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WEAK CONVERGENCE THEOREMS FOR A COUNTABLE
FAMILY OF RELATIVELY NONEXPANSIVE MAPPINGS†

WEERAYUTH NILSRAKOO AND SATIT SAEJUNG

Abstract. In this paper, we establish weak convergence theorems for finding
common fixed points of a countable family of relatively nonexpansive mappings
in a uniformly smooth and uniformly convex Banach space. Weak convergence
theorems for finding a common element of the set of fixed points and the set of
solutions of a variational inequality problem are also obtained. With an appro-
priate setting, the corresponding results due to Nadezhkina–Takahashi [13] are
deduced.

1. Introduction

Let E be a Banach space, C be a nonempty closed convex subset of E. A mapping
T : C → E is said to be Lipschitzian if there exists a positive constant k such that

‖Tx− Ty‖ ≤ k‖x− y‖ for all x, y ∈ C.

In this case, T is also said to be k-Lipschitzian. If k = 1, then T is known as
a nonexpansive mapping. We denote by F(T ) the set of fixed points of T , that
is, F(T ) = {x ∈ C : x = Tx}. A mapping T is said to be quasi-nonexpansive if
F(T ) 6= ∅ and

‖Tx− y‖ ≤ ‖x− y‖ for all x ∈ C and y ∈ F(T ).

It is easy to see that if T is nonexpansive with F(T ) 6= ∅, then it is quasi-
nonexpansive. We write xn → x (xn ⇀ x, resp.) if {xn} converges strongly (weakly,
resp.) to x. Recall that a mapping T : C → E is demi-closed at y, if xn ⇀ x and
Txn → y, then Tx = y. A point p in C is said to be an asymptotic fixed point of
T [15] if there exists a sequence {xn} in C such that xn ⇀ p and xn − Txn → 0.
The set of asymptotic fixed points of T is denoted by F̂(T ). It easy to see that
F(T ) ⊂ F̂(T ). Then F(T ) = F̂(T ) if and only if I − T is demi-closed at zero.

Let E be a smooth Banach space and let E∗ be the dual of E. Denote by 〈·, ·〉
the pairing between E and E∗. The normalized duality mapping J from E to 2E∗

is defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2} where x ∈ E.

The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ E.
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We say that a mapping T is relatively nonexpansive [11, 12, 15] if the following
conditions are satisfied:

(R1) F(T ) 6= ∅;
(R2) φ(u, Tx) ≤ φ(u, x) for each x ∈ C and u ∈ F(T );
(R3) F(T ) = F̂(T ).

A relatively nonexpansive mapping T is said to be strongly relatively nonexpansive
[15] if for each bounded sequence {zn} in C such that

φ(u, zn)− φ(u, Tzn) → 0

for some u ∈ F(T ), then φ(zn, T zn) → 0.
Examples of relatively or strongly relatively nonexpansive mappings can be

founded in Kohsaka and Takahashi [9, 10], Matsushita and Takahashi [11, 12] and
Reich [15].

Several articles have appeared providing methods for approximating fixed points
of relatively nonexpansive mappings [9, 10, 11, 12]. Matsushita and Takahashi [11]
introduced the following iteration: a sequence {xn} defined by

(1.1) xn+1 = ΠCJ−1(αnJxn + (1− αn)JTxn) for all n ∈ N,

where the initial guess element x1 ∈ C is arbitrary, {αn} is a real sequence in [0, 1],
T is a relatively nonexpansive mapping and ΠC denotes the generalized projection
from E onto a closed convex subset C of E. They proved that the sequence {xn}
converges weakly to a fixed point of T . Recently, Kohsaka and Takahashi [9] ex-
tended the iteration (1.1) to obtain a weak convergence theorem for common fixed
points of a finite family of relatively nonexpansive mappings {Ti}m

i=1 by the following
iteration:

(1.2) xn+1 = ΠCJ−1

( m∑
i=1

wn,i(αn,iJxn + (1− αn,i)JTixn)
)

for all n ∈ N,

where x1 ∈ C, {αn,i} ⊂ [0, 1] and {wn,i} ⊂ [0, 1] with
∑m

i=1 wn,i = 1 for all n ∈ N.
In this paper, we establish weak convergence theorems for finding common fixed

points of a countable family of relatively nonexpansive mappings in a uniformly
smooth and uniformly convex Banach space. We also establish weak convergence
theorems for finding a common element of the set of fixed points and the set of so-
lutions of a variational inequality problem. With an appropriate setting, we deduce
the corresponding results due to Nadezhkina–Takahashi [13].

2. Preliminaries

Let E be a Banach space. We say that E is strictly convex if the following
implication holds for x, y ∈ E:

‖x‖ = ‖y‖ = 1 and x 6= y imply
∥∥∥∥x + y

2

∥∥∥∥ < 1.

It is also said to be uniformly convex if for any ε > 0, there exists δ > 0 such that

‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε imply
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− δ.
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It is known that if E is a uniformly convex Banach space, then E is reflexive and
strictly convex. Moreover, we know that the following result:

Lemma 2.1 ([17], Theorem 2). Let E be a uniformly convex Banach space and
Br := {x ∈ E : ‖x‖ ≤ r}, r > 0. Then there exists a continuous strictly increasing
convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

‖αx + (1− α)y‖2 ≤ α‖x‖2 + (1− α)‖y‖2 − α(1− α)g(‖x− y‖)
for all x, y ∈ Br and α ∈ [0, 1].

A Banach space E is said to be smooth if

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S(E) := {x ∈ E : ‖x‖ = 1}. In this case, the norm of E is
said to be Gâteaux differentiable. The space E is said to have uniformly Gâteaux
differentiable norm if for each y ∈ S(E), the limit (2.1) is attained uniformly for
x ∈ S(E). The norm of E is said to be Fréchet differentiable if for each x ∈ S(E),
the limit (2.1) is attained uniformly for y ∈ S(E). The norm of E is said to be
uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit
(2.1) is attained uniformly for x, y ∈ S(E). The normalized duality mapping J from
E to 2E∗

(see [5] for more details) is defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2} where x ∈ E.

We say that J is weakly sequentially continuous if for a sequence {xn} ⊂ E with
xn ⇀ x, then Jxn

∗
⇀ Jx, where denotes ∗

⇀ the weak* convergence. We also know
the following properties (see e.g. [16] for details):

(a) E (E∗, resp.) is uniformly convex if and only if E∗ (E, resp.) is uniformly
smooth.

(b) J(x) 6= ∅ for each x ∈ E.
(c) If E is reflexive, then J is a mapping of E onto E∗.
(d) If E is strictly convex, then J(x) ∩ J(y) = ∅ for all x 6= y.
(e) If E is smooth, then J is single valued and norm-to-weak* continuous.
(f) If E has a Fréchet differentiable norm, then J is norm to norm continuous.
(g) If E is uniformly smooth, then J is uniformly norm to norm continuous on

each bounded subset of E.
Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ E.

It is obvious from the definition of the function φ that

(2.2) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 for all x, y ∈ E.

It is also easy to see that if {xn} and {yn} are bounded sequences of a smooth
Banach space E, then ‖xn − yn‖ → 0 implies that φ(xn, yn) → 0. The converse is
also true if E is additionally assumed to be uniformly convex.

Lemma 2.2 ([8], Proposition 2). Let E be a uniform convex and smooth Banach
space and let {xn} and {yn} be two sequences of E such that {xn} or {yn} is bounded.
If φ(xn, yn) → 0, then ‖xn − yn‖ → 0.
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Lemma 2.3 ([9], Lemma 2.5). Let E be a uniformly convex and smooth Banach
space and let r > 0. Then there exists a continuous strictly increasing convex func-
tion h : [0, 2r] → [0,∞) such that h(0) = 0 and

h(‖x− y‖) ≤ φ(x, y)

for all x, y ∈ Br.

Let C be a nonempty closed convex subset of E. Suppose that E is reflexive,
strictly convex and smooth. It is known that [8] for any x ∈ E there exists a unique
point x̂ ∈ C such that

φ(x̂, x) = min
y∈C

φ(y, x).

Following Alber [1], we denote such an x̂ by ΠCx. The mapping ΠC is called the
generalized projection from E onto C. Concerning the generalized projection, the
following are well known.

Lemma 2.4 ([8], Proposition 4). Let C be a nonempty closed convex subset of a
reflexive, strictly convex, and smooth Banach space E. Suppose that x ∈ E and
x̂ ∈ C. Then

x̂ = ΠCx ⇐⇒ 〈x̂− y, Jx− Jx̂〉 ≥ 0 for each y ∈ C.

Lemma 2.5 ([8], Proposition 5). Let E be a reflexive, strictly convex, and smooth
Banach space, let C be a nonempty closed convex subset of E, and let x ∈ E. Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x) for each y ∈ C.

Lemma 2.6 ([7], Lemma 2.7). Let C be a nonempty closed convex subset of a
uniformly convex and smooth Banach space E. Let {xn} be a sequence in E such
that

φ(y, xn+1) ≤ φ(y, xn) for all y ∈ C and n ∈ N.
Then the sequence {ΠC(xn)} converges strongly to some z ∈ C.

Lemma 2.7 ([12], Proposition 2.4). Let E be a strictly convex and smooth Banach
space, let C be a nonempty closed convex subset of E, and let T be a relatively
nonexpansive mapping from C into E. Then F(T ) is closed and convex.

To deal with a family of mappings, the following conditions are introduced: Let
C be a subset of a reflexive, strictly convex and smooth Banach space E, let {Tn}
be a family of mappings of C into E with

⋂∞
n=1 F(Tn) 6= ∅ and ωw{zn} denotes the

set of all weak subsequential limits of a bounded sequence {zn} in C. {Tn} is said
to satisfy

(a) the AKTT-condition (I) [2] if for each bounded subset B of C,
∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞;

(b) the AKTT-condition (II) [3] if for each bounded closed convex subset B
of C and each increasing subsequence {ni} of {n}, there exist a mapping
T : C → E and a subsequence {nij} of {ni} such that

lim
j→∞

sup{‖Tz − Tnij
z‖ : z ∈ B} = 0
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and F̂(T ) = F(T ) =
⋂∞

n=1 F(Tn);
(c) the KT-condition [9] if for each bounded sequence {zn} in C such that

φ(u, zn)− φ(u, Tnzn) → 0

for some u ∈
⋂∞

n=1 F(Tn), then ωw{zn} ⊂
⋂∞

n=1 F(Tn).

Lemma 2.8 ([2], Lemma 3.2). Let E be a Banach space, let C be a nonempty
subset of E and let {Tn} be a family of mappings from C into E. Suppose that {Tn}
satisfies AKTT-condition (I). Then the mapping T : C → E defined by

(2.3) Tx = lim
n→∞

Tnx for all x ∈ C

satisfies
lim

n→∞
sup{‖Tz − Tnz‖ : z ∈ B} = 0

for each bounded subset B of C. In particular, if F̂(T ) = F(T ) =
⋂∞

n=1 F(Tn), then
{Tn} satisfies the AKTT-condition (II).

From now on, we will write ({Tn}, T ) satisfies AKTT-condition (I) if {Tn} satisfies
AKTT-condition (I) and T is defined by (2.3).

Lemma 2.9. Let E be a uniformly convex and smooth Banach space and let C be
a nonempty subset of E. If T is a strongly relatively nonexpansive mapping from C
into E, then {Tn} satisfies the KT-condition, where Tn ≡ T .

Proof. Let {zn} be a bounded sequence in C such that

φ(u, zn)− φ(u, Tzn) → 0

for some u ∈ F (T ). Since T is strongly relatively nonexpansive, φ(zn, T zn) → 0. By
Lemma 2.2, we have ‖zn−Tzn‖ → 0. It follows from (R3) that ωw{zn} ⊂ F(T ). �

Lemma 2.10 ([10], Lemmas 3.1 and 3.2). Let E be a uniformly convex and uni-
formly smooth Banach space,and let C be a nonempty closed convex subset of E.
Let T be a relatively nonexpansive mapping from C into E. Let U be the mapping
defined by,

U = ΠCJ−1(αJ + (1− α)JT )

where α ∈ (0, 1), then U is a strongly relatively nonexpansive mapping from C into
itself and F(U) = F(T ).

Lemma 2.11. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let {Tn} be a family of relatively
nonexpansive mappings from C into E with

⋂∞
n=1 F(Tn) 6= ∅ and satisfy AKTT-

condition (II). Let {Un} be a family of strongly relatively nonexpansive mappings
from C into itself defined by,

Un = ΠCJ−1(αnJ + (1− αn)JTn),

for all n ∈ N, where {αn} is a sequence in (0, 1) such that lim infn→∞ αn(1−αn) > 0.
Then {Un} satisfies the KT-condition and

⋂∞
n=1 F(Un) =

⋂∞
n=1 F(Tn).
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Proof. By Lemma 2.10, we have F(Tn) and hence
⋂∞

n=1 F(Un) = F(Un) =⋂∞
n=1 F(Tn). To show that {Un} satisfies KT-condition, let {zn} be a bounded

sequence in C such that

(2.4) φ(u, zn)− φ(u, Unzn) → 0 for some u ∈ ∩∞n=1 F(Un).

Since {zn} is bounded and φ(u, Tnzn) ≤ φ(u, zn) for all n ∈ N, {Tnzn} is bounded.
Take r > 0 such that {zn}, {Tnzn} ⊂ Br. Since E is uniformly smooth, E∗ is
uniformly convex. Then, by Lemma 2.1, we have a continuous strictly increasing
and convex function g∗ : [0,∞) → [0,∞) such that g∗(0) = 0 and

‖αnJzn+(1−αn)JTnzn‖2 ≤ αn‖zn‖2+(1−αn)‖Tnzn‖2−αn(1−αn)g∗(‖Jzn−JTnzn‖)

for all n ∈ N. It follows from u ∈
⋂∞

n=1 F(Tn) that

φ(u, Unzn) ≤ φ(u, J−1(αnJzn + (1− αn)JTnzn))

= ‖u‖2 − 2〈u, αnJzn + (1− αn)JTnzn〉+ ‖αnJzn + (1− αn)JTnzn‖2

≤ ‖u‖2 − 2αn〈u, Jzn〉 − 2(1− αn)〈u, JTnzn〉
+ αn‖zn‖2 + (1− αn)‖Tnzn‖2 − αn(1− αn)g∗(‖Jzn − JTnzn‖)

= αnφ(u, zn) + (1− αn)φ(u, Tnzn)− αn(1− αn)g∗(‖Jzn − JTnzn‖)
≤ αnφ(u, zn) + (1− αn)φ(u, zn)− αn(1− αn)g∗(‖Jzn − JTnzn‖)
= φ(u, zn)− αn(1− αn)g∗(‖Jzn − JTnzn‖),

that is,

αn(1− αn)g∗(‖Jzn − JTnzn‖) ≤ φ(u, zn)− φ(u, Unzn) → 0.

From (2.4) and lim infn→∞ αn(1− αn) > 0, we have

g∗(‖Jzn − JTnzn‖) → 0.

This implies that
‖Jzn − JTnzn‖ → 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

(2.5) lim
n→∞

‖zn − Tnzn‖ = lim
n→∞

‖J−1(Jzn)− J−1(JTnzn)‖ = 0.

Finally, we show that ωw{zn} ⊂
⋂∞

n=1 F(Tn) =
⋂∞

n=1 F(Un), let z′ ∈ ωw{zn}. Then
zni ⇀ z′ for some subsequence {ni} of {n}. Since {Tn} satisfies AKTT-condition
(II), there exist a mapping T : C → E and a subsequence {nij} of {ni} such that

lim
j→∞

sup{‖Tz − Tnij
z‖ : z ∈ {zn}} = 0

and F̂(T ) = F(T ) =
⋂∞

n=1 F(Tn). Then znij
⇀ z′. From (2.5), we have

‖znij
− Tznij

‖ ≤ ‖znij
− Tnij

znij
‖+ ‖Tznij

− Tnij
znij

‖
≤ ‖znij

− Tnij
znij

‖+ sup{‖Tz − Tnij
z‖ : z ∈ {zn}} → 0

as j → ∞. This implies that z′ ∈ F̂(T ) =
⋂∞

n=1 F(Tn) and hence ωw{zn} ⊂⋂∞
n=1 F(Tn). Therefore, {Un} satisfies the KT-condition. �
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The following lemma is proved in [9, Lemma 5.2] which can be deduced from our
Lemma 2.11.

Lemma 2.12. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let {Ti}m

i=1 be a finite family of
relatively nonexpansive mappings from C into E such that

⋂m
i=1 F(Ti) is nonempty

and let {Un} be a family of block mappings defined by

Un = ΠCJ−1

( m∑
i=1

wn,i(αn,iJ + (1− αn,i)JTi)
)

,

for all n ∈ N, where {αn,i : n, i ∈ N, 1 ≤ i ≤ m} ⊂ (0, 1) and {ωn,i : n, i ∈
N, 1 ≤ i ≤ m} ⊂ (0, 1) are sequences such that lim infn→∞ αn,i(1 − αn,i) > 0,
lim infn→∞ ωn,i > 0 for all i ∈ {1, 2, . . . ,m} and

∑m
i=1 wn,i = 1 for all n ∈ N. Then

{Un} satisfies the KT-condition and
⋂∞

n=1 F(Un) =
⋂m

i=1 F(Ti).

3. Weak convergence theorems

In this section, we establish weak convergence theorems for finding common fixed
points of a countable family of relatively nonexpansive mappings in a Banach space.

Theorem 3.1. Let E be a uniformly convex and smooth Banach space, and let
C be a nonempty closed convex subset of E. Let {Un} be a family of relatively
nonexpansive mappings from C into itself such that F =

⋂∞
n=1 F(Un) is nonempty,

and let {xn} be a sequence in C defined by x1 ∈ C and

xn+1 = Unxn, for all n ∈ N.

If {Un} satisfies the KT-condition and J is weakly sequentially continuous, then
{xn} converges weakly to z ∈ F. Moreover, limn→∞ΠF(xn) = z.

Proof. For each u ∈ F and n ∈ N, we have

(3.1) φ(u, xn+1) = φ(u, Unxn) ≤ φ(u, xn).

This implies that limn→∞ φ(u, xn) exists. It follows that {xn} is bounded and

φ(u, xn)− φ(u, Unxn) = φ(u, xn)− φ(u, xn+1) → 0.

Since {Un} satisfies the KT-condition, ωw{xn} ⊂ F. For each n ∈ N, let x̃n =
ΠF(xn). By (3.1) and Lemma 2.6, there is z ∈ F such that x̃n → z. To prove that
xn ⇀ z, let {xni} be a subsequence of {xn} such that xni ⇀ z′ ∈ ωw{xn} ⊂ F.
Notice that

〈x̃n − z′, Jxn − Jx̃n〉 ≥ 0, for all n ∈ N.

In particular,
〈x̃ni − z′, Jxni − Jx̃ni〉 ≥ 0.

Since x̃n → z and J is weakly sequentially continuous,

〈z − z′, Jz′ − Jz〉 ≥ 0.

On the other hand, from the monotonicity of J , we have

〈z′ − z, Jz′ − Jz〉 ≥ 0.
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Thus, we have
〈z′ − z, Jz′ − Jz〉 = 0.

Using the strict convexity of E, we obtain z′ = z. This implies that {xn} converges
weakly to z = limn→∞ΠF(xn). This completes the proof. �

Using Lemma 2.11 and Theorem 3.1, we have the following result.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let {Tn} be a family of relatively
nonexpansive mappings from C into E such that F =

⋂∞
n=1 F(Tn) 6= ∅. Let {xn}

be a sequence in C defined by x1 ∈ C and

(3.2) xn+1 = ΠCJ−1(αnJxn + (1− αn)JTnxn) for all n ∈ N,

where {αn} is a sequence in (0, 1) with lim infn→∞ αn(1 − αn) > 0. If {Tn} sat-
isfies the AKTT-condition (II) and J is weakly sequentially continuous, then {xn}
converges weakly to the strong limit of {ΠF(xn)}.

Using Lemma 2.12 and Theorem 3.1, we have the following result.

Corollary 3.3 ([9], Theorem 5.3). Let E be a uniformly convex and uniformly
smooth Banach space, and let C be a nonempty closed convex subset of E. Let
{Ti}m

i=1 be a finite family of relatively nonexpansive mappings from C into E such
that

⋂m
i=1 F (Ti) is nonempty and let {xn} be a sequence in C defined by x1 ∈ C and

xn+1 = ΠCJ−1

( m∑
i=1

wn,i(αn,iJxn + (1− αn,i)JTixn)
)

for all n ∈ N,

where {αn,i : n, i ∈ N, 1 ≤ i ≤ m} ⊂ (0, 1) and {ωn,i : n, i ∈ N, 1 ≤ i ≤ m} ⊂ (0, 1)
are sequences such that lim infn→∞ αn,i(1 − αn,i) > 0, lim infn→∞ ωn,i > 0 for all
i ∈ {1, 2, . . . ,m} and

∑m
i=1 wn,i = 1 for all n ∈ N. If J is weakly sequentially

continuous, then {xn} converges weakly to the strong limit of {ΠF(xn)}.

4. Common solutions of a fixed point problem and a variational
inequality problem

In this section, we present several related results which can be deduced by corre-
sponding convergence theorems obtained in Section 3. Let C be a nonempty closed
convex subset of a Hilbert space H. Then, for any x ∈ H, there exists a unique
nearest point in C, denoted by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

Such a mapping PC is called the metric projection of H onto C. We know that PC

is nonexpansive. Furthermore, for x ∈ H and z ∈ C,

(4.1) z = PCx if and only if 〈x− z, z − y〉 ≥ 0 for all y ∈ C

and

(4.2) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖PCx− x‖2 for all x ∈ H, y ∈ C.

In Hilbert spaces, we have
(1) T is relatively nonexpansive if and only if T is quasi-nonexpansive with I−T

is demi-closed at zero;
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(2) ΠC = PC ;
(3) J is an identity operator.

It is also known that H is uniformly convex and uniformly smooth.
Using Theorem 3.2, we obtain the following result:

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H
and let {Tn} be a family of quasi-nonexpansive mappings from C into H such that
F =

⋂∞
n=1 F(Tn) 6= ∅ and I − Tn is demi-closed at zero for all n ∈ N. Let {xn} be

a sequence in C defined by x1 ∈ C and

(4.3) xn+1 = PC(αnxn + (1− αn)Tnxn) for all n ∈ N,

where {αn} is a sequence in (0, 1) with lim infn→∞ αn(1 − αn) > 0. If {Tn} sat-
isfies the AKTT-condition (II), then {xn} converges weakly to the strong limit of
{PF(xn)}.

Lemma 4.2 ([6], Theorem 10.4). Let C be a nonempty closed convex subset of a
Hilbert space H and let T be a nonexpansive mapping of C into H. Then I − T is
demi-closed at zero.

Corollary 4.3. Let C be a nonempty closed convex subset of a Hilbert space H
and let {Tn} be a family of nonexpansive mappings from C into H such that F =⋂∞

n=1 F(Tn) 6= ∅. Let {xn} be a sequence defined by (4.3), where {αn} is a sequence
in (0, 1) with lim infn→∞ αn(1−αn) > 0. If {Tn} satisfies the AKTT-condition (II),
then {xn} converges weakly to the strong limit of {PF(xn)}.

Let C be a nonempty closed convex subset of a Hilbert space H and A be a
mapping of C into H. The classical variational inequality problem is to find x ∈ C
such that

〈Ax, y − x〉 ≥ 0 for all y ∈ C.

The set of solutions of classical variational inequality problem is denoted by VI(C,A).
A mapping A of C into H is said to be

(1) monotone if

〈Ax−Ay, x− y〉 ≥ 0 for all x, y ∈ C;

(2) α-inverse-strongly-monotone, where α > 0, if

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2 for all x, y ∈ C.

Note that every α-inverse-strongly-monotone mapping is monotone and (1/α)- Lip-
schitzian.

We need the following lemmas.

Lemma 4.4 ([4], Corollaries 15, 17). Let C be a nonempty closed convex subset of
a Hilbert space H. Let A be a monotone and k-Lipschitzian mapping of C into H
and S be a nonexpansive mapping from C into H such that F(S) ∩ VI(C,A) 6= ∅.
Let T be a mapping of C into H defined by

T = SPC(I − λA(PC(I − λA))),

where λ ∈ (0, 1/k). Then
(i) T is quasi-nonexpansive and F(T ) = F(S) ∩VI(C,A),
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(ii) I − T is demi-closed at zero.

Lemma 4.5. Let C be a nonempty closed convex subset of a Hilbert space H. Let
A be a monotone and k-Lipschitzian mapping of C into H and {Sn} be a family
of nonexpansive mappings of C into H such that

⋂∞
n=1 F(Sn) ∩ VI(C,A) 6= ∅. Let

{Tn} be a sequence of quasi-nonexpansive mappings of C into H defined by

Tn = SnPC(I − λnA(PC(I − λnA))),

for all n ∈ N, where {λn} is a sequence in [c, d] ⊂ (0, 1/k). If ({Sn}, S) satisfies
AKTT-condition (I) and F(S) =

⋂∞
n=1 F(Sn), then {Tn} satisfies AKTT-condition

(II).

Proof. By Lemma 4.4, we have F(Tn) = F(Sn) ∩VI(C,A) and hence
∞⋂

n=1

F(Tn) =
∞⋂

n=1

F(Sn) ∩VI(C,A) = F(S) ∩VI(C,A) 6= ∅.

Let {ni} be a subsequence of {n}. Since {λni} is a sequence in [c, d], there exists a
subsequence {nij} of {ni} such that λnij

→ λ ∈ [c, d]. Put

T = SPC(I − λA(PC(I − λA))).

Then T is a quasi-nonexpansive mapping of C into H and I − T is demi-closed at
zero. So, we get

F̂(T ) = F(T ) = F(S) ∩VI(C,A) =
∞⋂

n=1

F(Tn).

Let Wn = PC(I −λnA(PC(I −λnA)) and W = PC(I −λA(PC(I −λA))). Since PC

is nonexpansive and A is k-Lipschitzian,

‖Wnij
z −Wz‖ ≤ ‖(I − λnij

A(PC(I − λnij
A)))z − (I − λA(PC(I − λA)))z‖

=
∣∣λnij

− λ
∣∣‖A(PC(I − λnij

A))z −A(PC(I − λA))z‖

≤ k
∣∣λnij

− λ
∣∣‖PC(I − λnij

A)z − PC(I − λA)z‖

≤ k
∣∣λnij

− λ
∣∣‖(I − λnij

A)z − (I − λA)z‖

= k
∣∣λnij

− λ
∣∣2‖Az‖(4.4)

for all z ∈ C and j ∈ N. Let B be a bounded subset of C. Then {Az : z ∈ B} and
{Wz : z ∈ B} are bounded. From (4.4) and Lemma 2.8, we obtain

(4.5) lim
j→∞

sup{‖Wz −Wnij
z‖ : z ∈ B} = 0

and

(4.6) lim
j→∞

sup{‖SWz − Snij
Wz‖ : z ∈ B} = 0,

respectively. From (4.5) and (4.6), we get

sup{‖Tz − Tnij
z‖ : z ∈ B}

= sup{‖SWz − Snij
Wnij

z‖ : z ∈ B}
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≤ sup{‖SWz − Snij
Wz‖+ ‖Snij

Wz − Snij
Wnij

z‖ : z ∈ B}
≤ sup{‖SWz − Snij

Wz‖+ ‖Wz −Wnij
z‖ : z ∈ B}

≤ sup{‖SWz − Snij
Wz‖ : z ∈ B}+ sup{‖Wz −Wnij

z‖ : z ∈ B} → 0

as j →∞. This implies that {Tn} satisfies the AKTT-condition (II). �

Using Lemma 4.5 and Theorem 4.1, we have the following theorem.

Theorem 4.6. Let C be a nonempty closed convex subset of a Hilbert space H. Let
A be a monotone and k-Lipschitzian mapping of C into H and {Sn} be a family
of nonexpansive mappings of C into H such that

⋂∞
n=1 F(Sn) ∩ VI(C,A) 6= ∅. Let

{xn} be a sequence generated by x1 ∈ C and
yn = PC(xn − λnAxn),

xn+1 = PC(αnxn + (1− αn)SnPC(xn − λnAyn)),

for all n ∈ N, where {αn} is a sequence in [a, b] ⊂ (0, 1) and {λn} is a sequence in
[c, d] ⊂ (0, 1/k). If ({Sn}, S) satisfies AKTT-condition (I) and F(S) =

⋂∞
n=1 F(Sn),

then {xn} converges weakly to z = limn→∞ PF(S)∩VI(C,A)(xn).

Setting Sn ≡ S in Theorem 4.6, we have the following result.

Corollary 4.7. Let C be a nonempty closed convex subset of a Hilbert space H. Let
A be a monotone and k-Lipschitzian mapping of C into H and S be a nonexpansive
mapping of C into H such that F(S) ∩ VI(C,A) 6= ∅. Let {xn} be a sequence
generated by x1 ∈ C and

yn = PC(xn − λnAxn),

xn+1 = PC(αnxn + (1− αn)SPC(xn − λnAyn)),

for all n ∈ N, where {αn} is a sequence in [a, b] ⊂ (0, 1) and {λn} is a sequence in
[c, d] ⊂ (0, 1/k). Then {xn} converges weakly to z = limn→∞ PF(S)∩VI(C,A)(xn).

Remark 4.8. Corollary 4.7 includes Theorem 3.1 of [13] as a special case.

References

[1] Y. I. Alber, Metric and generalized projection operators in Banach space: properties and appli-
cations, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type,
A. G. Katrosatos (ed.), Marcel Dekker, New York, 1996, pp. 15–50.

[2] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points
of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007),
2350–2360.

[3] K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Finding common fixed points of a
countable family of nonexpansive mappings in a Banach space, Sci. Math. Japon. 66 (2007),
89–99.

[4] J.-P. Chancelier, T -class algorithms for pseudocontractions and κ-strict pseudocontractions in
Hilbert spaces, Nonlinear Anal. 71 (2009), 5688–5694.

[5] I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, in Math-
ematics and its Applications, 62. Kluwer Academic Publishers Group, Dordrecht, 1990.

[6] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press,
Cambridge. 1990.

[7] H. Iiduka and W. Takahashi, Weak convergence of a projection algorithm for variational in-
equalities in a Banach space, J. Math. Anal. Appl. 339 (2008), 668–679.



418 W. NILSRAKOO AND S. SAEJUNG

[8] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach
space, SIAM J. Optim. 13 (2002), 938–945

[9] F. Kohsaka and W. Takahashi, Block iterative methods for a finite family of relatively non-
expansive mappings in Banach spaces, Fixed Point Theory Appl. 2007, Art. ID 21972, 18
pp.

[10] F. Kohsaka and W. Takahashi, Approximating common fixed points of countable families of
strongly nonexpansive mappings, Nonlinear Stud. 14 (2007), 219–234.

[11] S. Matsushita and W. Takahashi, Weak and strong convergence theorems for relatively non-
expansive mappings in a Banach space, Fixed Point Theory and Applications 2004 (2004),
37–47.

[12] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive
mappings in a Banach space, J. Approx. Theory 134 (2005), 257–266.

[13] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for
nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006), 191–201.

[14] W. Nilsrakoo and S. Saejung, Strong convergence to common fixed points of countable relatively
quasi-nonexpansive mappings, Fixed Point Theory Appl. 2008, Art. ID 312454, 19 pp.

[15] S. Reich, weak convergence theorem for the alternating method with Bregman distances, Theory
and applications of nonlinear operators of accretive and monotone type, 313–318, Lecture
Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.

[16] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[17] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–

1138.

Manuscript received May 29, 2009

revised September 10, 2009

Weerayuth Nilsrakoo
Department of Mathematics, Statistics and Computer, Ubon Rajathanee University,
Ubon Ratchathani 34190, Thailand

E-mail address: nweerayuth@sci.ubu.ac.th

Satit Saejung
Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand

E-mail address: saejung@kku.ac.th


