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STRONG CONVERGENCE THEOREM FOR QUADRATIC
MINIMIZATION PROBLEM WITH COUNTABLE CONSTRAINTS

IKUO KIRIHARA, YU KUROKAWA, AND WATARU TAKAHASHI

Abstract. In this paper, we introduce an iteration process of finding a unique
solution of the quadratic minimization problem over the intersection of fixed
point sets of countable nonexpansive mappings in a real Hilbert space. Then, we
obtain a strong convergence theorem.

1. Introduction

The quadratic minimization problem with some constraints has been studied by
many researchers. Let H be a real Hilbert space. Let C1, C2, ... be closed convex
subsets of H with

⋂∞
n=1 Cn 6= ∅. Let u be an element of H. Then, we consider the

following quadratic minimization problem:

min

{
1
2
〈Ax, x〉 − 〈u, x〉 : x ∈

∞⋂
n=1

Cn

}
,

where A is strongly positive. To find an optimal point of the quadratic minimization
problem is connected with the convex feasibility problem, the problem of image
recovery and variational inequality problem; see [6], [7], [10], [15], [25] and so on.

In particular, let H be a real Hilbert space. Let T1, T2, ..., TN be nonexpansive
mappings of H into itself such that

⋂N
n=1 F (Tn) 6= ∅, where F (Tn) is the set of

fixed points of Tn. Let u be an element of H. Many authors have studied the
following quadratic minimization problem concerning a finite family of nonexpansive
mappings:

min

{
1
2
〈Ax, x〉 − 〈u, x〉 : x ∈

N⋂
n=1

F (Tn)

}
.

In this setting, Yamada, Ogura, Yamashita and Sakaniwa [23] considered the fol-
lowing iterative scheme in a Hilbert space H:

x1 = x ∈ H, xn+1 = βnu + (I − βnA)Tn mod Nxn

for all n = 1, 2, ..., where 0 ≤ βn ≤ 1 for every n = 1, 2, .... Then, they showed that
{xn} converges strongly to the unique solution of min{(1/2)〈Ax, x〉 − 〈u, x〉 : x ∈⋂N

n=1 F (Tn)}, where
⋂N

n=1 F (Tn) is the set of common fixed points of T1, T2, ..., TN

satisfying
N⋂

n=1

F (Tn) = F (T1T2 · · ·TN ) = F (TNT1 · · ·TN−1) = · · · = F (T2T3 · · ·TNT1) 6= ∅,
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and {βn} satisfies limn→∞ βn = 0,
∑∞

n=1 βn = ∞ and
∑∞

n=1 |βn+N − βn| < ∞.
Xu [20] showed a complementary result to Yamada, Ogura, Yamashita and
Sakaniwa’s theorem by replaced

∑∞
n=1 |βn+N − βn| < ∞ with the general condtion:

limn→∞ βn/βn+N = 1.
On the other hand, Takahashi [14] and Shimoji and Takahashi [10] studied a

mapping, called a W-mapping, which was introduced for finding a common fixed
point of infinite countable nonexpansive mappings; see Lemma 3.4 and Lemma 3.5.

In this paper, motivated by Takahashi [14], Shimoji and Takahashi [10], and
Yamada, Ogura, Yamashita and Sakaniwa [23], we introduce an iteration process of
finding a unique solution of the quadratic minimization problem over the intersection
of fixed point sets of countable nonexpansive mappings in a real Hilbert space. Then,
we obtain a strong convergence theorem.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖, and let I be
the identity mapping on H. We also denote by R the set of real numbers. Let C be
a nonempty closed convex subset of H. Then, a mapping T of C into itself is said
to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote by F (T )
the set of fixed points of T . For any x ∈ H, there exists a unique nearest point in
C, denoted by PCx, such that ‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C. xn → x implies
that {xn} converges strongly to x. xn ⇀ x implies that {xn} converges weakly to
x. In a real Hilbert space H, we have

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ R. Using this equality, we can prove that if T : C → C is
nonexpansive, then the set F (T ) is closed and convex; see [15]. We also know the
following inequality:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉
for all x, y ∈ H.

Let H be a Hilbert space and let f : H → (−∞,∞] be a proper convex function.
Then, we can define a multivalued mapping ∂f on H into 2H by

∂f(x) = {z ∈ H : f(y) ≥ 〈z, y − x〉+ f(x), y ∈ H}

for all x ∈ H. Such ∂f is said to be the subdifferential of f ; see, for instance, [16].
Let C be a nonempty closed convex subset of a Hilbert space H. Then we define

a function iC : H → (−∞,∞] called the indicator function of C as follows:

iC(x) =

{
0 (x ∈ C),
∞ (x 6∈ C).

For any x ∈ C, we also define the set NC(x) as follows:

NC(x) = {z ∈ H : 〈z, y − x〉 ≤ 0 for all y ∈ C}.

Such NC(x) is said to be the normal cone to C at x ∈ C. We know the following
lemma; see, for example, [16].
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Lemma 2.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let
iC : H → (−∞,∞] be the indicator function of C and let NC(x) be the normal cone
to C at x ∈ C. Then ∂iC(x) = NC(x) for all x ∈ C.

We also know the following theorem; see [15].

Theorem 2.1. Let H be a Hilbert space and let f be a proper convex function of
H into (−∞,∞]. If g is a continuous convex function of H into (−∞,∞), then,
for all x ∈ H,

∂(f + g)(x) = ∂f(x) + ∂g(x).

The following lemmas [13] and [1] play important roles in the proof of our main
theorem.

Lemma 2.2 ([13]). Let {sn} be a sequence of nonnegative real numbers, let {αn}
be a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative

real numbers with
∑∞

n=1 βn < ∞. Suppose that

sn+1 ≤ (1− αn)sn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

Lemma 2.3 ([1]). Let {sn} be a sequence of nonnegative real numbers, let {αn}
be a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative

real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with
lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, .... Then limn→∞ sn = 0.

3. Strongly positive operators and W -mappings

Let H be a real Hilbert space. Let A be a self-adjoint bounded linear operator
of H into itself. Then, A is called strongly positive if there exists a real number γ
with 0 < γ < 1 such that

〈Ax, x〉 ≥ γ‖x‖2

for all x ∈ H. In particular, such A is called γ-strongly positive.

Remark. Since 〈Ax, x〉 ≥ γ‖x‖2 for all x ∈ H, we have from the Schwarz inequality
that for all x ∈ H,

‖Ax‖‖x‖ ≥ 〈Ax, x〉 ≥ γ‖x‖2

and hence ‖Ax‖ ≥ γ‖x‖. So, we have

‖A‖ = sup
‖x‖=1

‖Ax‖ ≥ sup
‖x‖=1

γ‖x‖ ≥ γ > 0

and hence
‖A‖−1 ≤ 1

γ
.

If 0 < α < ‖A‖−1, then 0 < αγ < γ‖A‖−1 ≤ 1.

The following lemma is in [20].
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Lemma 3.1. Let H be a Hilbert space. Let A be a γ-strongly positive self-adjoint
bounded linear operator of H into itself, where 0 < γ < 1. Then, for all α with
0 < α < ‖A‖−1, ‖I − αA‖ ≤ 1− αγ, where I is the identity mapping.

Proof. From [12], we have

‖I − αA‖ = sup
‖x‖=1

〈(I − αA)x, x〉.

Hence, we have

‖I − αA‖ = sup
‖x‖=1

〈(I − αA)x, x〉 = sup
‖x‖=1

{〈x, x〉 − α〈Ax, x〉}

≤ sup
‖x‖=1

{‖x‖2 − αγ‖x‖2} = sup
‖x‖=1

(1− αγ)‖x‖2

= 1− αγ. �

The following lemma is also well-known. However, for the sake of completeness,
we give the proof.

Lemma 3.2. Let H be a Hilbert space. Let A be a strongly positive self-adjoint
bounded linear operator of H into itself. If f is defined by

f(x) =
1
2
〈Ax, x〉 − 〈u, x〉

for all x ∈ H, then ∂f(x) = Ax− u.

Proof. Since A is strongly positive and self-adjoint, we have that, for all x, y ∈ H,

f(y)− f(x)− 〈Ax− u, y − x〉

=
1
2
〈Ay, y〉 − 〈u, y〉 − 1

2
〈Ax, x〉+ 〈u, x〉 − 〈Ax− u, y − x〉

=
1
2
(〈Ay, y〉 − 2〈Ax, y〉+ 〈Ax, x〉)

=
1
2
(〈Ay, y〉 − 〈Ay, x〉 − 〈Ax, y〉+ 〈Ax, x〉)

=
1
2
〈A(y − x), y − x〉 ≥ 0,

which means that f(y) ≥ 〈Ax− u, y − x〉+ f(x). Hence, Ax− u ∈ ∂f(x). Next, to
show that ∂f(x) ⊂ {Ax− u}, let z ∈ ∂f(x), that is,

1
2
〈Ay, y〉 − 〈u, y〉 ≥ 〈z, y − x〉+

1
2
〈Ax, x〉 − 〈u, x〉 for all y ∈ H.

Set y = x + tw with t > 0 and w ∈ H. Then we have

1
2
〈A(x + tw), x + tw〉 − 〈u, x + tw〉 ≥ 〈z, tw〉+

1
2
〈Ax, x〉 − 〈u, x〉.

Since A is self-adjoint, this implies that

t〈Ax− u, w〉+
1
2
t2〈Aw,w〉 ≥ t〈z, w〉.
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Dividing by t, we see that 〈Ax − u, w〉 +
1
2
t〈Aw,w〉 ≥ 〈z, w〉. Further as t ↓ 0, we

obtain
〈Ax− u, w〉 ≥ 〈z, w〉.

Setting w = z − (Ax− u), we have that ‖z − (Ax− u)‖2 ≤ 0, that is, z = Ax− u.
Thus, we conclude that ∂f(x) = Ax− u. �

Using Theorem 2.1, we can prove the following lemma.

Lemma 3.3. Let C be a closed convex subset of a Hilbert space H. Let A be
a γ-strongly positive self-adjoint bounded linear operator of H into itself, where
0 < γ < 1. Let g be a function of H into (−∞,∞] defined by

g(x) =
1
2
〈Ax, x〉 − 〈u, x〉+ iC(x) for all x ∈ H,

where iC is the indicator function of C. Let z ∈ H. Then the following are equiva-
lent:

(1) g(z) = min{g(x) : x ∈ H},
(2) 0 ∈ ∂g(z),
(3) 〈u−Az, x− z〉 ≤ 0 for all x ∈ C.

In this case, z ∈ C and such z is unique.

Proof. (1) ⇔ (2) is obvious. Further, by the definition of iC we have z ∈ C. So, we
shall show (2) ⇔ (3). Using Lemma 2.1, Lemma 3.2 and Theorem 2.1, we have

∂g(z) = Az − u + NC(z).

So, we have

0 ∈ ∂g(z)

⇔0 ∈ Az − u + NC(z)

⇔u−Az ∈ NC(z)

⇔〈u−Az, x− z〉 ≤ 0 for all x ∈ C.

Next, we show that such a point z is unique. Suppose that 〈u − Az1, x − z1〉 ≤ 0
and 〈u−Az2, y − z2〉 ≤ 0 for all x, y ∈ C. Putting x = z2 and y = z1, we have

〈A(z1 − z2), z1 − z2〉 ≤ 0.

Since A is strongly positive, we have γ‖z1 − z2‖2 ≤ 〈A(z1 − z2), z1 − z2〉. Then we
have z1 = z2. �

Let C be a convex subset of a Hilbert space H. Let T1, T2, ... be infinite mappings
of C into itself and let α1, α2, ... be real numbers such that 0 ≤ αi ≤ 1 for all
i = 1, 2, .... Then, for all n = 1, 2, ..., Takahashi [14] defined a mapping Wn of C
into itself as follows:

Un,n+1 = I,

Un,n = αnTnUn,n+1 + (1− αn)I,

Un,n−1 = αn−1Tn−1Un,n + (1− αn−1)I,

...
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Un,k = αkTkUn,k+1 + (1− αk)I,

Un,k−1 = αk−1Tk−1Un,k + (1− αk−1)I,

...

Un,2 = α2T2Un,3 + (1− α2)I,

Wn = Un,1 = α1T1Un,2 + (1− α1)I.

Such a mapping Wn is called the W -mapping generated by Tn, Tn−1, ..., T1 and
αn, αn−1, ..., α1. We know the following lemmas by Shimoji and Takahashi [10].

Lemma 3.4 ([10]). Let C be a nonempty closed convex subset of a Hilbert space
H. Let T1, T2, ... be nonexpansive mappings of C into itself such that

⋂∞
n=1 F (Tn)

is nonempty and let α1, α2, ... be real numbers such that 0 < αn ≤ b < 1 for all
n = 1, 2, .... Then, for every x ∈ C and k = 1, 2, ..., limn→∞ Un,kx exists.

Using Lemma 3.4, for all k = 1, 2, ... we define mappings U∞,k and W of C into
itself as follows:

U∞,kx := lim
n→∞

Un,kx and Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x

for every x ∈ C. Such W is called the W -mapping generated by T1, T2, ..., and
α1, α2, ....

Lemma 3.5 ([10]). Let C be a nonempty closed convex subset of a Hilbert space
H. Let T1, T2, ... be nonexpansive mappings of C into itself such that

⋂∞
n=1 F (Tn)

is nonempty and let α1, α2, ... be real numbers such that 0 < αn ≤ b < 1 for all
n = 1, 2, .... Then, F (W ) =

⋂∞
n=1 F (Tn).

4. Main theorem

Let H be a real Hilbert space. Let T1, T2, ... be nonexpansive mappings of H into
itself such that

⋂∞
n=1 F (Tn) 6= ∅. Let u be an element of H. Consider the following

quadratic minimization problem:

(P) min

{
1
2
〈Ax, x〉 − 〈u, x〉 : x ∈

∞⋂
n=1

F (Tn)

}
,

where A is strongly positive. It is known that the problem (P) has a unique solution
z; see [15].

Now, we prove the following strong convergence theorem which is our main the-
orem in this paper:

Theorem 4.1. Let H be a real Hilbert space. Let α1, α2, ... be real numbers such
that 0 < αi ≤ b < 1 for every i = 1, 2, ... and T1, T2, ... be nonexpansive mappings
of H into itself such that

⋂∞
n=1 F (Tn) 6= ∅. For every n = 1, 2, ..., let Wn be the W-

mapping generated by Tn, Tn−1, ..., T1 and αn, αn−1, ..., α1. Let {βn} be a sequence
of real numbers such that 0 ≤ βn ≤ 1 for every n = 1, 2, ..., limn→∞ βn = 0,∑∞

n=1 |βn+1 − βn| < ∞ and
∑∞

n=1 βn = ∞. Let u be an element of H and let A be
a γ-strongly positive self-adjoint bounded linear operator of H into itself. Let {xn}
be a sequence generated by x1 ∈ H and

xn+1 = βnu + (I − βnA)Wnxn
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for every n = 1, 2, .... Then {xn} converges strongly to z, where z is a unique
solution of min{(1/2)〈Ax, x〉 − 〈u, x〉 : x ∈

⋂∞
n=1 F (Tn)}.

Proof. Since limn→∞ βn = 0, we may assume without loss of generality that

βn < ‖A‖−1

for all n = 1, 2, .... From Lemma 3.1, we have

‖I − βnA‖ ≤ 1− βnγ.

It follows that, for y ∈
⋂∞

n=1 F (Tn),

‖xn+1 − y‖ = ‖βnu + (I − βnA)Wnxn − y‖
= ‖βn(u−Ay) + (I − βnA)(Wnxn − y)‖
≤ βn‖u−Ay‖+ (1− βnγ)‖xn − y‖

= βnγ · 1
γ
‖u−Ay‖+ (1− βnγ)‖xn − y‖.

Hence, by mathematical induction, we obtain

‖xn − y‖ ≤ max
{
‖x1 − y‖, 1

γ
‖u−Ay‖

}
.

This implies that {xn} is bounded. Then we also have that {Wnxn} and {Tnxn} are
bounded. Put K = max{‖u‖, supn∈N ‖xn‖, supn∈N ‖Tnxn‖, supn∈N ‖A‖‖Wnxn‖}.
Then, we have that for every n = 1, 2, ...,

‖xn+2 − xn+1‖ = ‖βn+1u + (I − βn+1A)Wn+1xn+1 − (βnu + (I − βnA)Wnxn)‖
≤ |βn+1 − βn|‖u‖+ ‖(I − βn+1A)Wn+1xn+1 − (I − βn+1A)Wnxn+1

+ (I − βn+1A)Wnxn+1 − (I − βnA)Wnxn‖
≤ |βn+1 − βn|‖u‖+ (1− βn+1γ)‖Wn+1xn+1 −Wnxn+1‖

+ (1− βn+1γ)‖Wnxn+1 −Wnxn‖+ |βn+1 − βn|‖A‖‖Wnxn‖
≤ (1− βn+1γ)‖xn+1 − xn‖+ 2K|βn+1 − βn|

+ (1− βn+1γ)‖Wn+1xn+1 −Wnxn+1‖.

As in the proof of Lemma 3.4 in [10], we also have

‖Wn+1xn+1 −Wnxn+1‖ = ‖Un+1,1xn+1 − Un,1xn+1‖
= ‖α1T1Un+1,2xn+1 + (1− α1)xn+1

− (α1T1Un,2xn+1 + (1− α1)xn+1)‖
= α1‖T1Un+1,2xn+1 − T1Un,2xn+1‖
≤ α1‖Un+1,2xn+1 − Un,2xn+1‖
≤ α1α2‖Un+1,3xn+1 − Un,3xn+1‖
≤ · · ·

≤
n∏

i=1

αi‖Un+1,n+1xn+1 − Un,n+1xn+1‖
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=
n∏

i=1

αi‖αn+1Tn+1Un+1,n+2xn+1

+ (1− αn+1)xn+1 − xn+1‖

=
n+1∏
i=1

αi‖Tn+1xn+1 − xn+1‖

≤ 2K

(
n+1∏
i=1

αi

)
.

So, we have

‖xn+2 − xn+1‖ ≤ (1− βn+1γ)‖xn+1 − xn‖+ 2K|βn+1 − βn|

+ 2K(1− βn+1γ)

(
n+1∏
i=1

αi

)

≤ (1− βn+1γ)‖xn+1 − xn‖+ 2K|βn+1 − βn|+ 2K

(
n+1∏
i=1

αi

)

= (1− βn+1γ)‖xn+1 − xn‖+ 2K

(
|βn+1 − βn|+

n+1∏
i=1

αi

)
for every n = 1, 2, .... On the other hand, since 0 < αi ≤ b < 1, we have that∏n+1

i=1 αi ≤
∏n+1

i=1 b = bn+1. This implies that

∞∑
n=1

n+1∏
i=1

αi = lim
m→∞

m∑
n=1

n+1∏
i=1

αi ≤ lim
m→∞

m∑
n=1

bn+1 = lim
m→∞

b2(1− bm)
1− b

=
b2

1− b
< ∞.

Thus
∑∞

n=1(|βn+1−βn|+
∏n+1

i=1 αi) < ∞. Therefore it follows from Lemma 2.2 that
limn→∞ ‖xn+1 − xn‖ = 0. Since

‖xn+1 −Wnxn‖ = ‖βnu + (I − βnA)Wnxn −Wnxn‖
= βn‖u−AWnxn‖ ≤ 2Kβn

for every n = 1, 2, ..., we have limn→∞ ‖xn+1 −Wnxn‖ = 0. From

‖xn −Wnxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −Wnxn‖,

we also have limn→∞ ‖xn − Wnxn‖ = 0. Let z be the unique solution of
min{(1/2)〈Ax, x〉−〈u, x〉 : x ∈

⋂∞
n=1 F (Tn)}. To show lim supn→∞〈u−Az, xn−z〉 ≤

0, choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈u−Az, xn − z〉 = lim
i→∞

〈u−Az, xni − z〉.

As {xni} is bounded, we have that a subsequence {xnij} of {xni} converges weakly
to z0. We may assume without loss of generality that xni ⇀ z0. We show that z0 ∈⋂∞

n=1 F (Tn). Suppose that z0 /∈
⋂∞

n=1 F (Tn). By Lemma 3.5, we have z0 6= Wz0.



STRONG CONVERGENCE THEOREM FOR QUADRATIC MINIMIZATION PROBLEM 391

From Opial’s theorem [9], limn→∞ ‖xn − Wnxn‖ = 0 and the definition of W , we
have

lim inf
i→∞

‖xni − z0‖ < lim inf
i→∞

‖xni −Wz0‖

≤ lim inf
i→∞

{‖xni −Wnixni‖+ ‖Wnixni −Wniz0‖

+‖Wniz0 −Wz0‖}
≤ lim inf

i→∞
{‖xni −Wnixni‖+ ‖xni − z0‖+ ‖Wniz0 −Wz0‖}

= lim
i→∞

‖xni −Wnixni‖+ lim inf
i→∞

‖xni − z0‖

+ lim
i→∞

‖Wniz0 −Wz0‖

= lim inf
i→∞

‖xni − z0‖.

This is a contradiction. Hence, we obtain z0 ∈
⋂∞

n=1 F (Tn). From Lemma 3.3, we
have

lim sup
n→∞

〈u−Az, xn − z〉 = 〈u−Az, z0 − z〉 ≤ 0.

Since
xn+1 − z = (I − βnA)(Wnxn − z) + βn(u−Az),

we get

‖xn+1 − z‖2 = ‖(I − βnA)(Wnxn − z) + βn(u−Az)‖2

≤ ‖(I − βnA)(Wnxn − z)‖2 + 2βn〈u−Az, xn+1 − z〉

≤ (1− βnγ)‖xn − z‖2 + βnγ

(
2
γ
〈u−Az, xn+1 − z〉

)
.

Using Lemma 2.3, we conclude that ‖xn − z‖ → 0 as n →∞. �

5. Applications

Let C be a nonempty closed convex subset of a Hilbert space H, and let A be a
mapping C into H. The variational inequatily problem for A is to find z ∈ C such
that

〈Az, x− z〉 ≥ 0
for all x ∈ C. The set of solutions of the variational inequality problem is denoted
by V I(C,A).

Using Theorem 4.1, we prove the following two theorems.

Theorem 5.1. Let H be a real Hilbert space. Let α1, α2, ... be real numbers such
that 0 < αi ≤ b < 1 for every i = 1, 2, ... and T1, T2, ... be nonexpansive mappings
of H into itself such that

⋂∞
n=1 F (Tn) 6= ∅. For every n = 1, 2, ..., let Wn be the W-

mapping generated by Tn, Tn−1, ..., T1 and αn, αn−1, ..., α1. Let {βn} be a sequence
of real numbers such that 0 ≤ βn ≤ 1 for every n = 1, 2, ..., limn→∞ βn = 0,∑∞

n=1 |βn+1 − βn| < ∞ and
∑∞

n=1 βn = ∞. Let A be a γ-strongly positive self-
adjoint bounded linear operator of H into itself. Let {xn} be a sequence generated
by x1 ∈ H and

xn+1 = (I − βnA)Wnxn
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for every n = 1, 2, .... Then {xn} converges strongly to z, where z is the unique
solution of V I(

⋂∞
n=1 F (Tn), A).

Proof. Putting u = 0 in Theorem 4.1, we have xn → z, where z is the unique
solution of min{(1/2)〈Ax, x〉 : x ∈

⋂∞
n=1 F (Tn)}. From Lemma 3.3, we have that z

satisfies 〈−Az, x − z〉 ≤ 0 for all x ∈
⋂∞

n=1 F (Tn). This implies that xn converges
to the unique solution of V I(

⋂∞
n=1 F (Tn), A). �

Remark. Putting Tn = PC for all n = 1, 2, ..., we have from Theorem 5.1 that xn

converges strongly to the unique solution of V I(C,A).

Theorem 5.2. Let H be a real Hilbert space. Let α1, α2, ... be real numbers such
that 0 < αi ≤ b < 1 for every i = 1, 2, ... and T1, T2, ... be nonexpansive mappings
of H into itself such that

⋂∞
n=1 F (Tn) 6= ∅. For every n = 1, 2, ..., let Wn be the W-

mapping generated by Tn, Tn−1, ..., T1 and αn, αn−1, ..., α1. Let {βn} be a sequence
of real numbers such that 0 ≤ βn ≤ 1 for every n = 1, 2, ..., limn→∞ βn = 0,∑∞

n=1 |βn+1 − βn| < ∞ and
∑∞

n=1 βn = ∞. Let u be an element of H. Let {xn} be
a sequence generated by x1 ∈ H and

xn+1 = βnu + (1− βn)Wnxn

for every n = 1, 2, .... Then {xn} converges strongly to P⋂∞
n=1 F (Tn)u.

Proof. Putting A = I in Theorem 4.1, we have xn → z, where z is the unique
solution of min{(1/2)‖x‖2 − 〈u, x〉 : x ∈

⋂∞
n=1 F (Tn)}. Since

1
2
‖x‖2 − 〈u, x〉 =

1
2
(
‖x‖2 − 2〈u, x〉+ ‖u‖2 − ‖u‖2

)
=

1
2
(
‖x− u‖2 − ‖u‖2

)
,

we also have that z is the unique solution of min{(1/2)
(
‖x− u‖2 − ‖u‖2

)
: x ∈⋂∞

n=1 F (Tn)}. This implies that z is the unique solution of min{‖x − u‖ : x ∈⋂∞
n=1 F (Tn)}. From the definition of P⋂∞

n=1 F (Tn), we have z = P⋂∞
n=1 F (Tn)u. �
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