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ABSORBING STATES AND QUASI-CONVEXITY IN
SELF-ORGANIZING MAPS

MITSUHIRO HOSHINO AND YUTAKA KIMURA

Abstract. The purpose of this paper is to make a study of absorbing states and
their characterization in self-organizing map models. Self-organizing map algo-
rithm is very practical and has many useful applications. However, its theoretical
and mathematical structure is not clear. We introduce quasi-convexity for model
function in basic self-organizing map models.

1. Formulation of self-organizing map models

We consider self-organizing map models referred to as Kohonen [5] type algo-
rithm. Self-organizing map algorithm is very practical and has many useful ap-
plications, semantic map, diagnosis of speech voicing, solving traveling-salesman
problem, and so on. There are some interesting phenomena between the array of
nodes and the values of nodes in these models.

We consider to characterize a model (I, V, X, {mk(·)}∞k=0) with four elements
which consist of the nodes, the values of nodes, inputs and model functions with
some learning processes, in this paper. There are several types of models with
various spaces of nodes, spaces of their values and ways of learning for nodes. We
suppose the followings.

(i) We suppose an array of nodes. Let I denote the set of all nodes, which
is called the node set. We assume that I is a countable set metrized by a
metric d. In many applications, usually, we use the following ones, a finite
subset of the set N of all natural numbers, or a finite subset of N2.

(ii) We suppose that each node has its value. V is the space of values of nodes.
We assume that V is a normed linear space with ‖·‖. A mapping m : I → V
transforming each node i to its value m(i) is called a model function or a
reference function. Let M be the set of all model functions.

(iii) X is the input set. Let X be a subset of V . x ∈ X is called an input.
(iv) The learning process is defined by the following. If an input is given, then

the value of each node is renewed to a new value according to the input.
If an input x is given, node i learns x and its value m(i) changes to a new
value m′(i) determined by

(1.1) m′(i) = (1− αm,x(i))m(i) + αm,x(i)x

according to the rate αm,x(i) ∈ [0, 1]. If an initial model function m0 and
a sequence x0, x1, x2, . . . ∈ X of inputs are given, then the model functions
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m1,m2,m3, . . . are generated sequentially according to the following equa-
tion.

(1.2) mk+1(i) = (1− αmk,xk
(i))mk(i) + αmk,xk

(i)xk.

There are several types of models with various spaces of nodes, spaces of their
values and ways of learning for nodes. In this paper, we use two types of learning
processes defined by the following.

Learning process A.
(a) Areas of learning: for each mk ∈ M and xk ∈ X,

I(mk, xk) =
{
i∗ ∈ I

∣∣ ‖mk(i∗)− xk‖ = inf
i∈I

‖mk(i)− xk‖
}
,

Nε(i) =
{
j ∈ I

∣∣ d(j, i) ≤ ε
}

(ε > 0 is the learning radius, i ∈ I).

(b) Learning-rate factor: 0 ≤ α ≤ 1.
(c) Learning:

mk+1(i) =


(1− α)mk(i) + αxk if i ∈ ∪

i∗∈I(mk,xk)
Nε(i∗),

mk(i) if i 6∈ ∪
i∗∈I(mk,xk)

Nε(i∗),
k = 0, 1, 2, . . . .

We note that, if I(mk, xk) = ©� then mk+1 = mk.

Learning process B. This learning process is the same as Learning process A
except that the one node J(mk, xk) is selected from I(mk, xk) by the given rule. If
i ∈ Nε(J(mk, xk)) then mk+1(i) = (1−α)mk(i) + αxk, otherwise mk+1(i) = mk(i).
For example, if I is a totally ordered finete set, J(mk, xk) may be defined by

J(mk, xk) = min
{
i∗ ∈ I

∣∣ ‖mk(i∗)− xk‖ = inf
i∈I

‖mk(i)− xk‖
}
.

2. The fundamental type of self-organizing map

In Sections 2 and 3, we restrict our considerations to basic self-organizing maps
with real-valued nodes and one dimensional array of nodes. Now, we suppose that
set V of values of nodes is identified with R which is the set of all real numbers.

(i) Let I = {1, 2, . . . , n} be the node set with metric d(i, j) = |i− j|. (ii) Assume
V = R, that is, each node is R-valued. A model function m is written as m =
[m(1),m(2), . . . ,m(n)]. (iii) x0, x1, x2, . . . ∈ X ⊂ R is an input sequence. (iv)
In Sections 2 and 3, we assume two learning processes defined by the followings.
These learning processes are essential in both theoretical study and application of
self-organizing map models.
Learning process A. (1-dimensional array, R-valued nodes and ε = 1) (a) areas
of learning: I(mk, xk) = {i∗ ∈ I | |mk(i∗) − xk| = infi∈I |mk(i) − xk|} and N1(i) =
{j ∈ I | |j − i| ≤ 1}; (b) learning-rate factor: 0 ≤ α ≤ 1; (c) learning: for each k =
0, 1, 2, . . ., if i ∈ ∪i∗∈I(mk,xk) N1(i∗) then mk+1(i) = (1 − α)mk(i) + αxk, otherwise
mk+1(i) = mk(i).

Learning process B. (1-dimensional array, R-valued nodes and ε = 1) (a) areas
of learning: J(mk, xk) = min{i∗ ∈ I | |mk(i∗) − xk| = infi∈I |mk(i) − xk|} and
N1(i) = {j ∈ I | |j − i| ≤ 1}; (b) learning-rate factor: 0 ≤ α ≤ 1; (c) learning:
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for each k = 0, 1, 2, . . ., if i ∈ N1(J(mk, xk)) then mk+1(i) = (1 − α)mk(i) + αxk,
otherwise mk+1(i) = mk(i).

If an input x0 ∈ X is given, then we choose node i∗ which has the most similar
value to x0 within m0(1),m0(2), . . . ,m0(n). Node i∗ and the nodes which are in
the neighborhood of i∗ learn x0 and their values change to new values m1(i) =
(1 − α)m0(i) + αx0. The nodes which are not in the neighborhood of i∗ do not
learn and their values do not change. Repeating these updating for the inputs
x1, x2, x3, . . ., the value of each node is renewed sequentially. Simultaneously, model
functions m1,m2,m3, . . . are also generated sequentially. By repeating learning,
some model functions have properties such as monotonicity and a certain regularity
may appear in the relation between the array of nodes and the values of nodes.
Self-organizing maps apply to many practical problems by using these properties.

3. Quasi-convexity and quasi-concavity of model function

In this section, we deal with the case of the 1-dimensional array, real-valued nodes
and the learning radius of ε = 1 defined in Section 2. The following properties are
well-known results.

Theorem 3.1. We consider a self-organizing map model (I = {1, 2, . . . , n}, V =
R, X ⊂ R, {mk(·)}∞k=0) with Learning process A(ε = 1). For model functions m1,
m2, m3, . . ., the following statements hold:

(i) if mk is increasing on I, then mk+1 is increasing on I;
(ii) if mk is decreasing on I, then mk+1 is decreasing on I;
(iii) if mk is strictly increasing on I, then mk+1 is strictly increasing on I;
(iv) if mk is strictly decreasing on I, then mk+1 is strictly decreasing on I.

Such properties as monotonicity may be called absorbing states of self-organizing
map models in the sense that once model function leads to increasing state, it never
leads to other states for the learning by any input. The purpose of this paper is to
make a study of absorbing states and their characterization.

We introduce quasi-convexity and quasi-concavity of model function in funda-
mental self-organization maps. Generally, we use convexity and quasi-convexity for
functions on convex sets. However, model functions in self-organizing maps are not
defined on a linear space, therefore, are not defined on a convex set in usual sense.
Now, we define quasi-convexity and quasi-concavity for a function on a totally or-
dered set instead of a convex set.

Definition 3.2. Let (Y,≤) be a totally ordered set and f a real-valued function on
Y . Then f is said to be quasi-convex on Y if for any y1, y2, y3 ∈ Y with y1 ≤ y2 ≤ y3,

(3.1) f(y2) ≤ max{f(y1), f(y3)}.
Also, f is said to be quasi-concave on Y if for any y1, y2, y3 ∈ Y with y1 ≤ y2 ≤ y3,

(3.2) f(y2) ≥ min{f(y1), f(y3)}.

We give a necessary and sufficient condition for the quasi-convexity defined on a
totally ordered set.
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Theorem 3.3. Let Y be a totally ordered set. Let f be a real-valued function on
Y . For each a ∈ R, we put La(f) = {y ∈ Y | f(y) ≤ a}, which is called a level set
of f . Then the following statements are equivalent.

(i) f is a quasi-convex function on Y ;
(ii) for all a ∈ R, if y1, y3 ∈ La(f) and y1 ≤ y2 ≤ y3, then y2 ∈ La(f).

Proof. (i) ⇒ (ii) If suppose y1, y3 ∈ La(f) and y1 ≤ y2 ≤ y3. Then, we have
f(y1) ≤ a and f(y3) ≤ a. By the quasi-convexity of f , f(y2) ≤ max{f(y1), f(y3)} ≤
a. This implies y2 ∈ La(f).

(ii) ⇒ (i) Let y1 ≤ y2 ≤ y3. Putting a = max{f(y1), f(y3)}, we have y1, y3 ∈
La(f). By condition (ii), we have y2 ∈ La(f). Therefore,

f(y2) ≤ a = max{f(y1), f(y3)}.

Thus f is a quasi-convex function. �

The following theorem is a result about properties of quasi-convex functions.

Theorem 3.4. Let Y be a totally ordered set. Let f be a real-valued function on
Y . Then the following statements hold:

(i) f is a quasi-convex function on Y if and only if −f is a quasi-concave
function on Y ;

(ii) f is quasi-convex and quasi-concave on Y if and only if f is monotone on
Y , that is, either f(y1) ≤ f(y2) for every y1 ≤ y2, or f(y1) ≥ f(y2) for
every y1 ≤ y2.

Theorem 3.5. We consider a self-organizing map model (I = {1, 2, . . . , n}, V =
R, X ⊂ R, {mk(·)}∞k=0) with Learning process A(ε = 1). For model functions m1,
m2, m3, . . ., the following statements hold:

(i) if mk is quasi-convex on I, then mk+1 is quasi-convex on I;
(ii) if mk is quasi-concave on I, then mk+1 is quasi-concave on I.

Proof. (i): Suppose that mk is quasi-convex on I. Take any i1, i2, i3 ∈ I with
i1 < i2 < i3. Let xk be the current input. We put

Q = max{mk+1(i1),mk+1(i3)} −mk+1(i2).

In order to prove that mk+1 is quasi-convex, we show Q ≥ 0 in eight cases (A)-(H).
Case (A): i1, i2, i3 ∈ ∪i∗∈I(mk,xk)N1(i∗). We have

Q = max{(1− α)mk(i1) + αxk, (1− α)mk(i3) + αxk} − ((1− α)mk(i2) + αxk)

= (1− α) (max{mk(i1), mk(i3)} −mk(i2)) ≥ 0.

Case (B): i1, i2 ∈ ∪i∗∈I(mk,xk)N1(i∗) and i3 6∈ ∪i∗∈I(mk,xk)N1(i∗). We have

Q = max{(1− α)mk(i1) + αxk, mk(i3)} − ((1− α)mk(i2) + αxk)

= max{(1− α)(mk(i1)−mk(i2)), (1− α)(mk(i3)−mk(i2)) + α(mk(i3)− xk)}.

(B1): If mk(i1) ≥ mk(i2), then the first element in the maximum operation of Q
is nonnegative. Hence we have Q ≥ 0. (B2): If mk(i1) < mk(i2), then mk(i3) ≥
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mk(i2). We show mk(i2 − 1) ≤ mk(i2). Suppose mk(i2 − 1) > mk(i2). Then we
have

mk(i2 − 1) > max{mk(i1),mk(i2)}.
This inequality contradicts that mk is quasi-convex. Similarly, we have

mk(i2) ≤ mk(i2 + 1) ≤ mk(i3)

by the quasi-convexity of mk. Now, we show mk(i3) ≥ xk. Suppose mk(i3) < xk.
Since

mk(i2 − 1) ≤ mk(i2) ≤ mk(i2 + 1) ≤ mk(i3) < xk

and i2 ∈ ∪i∗∈I(mk,xk)N1(i∗), we have i3 ∈ I(mk, xk). This contradicts the condition
of Case (B). Therefore, mk(i3) ≥ mk(i2) and mk(i3) ≥ xk imply that the second
element in the maximum operation of Q is nonnegative. Thus, we have Q ≥ 0.

Case (C): i1, i3 ∈ ∪i∗∈I(mk,xk)N1(i∗) and i2 6∈ ∪i∗∈I(mk,xk)N1(i∗). We have

Q = max{(1− α)mk(i1) + αxk, (1− α)mk(i3) + αxk} −mk(i2)

= max{(1− α)(mk(i1)−mk(i2)) + α(xk −mk(i2)),

(1− α)(mk(i3)−mk(i2)) + α(xk −mk(i2))}.

(C1): If mk(i1) ≥ mk(i2) and mk(i3) ≥ mk(i2), then it follows from the quasi-
convexity of mk that mk(i1 − 1) ≥ mk(i1) and mk(i3 + 1) ≥ mk(i3). Moreover, by
the quasi-convexity of mk, we have

mk(i2) ≤ mk(i1 + 1) ≤ mk(i1)

or
mk(i2) ≤ mk(i3 − 1) ≤ mk(i3).

Now, we show xk ≥ mk(i2). Suppose xk < mk(i2). Since

xk < mk(i2) ≤ mk(i1 + 1) ≤ mk(i1) ≤ mk(i1 − 1)

or
xk < mk(i2) ≤ mk(i3 − 1) ≤ mk(i3) ≤ mk(i3 + 1),

i1, i3 ∈ ∪i∗∈I(mk,xk)N1(i∗) implies i2 ∈ I(mk, xk). This contradicts the condition of
Case (C). Therefore, Q ≥ 0 holds in Case (C1). (C2): If mk(i1) < mk(i2) ≤ mk(i3),
then it follows from the quasi-convexity of mk that

mk(i2) ≤ mk(i3 − 1) ≤ mk(i3) ≤ mk(i3 + 1).

Now, suppose xk < mk(i2). Then i3 ∈ ∪i∗∈I(mk,xk)N1(i∗) implies i2 ∈ I(mk, xk).
This contradicts the condition of Case (C). Therefore, xk ≥ mk(i2). Hence the
second element in the maximum operation of Q is nonnegative and Q ≥ 0 holds in
Case (C1). (C3): If mk(i3) < mk(i2) ≤ mk(i1), then, from the proof of Case (C2)
and the symmetry of i1 and i3, it follows that the first element in the maximum
operation of Q is nonnegative and Q ≥ 0 holds in Case (C3).

Case (D): i1 ∈ ∪i∗∈I(mk,xk)N1(i∗) and i2, i3 6∈ ∪i∗∈I(mk,xk)N1(i∗). We have

Q = max{(1− α)mk(i1) + αxk, mk(i3)} −mk(i2)

= max{(1− α)(mk(i1)−mk(i2)) + α(xk −mk(i2)), mk(i3)−mk(i2)}.
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(D1): If mk(i3) ≥ mk(i2), then the second element in the maximum operation
of Q is nonnegative. Hence we have Q ≥ 0. (D2): If mk(i3) < mk(i2), then
mk(i2) ≤ mk(i1). Moreover, by the quasi-convexity of mk, we have

mk(i1 − 1) ≥ mk(i1) ≥ mk(i1 + 1) ≥ mk(i2).

Now, suppose xk < mk(i2). Then, i1 ∈ ∪i∗∈I(mk,xk)N1(i∗) implies i2 ∈ I(mk, xk).
This contradicts the condition of Case (D). Therefore, xk ≥ mk(i2). Hence the first
element in the maximum operation of Q is nonnegative and Q ≥ 0 holds in Case
(D2).

Case (E): i2, i3 ∈ ∪i∗∈I(mk,xk)N1(i∗) and i1 6∈ ∪i∗∈I(mk,xk)N1(i∗). By the symme-
try of i1 and i3, it follows from the proof of Case (B) that Q ≥ 0.

Case (F): i2 ∈ ∪i∗∈I(mk,xk)N1(i∗) and i1, i3 6∈ ∪i∗∈I(mk,xk)N1(i∗). We have

Q = max{mk(i1), mk(i3)} − ((1− α)mk(i2) + αxk)

= max{(1− α)(mk(i1)−mk(i2)) + α(mk(i1)− xk),

(1− α)(mk(i3)−mk(i2)) + α(mk(i3)− xk)}.

(F1): If mk(i1) ≥ mk(i2) and mk(i3) ≥ mk(i2), then, from the quasi-convexity
of mk, it follows that mk(i2 − 1) ≤ mk(i1) and mk(i2 + 1) ≤ mk(i3). Now,
suppose mk(i1) < xk and mk(i3) < xk. Then i2 ∈ ∪i∗∈I(mk,xk)N1(i∗) implies
i1, i3 ∈ I(mk, xk). This contradicts the condition of Case (F). Therefore, we
have mk(i1) ≥ xk or mk(i3) ≥ xk. Hence, Q ≥ 0 holds in Case (F1). (F2): If
mk(i1) ≥ mk(i2) > mk(i3), then, by using the quasi-convexity of mk, we have

mk(i1) ≥ mk(i2 − 1) ≥ mk(i2) ≥ mk(i2 + 1).

Now, suppose mk(i1) < xk. Then, by i2 ∈ ∪i∗∈I(mk,xk)N1(i∗), we have i1 ∈
I(mk, xk), which contradicts the condition of Case (F). Therefore, mk(i1) ≥ xk.
It follows that the first element in the maximum operation of Q is nonnegative
and Q ≥ 0 holds in case (F2). (F3): If mk(i3) ≥ mk(i2) > mk(i1), then, by the
proof of case (F2) and the symmetry of i1 and i3, the first element in the maximum
operation of Q is nonnegative and Q ≥ 0 holds in Case (F3).

Case (G): i3 ∈ ∪i∗∈I(mk,xk)N1(i∗) and i1, i2 6∈ ∪i∗∈I(mk,xk)N1(i∗). By the symme-
try of i1 and i3, it follow from the proof of Case (D) that Q ≥ 0.

Case (H): i1, i2, i3 6∈ ∪i∗∈I(mk,xk)N1(i∗). In this case, Q ≥ 0 is clear.
Thus, mk+1 is quasi-convex. Similarly, (ii) is also proved. �

We note that, by Theorem 3.5, we observe that the state model functions are
quasi-convex or quasi-concave before the state model functions are monotone.

Theorem 3.6. We consider a self-organizing map model ({1, 2, . . . , n}, R, X ⊂
R, {mk(·)}∞k=0) with Learning process B(ε = 1). For model functions m1,m2,m3, . . .,
the following statements hold:

(i) if mk is strictly increasing on I, then mk+1 is strictly increasing on I;
(ii) if mk is strictly decreasing on I, then mk+1 is strictly decreasing on I.

Definition 3.7. Let (Y,≤) be a totally ordered set and f a real-valued function on
Y . Then f is said to be strongly quasi-convex on Y if for any y1, y2, y3 ∈ Y with
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y1 < y2 < y3,

(3.3) f(y2) < max{f(y1), f(y3)}.
Also, f is said to be strongly quasi-concave on Y if for any y1, y2, y3 ∈ Y with
y1 < y2 < y3,

(3.4) f(y2) > min{f(y1), f(y3)}.

The following theorem gives elementary properties for strongly quasi-convex func-
tions and strongly quasi-concave functions.

Theorem 3.8. Let Y be a totally ordered set. Let f be a real-valued function on
Y . Then the following statements hold:

(i) if f is a strongly quasi-convex function on Y , then f is a quasi-convex
function on Y ;

(ii) if f is a strongly quasi-concave function on Y , then f is a quasi-concave
function on Y .

Proof. These statements are directly proved by their definitions. �

The following theorems show that strongly quasi-convexity or strongly quasi-
concavity is also an absorbing state of self-organizing map models.

Theorem 3.9. We consider a self-organizing map model ({1, 2, . . . , n}, R, X ⊂
R, {mk(·)}∞k=0) with Learning process A(ε = 1). For model functions m1,m2,m3, . . .,
the following statements hold:

(i) if mk is strongly quasi-convex on I, then mk+1 is strongly quasi-convex on
I;

(ii) if mk is strongly quasi-concave on I, then mk+1 is strongly quasi-concave
on I.

Theorem 3.10. We consider a self-organizing map model ({1, 2, . . . , n}, R, X ⊂
R, {mk(·)}∞k=0) with Learning process B(ε = 1). For model functions m1,m2,m3, . . .,
the following statements hold:

(i) if mk is strongly quasi-convex on I, then mk+1 is strongly quasi-convex on
I;

(ii) if mk is strongly quasi-concave on I, then mk+1 is strongly quasi-concave
on I.

Strongly quasi-convexity of mk implies strongly quasi-convexity of mk+1 in The-
orems 3.9 and 3.10 by the arguments used in the proof of Theorem 3.5.

4. 2-dimensional array case

In this section, we suppose the case of nodes with values in a normed linear
space and 2-dimensional array. (i) The node set. Let I = I1 × I2 with a metric dI ,
where I1 = {1, 2, . . . , N1}, I2 = {1, 2, . . . , N2} and dI((i, j), (k, l)) = |i− k|+ |j − l|,
(i, j), (k, l) ∈ I. (ii) The values of nodes. Let m : I1 × I2 → V , where V is a
normed linear space with an inner product 〈·, ·〉. (iii) x0, x1, x2, . . . ∈ X ⊂ V is an
input sequence. (iv) Assume Larning process A (2-dimensional array and ε = 1) (a)
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areas of learning: I(m,x) = {(i∗, j∗) ∈ I | ‖m(i∗, j∗)−x‖ = inf(i,j)∈I ‖m(i, j)−x‖},
m ∈ M , x ∈ X and N1(i, j) = {(k, l) ∈ I | dI((i, j), (k, l)) ≤ 1}; (b) learning-rate
factor: 0 ≤ α ≤ 1; (c) learning: if (i, j) ∈ ∪(i∗,j∗)∈I(m,x) N1(i∗, j∗) then m′(i, j) =
(1− α)m(i, j) + αx, otherwise m′(i, j) = m(i, j).

We introduce the following condition.

Condition E. For all (i, j) ∈ I,
‖m(i + 1, j)−m(i, j)‖ ≤ ‖m(i + 2, j)−m(i, j)‖,
‖m(i− 1, j)−m(i, j)‖ ≤ ‖m(i− 2, j)−m(i, j)‖,
‖m(i, j + 1)−m(i, j)‖ ≤ ‖m(i, j + 2)−m(i, j)‖,
‖m(i, j − 1)−m(i, j)‖ ≤ ‖m(i, j − 2)−m(i, j)‖.

In this situation, if the learning-rate factor is taken sufficiently small, Condition E
is preserved. However, E is not preserved for a quick or large change by the learning.
The next theorem gives a result with respect to the preservation of Condition E for
an arbitrary α.

Theorem 4.1. We consider a self-organizing map model(
{1, 2, . . . , N1} × {1, 2, . . . , N2}, V, X, {mk(·, ·)}∞k=0

)
with Learning process A(ε = 1). Let m be an arbitrary model function and x an
arbitrary input. Let m′ be the renewed model function of m by x.

(i) For (i, j), (i + 1, j), (i + 2, j) 6∈ ∪(i∗,j∗)∈I(m,x) N1(i∗, j∗), if
‖m(i + 1, j)−m(i, j)‖ ≤ ‖m(i + 2, j)−m(i, j)‖,

then
‖m′(i + 1, j)−m′(i, j)‖ ≤ ‖m′(i + 2, j)−m′(i, j)‖.

Moreover, for (i, j), (i− 1, j), (i− 2, j) 6∈ ∪(i∗,j∗)∈I(m,x) N1(i∗, j∗), if
(4.1) ‖m(i− 1, j)−m(i, j)‖ ≤ ‖m(i− 2, j)−m(i, j)‖,

then (4.1) also holds for m′.
For (i, j), (i, j + 1), (i, j + 2) 6∈ ∪(i∗,j∗)∈I(m,x) N1(i∗, j∗), if

(4.2) ‖m(i, j + 1)−m(i, j)‖ ≤ ‖m(i, j + 2)−m(i, j)‖,
then (4.2) also holds for m′.

For (i, j), (i, j − 1), (i, j − 2) 6∈ ∪(i∗,j∗)∈I(m,x) N1(i∗, j∗), if
(4.3) ‖m(i, j − 1)−m(i, j)‖ ≤ ‖m(i, j − 2)−m(i, j)‖,

then (4.3) also holds for m′.
(ii) Let (i∗, j∗) ∈ I(m,x). If

(4.4) ‖m(i∗, j∗)−m(i∗ − 1, j∗)‖ ≤ ‖m(i∗ + 1, j∗)−m(i∗ − 1, j∗)‖,
then (4.4) also holds for m′. If

(4.5) ‖m(i∗, j∗)−m(i∗ + 1, j∗)‖ ≤ ‖m(i∗ − 1, j∗)−m(i∗ + 1, j∗)‖,
then (4.5) also holds for m′. If

(4.6) ‖m(i∗, j∗)−m(i∗, j∗ − 1)‖ ≤ ‖m(i∗, j∗ + 1)−m(i∗, j∗ − 1)‖,
then (4.6) also holds for m′. If

(4.7) ‖m(i∗, j∗)−m(i∗, j∗ + 1)‖ ≤ ‖m(i∗, j∗ − 1)−m(i∗, j∗ + 1)‖,
then (4.7) also holds for m′.
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(iii) Let (i∗, j∗) ∈ I(m,x). If
(4.8) ‖m(i∗ + 1, j∗)−m(i∗, j∗)‖ ≤ ‖m(i∗ + 2, j∗)−m(i∗, j∗)‖,

then (4.8) also holds for m′. If
(4.9) ‖m(i∗ − 1, j∗)−m(i∗, j∗)‖ ≤ ‖m(i∗ − 2, j∗)−m(i∗, j∗)‖,

then (4.9) also holds for m′. If
(4.10) ‖m(i∗, j∗ + 1)−m(i∗, j∗)‖ ≤ ‖m(i∗, j∗ + 2)−m(i∗, j∗)‖,

then (4.10) also holds for m′. If
(4.11) ‖m(i∗, j∗ − 1)−m(i∗, j∗)‖ ≤ ‖m(i∗, j∗ − 2)−m(i∗, j∗)‖,

then (4.11) also holds for m′.

Proof. (i) For (i, j), (i + 1, j), (i + 2, j) 6∈ ∪(i∗,j∗)∈I(m,x)N1(i∗, j∗),

‖m′(i + 2, j)−m′(i, j)‖ − ‖m′(i + 1, j)−m′(i, j)‖
=‖m(i + 2, j)−m(i, j)‖ − ‖m(i + 1, j)−m(i, j)‖.

Therefore, the first statement holds. By the same argument, other statements of (i)
also hold.

(ii) If (4.4) holds, then

‖m′(i∗ + 1, j∗)−m′(i∗ − 1, j∗)‖ − ‖m′(i∗, j∗)−m′(i∗ − 1, j∗)‖
=‖(1− α)m(i∗ + 1, j∗) + αx− (1− α)m(i∗ − 1, j∗)− αx‖

− ‖(1− α)m(i∗, j∗) + αx− (1− α)m(i∗ − 1, j∗)− αx‖
=(1− α)

{
‖m(i∗ + 1, j∗)−m(i∗ − 1, j∗)‖ − ‖m(i∗, j∗)−m(i∗ − 1, j∗)‖

}
≥ 0.

By the same argument, we obtain other statements of (ii).
(iii) Let m0 = m(i∗, j∗), m1 = m(i∗+1, j∗), m2 = m(i∗+2, j∗), m′

0 = m′(i∗, j∗),
m′

1 = m′(i∗ + 1, j∗) and m′
2 = m′(i∗ + 2, j∗). If ‖m1 −m0‖ ≤ ‖m2 −m0‖, then

‖m′
2 −m′

0‖2 − ‖m′
1 −m′

0‖2

=‖m2 − (1− α)m0 − αx‖2 − ‖(1− α)m1 + αx− (1− α)m0 − αx‖2

=‖(1− α)(m2 −m0) + α(m2 − x)‖2 − ‖(1− α)(m1 −m0)‖2

=(1− α)2‖m2 −m0‖2 + 2(1− α)α〈m2 −m0,m2 − x〉+ α2‖m2 − x‖2

− (1− α)2‖m1 −m0‖2

=(1− α)2
(
‖m2 −m0‖2 − ‖m1 −m0‖2

)
+ 2(1− α)α

(
‖m2 − x‖2 − 〈m0 − x,m2 − x〉

)
+ α2‖m2 − x‖2

≥(1− α)2
(
‖m2 −m0‖2 − ‖m1 −m0‖2

)
+ 2(1− α)α

(
‖m2 − x‖2 − ‖m0 − x‖‖m2 − x‖

)
+ α2‖m2 − x‖2.

Since (i∗, j∗) ∈ I(m,x), ‖m0 − x‖ ≤ ‖m(i, j)− x‖ for all (i, j) ∈ I. Therefore,

‖m′
2 −m′

0‖2 − ‖m′
1 −m′

0‖2 ≥(1− α)2
(
‖m2 −m0‖2 − ‖m1 −m0‖2

)
+ α2‖m2 − x‖2 ≥ 0.
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Thus ‖m′
2 − m′

0‖ ≥ ‖m′
1 − m′

0‖, so (4.8) holds for m′. By the same argument,
three other statements also hold. If (i∗ + 1, j∗) ∈ I(m,x), (i∗ + 2, j∗) ∈ I(m,x), or
(i∗ + 3, j∗) ∈ I(m,x), then these cases are reduced to (ii). �

If I(m,x) is a singleton, the following seven cases are in a series of three nodes
(i, j), (i + 1, j), (i + 2, j) (or (i, j), (i, j + 1), (i, j + 2)).

(i, j) (i + 1, j) (i + 2, j)
(I) ◦ ◦ ◦
(II) 4 ◦ ◦
(III) ◦ 4 ◦
(IV) ◦ ◦ 4
(V) ◦ 4 ∗
(VI) 4 ∗ 4
(VII) ∗ 4 ◦

∗ is the nearest node to x. 4 is a neigh-
bor of the nearest node to x. ◦ is not
in the neighborhood of the nearest node
to x.

Statements (i), (ii) and (iii) of the previous theorem are cases of type (I), (VI) and
(VII), respectively.

5. A property in general case

We give a property in general case defined in Section 1.

Theorem 5.1. We consider a self-organizing map model (I, V, X, {mk}∞k=0) with
Learning process A, where we assume that I is a countable metrizable space and V
is a normed linear space with ‖ · ‖. For any model function m and any input x ∈ X,
if i∗ ∈ I(m,x), then i∗ ∈ I(m′, x) for the renewed model function m′ of m by input
x.

Proof. For any i ∈ ∪j∈I(m,x) Nε(j),

‖m′(i)− x‖ = ‖(1− α)m(i) + αx− x‖ = (1− α)‖m(i)− x‖.

For any i 6∈ ∪j∈I(m,x) Nε(j), ‖m′(i)− x‖ = ‖m(i)− x‖. Moreover, if i∗ ∈ I(m,x),

‖m′(i∗)− x‖ = (1− α)‖m(i∗)− x‖ ≤ (1− α)‖m(i)− x‖

for any i ∈ I. Therefore, for any i ∈ ∪j∈I(m,x) Nε(j),

‖m′(i∗)− x‖ ≤ (1− α)‖m(i)− x‖ = ‖m′(i)− x‖.

For any i 6∈ ∪j∈I(m,x) Nε(j),

‖m′(i∗)− x‖ ≤ (1− α)‖m(i)− x‖ = (1− α)‖m′(i)− x‖ ≤ ‖m′(i)− x‖.

Thus, we obtain ‖m′(i∗)− x‖ = infi∈I ‖m′(i)− x‖. Hence i∗ ∈ I(m′, x). �

6. Numerical example

We give a simple numerical example of the case of R-valued nodes and the 1-
dimensional array of nodes.
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Example 6.1. Consider 6 nodes model with I = {1, 2, 3, 4, 5, 6}. The initial model
function is m0 = [2, 4, 2, 2, 5, 0]. Assume that we observe sequentially x0 = 5, x1 = 4,
x2 = 2, x3 = 1, x4 = 2, x5 = 4, x6 = 0, x7 = 2, x8 = 1, x9 = 1, x10 = 1, x11 = 4,
x12 = 3, x13 = 3, x14 = 1, x15 = 1, . . . as inputs. Suppose Learning process A with
ε = 1 and α = 1

2 . First, it follows from m0 and x0 = 5 that I(m0, x0) = {5} and
N1(5) = {4, 5, 6}. So m0(1), . . . ,m0(6) are updated to m1(i) = m0(i) for i = 1, 2, 3
and m1(i) = m0(i)+x0

2 for i = 4, 5, 6. Thus m1 = [2, 4, 2, 3.5, 5, 2.5]. Repeating
these update, we sequentially obtain model functions.

m0 = [ 2, 4, 2, 2, 5, 0 ]
m1 = [ 2, 4, 2, 3.5, 5, 2.5 ]
m2 = [ 3, 4, 3, 3.5, 5, 2.5 ]
m3 = [ 3, 4, 3, 3.5, 3.5, 2.25 ]
m4 = [ 3, 4, 3, 3.5, 2.25, 1.625 ]
m5 = [ 3, 4, 3, 2.75, 2.125, 1.8125 ]
m6 = [ 3.5, 4, 3.5, 2.75, 2.125, 1.8125 ]
m7 = [ 3.5, 4, 3.5, 2.75, 1.0625, 0.90625 ]
m8 = [ 3.5, 4, 2.75, 2.375, 1.53125, 0.90625 ]
m9 = [ 3.5, 4, 2.75, 2.375, 1.26563, 0.953125 ]

m10 = [ 3.5, 4, 2.75, 2.375, 1.13281, 0.976563 ]
m11 = [ 3.5, 4, 2.75, 2.375, 1.06641, 0.988281 ]
m12 = [ 3.75, 4, 3.375, 2.375, 1.06641, 0.988281 ]
m13 = [ 3.75, 3.5, 3.1875, 2.6875, 1.06641, 0.988281 ]
m14 = [ 3.75, 3.25, 3.09375, 2.84375, 1.06641, 0.988281 ]
m15 = [ 3.75, 3.25, 3.09375, 2.84375, 1.0332, 0.994141 ]

· · · · · · · · · .

We notice that the model function mk is quasi-concave on I for every k ≥ 5 and
decreasing on I for every k ≥ 13.
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