q−i)e, bϕi(q−i)c}, if πi(dϕi(q−i)e, q−i) = πi(bϕi(q−i)c, q−i)
{bϕi(q−i)c}, if πi(dϕi(q−i)e, q−i) < πi(bϕi(q−i)c, q−i),

for any q−i ∈ Q−i, where d·e and b·c represent rounding up and down to the nearest
integer, respectively. Here we distinguish two cases: dϕi(q−i +1)e 5 bϕi(q−i)c holds
or dϕi(q−i + 1)e > bϕi(q−i)c holds.

Case 1: dϕi(q−i + 1)e 5 bϕi(q−i)c. Then we have

(4.6) bϕi(q−i + 1)c 5 dϕi(q−i + 1)e 5 bϕi(q−i)c 5 dϕi(q−i)e.
Since φi(q−i) consists of bϕi(q−i)c or dϕi(q−i)e, and φi(q−i +1) consists of bϕi(q−i +
1)c or dϕi(q−i + 1)e, the claim is evident from (4.6).
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Case 2: dϕi(q−i + 1)e > bϕi(q−i)c. By the assumption of this lemma, we get

(4.7) bϕi(q−i + 1)c 5 bϕi(q−i)c < dϕi(q−i + 1)e 5 dϕi(q−i)e.
Denying the claim, we have α < β for any α ∈ φi(q−i) and β ∈ φi(q−i+1). Hence we
see from (4.7) that φi(q−i) = {bϕi(q−i)c} = d and φi(q−i + 1) = {dϕi(q−i + 1)e} =
d + 1 for some integer d.

Since φi(q−i + 1) = d + 1 is the best response, we get

(4.8) πi(d + 1, q−i + 1) ≥ πi(d, q−i + 1).

Moreover, since d + 1 ≥ 1, we see p(d + 1 + q−i + 1) > ci > 0. Thus, we have
p(d + 1 + q−i + 1) = r(d + 1 + q−i + 1). This implies that

πi(d + 1, q−i + 1) = (r(d + 1 + q−i + 1)− ci)(d + 1).

Finally, by (H3),

(r(d + 1 + q−i + 1)− ci)(d + 1) < (r(d + q−i + 1)− ci)(d + 1)

= max{(p(d + q−i + 1)− ci)(d + 1), 0}
= πi(d, q−i + 1),

which contradicts (4.8). ¤
Step 3: Conclusion (Application of the discrete fixed point theorem). In this step,
we first quote the discrete fixed point theorem from [9]. Throughout this step,
V ⊂ Zn, (V,≺=) is a partially ordered set and F : V → V is a nonempty set-valued
mapping. Also, the symbol x ¹ y means x ≺= y and x 6= y.

Proposition 4.4 ( [9, Theorem 2.2]). Assume that there exists a sequence {xk}k≥0

in V such that xk ≺= xk+1 ∈ F (xk) for any k ≥ 0, and {x ∈ V : x0 ≺= x} is finite.
Then F has a fixed point x∗ ∈ F (x∗).

We here modify ϕ1(q2) and ϕ2(q1) to be integers, and define sequences {qk
i }m−i

k=0 ⊂
Qi (i = 1, 2):

qk
i :=

{ dϕi(k)e, if πi(dϕi(k)e, k) > πi(bϕi(k)c, k)
bϕi(k)c, if πi(dϕi(k)e, k) ≤ πi(bϕi(k)c, k).

Then the following hold:
(a) qk

1 ∈ φ1(k) for all k ∈ Q2;
(b) ql

2 ∈ φ2(l) for all l ∈ Q1.
Further, by Lemmas 4.1 and 4.3, we get qk

1 ≥ qk+1
1 for all k = 0, . . . , m1 − 1 and

ql
2 ≥ ql+1

2 for all l = 0, . . . , m2−1. We here define the partial order (q1, q2) ≺= (q̂1, q̂2)
for any (q1, q2), (q̂1, q̂2) ∈ Q := Q1 ×Q2 by q1 ≤ q̂1 and q2 ≥ q̂2. Moreover, starting

with the minimum point q0 := (0,m2), we define q1 := (qm2
1 , q0

2), q2 := (qq0
2

1 , q
q

m2
1

2 )
and so on. Then we have

(4.9) q0 ≺= q1 ≺= q2 ≺= · · ·
and qk+1 ∈ φ(qk) for all k ≥ 0. Indeed, the first inequality of (4.9) is evident and the
others follow from (a) and (b). Finally, applying Proposition 4.4 to (V, f) = (Q,φ),
we conclude that φ has a discrete fixed point, which is a discrete Cournot-Nash
equilibrium. This proves the main theorem, Theorem 2.2. ¤



426 JUN-ICHI SATO

5. Concluding remarks

It is not hard to calculate a discrete Cournot-Nash equilibrium for each example
in Section 3. Indeed, (1, 2), (3, 4) and (3, 5) are the discrete Cournot-Nash equilib-
ria for Examples 3.2, 3.1 and 3.3, respectively. Although Theorem 2.2 proves the
existence of a discrete Cournot-Nash equilibrium, it does not define how it should
be computed, which is another important research question.

As an aside, several studies have focused on discretized market competition mod-
els. We conclude this paper by introducing two of these studies. The first is based
on discrete convex analysis as proposed by Murota [8], while the other is based on
discrete fixed point theorems.

The economic model proposed by Danilov et al. [4] was the first based on discrete
convex analysis, and was derived from an Arrow-Debreu type model. The model
was extended by Danilov et al. [3]. Lehmann et al. [7] considered auctions, while
Tamura [10] expounded on discretized market competition models.

On the other hand, Iimura [5] showed the existence of a Walrasian equilibrium
with indivisible commodities as an application of the discrete fixed point theorem
of Iimura et al. [6]. His theorem is based on Brouwer’s fixed point theorem and
relies on an integrally convex set, while Proposition 4.4 is based on monotonicity of
a set-valued mapping and is valid for any finite set. Therefore, these discrete fixed
point theorems are of different types.
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