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INDEX AND FIXED POINT THEORY FOR COMPACT
ABSORBING CONTRACTIVE PERMISSIBLE MAPS

DONAL O’REGAN

Abstract. An index theory is presented for compact absorbing contractive per-
missible maps and several new fixed point theorems are given for such maps.

1. Introduction

In Section 2 we present a slight generalization of the fixed point index for permis-
sible maps [7] and in Section 3 we provide an alternative approach to establishing
fixed point theory using projective limits. These results improve those in the liter-
ature; see [1-6, 8, 10-11, 13-15] and the references therein.

Consider vector spaces over a field K. Let E be a vector space and f : E → E
an endomorphism. Now let N(f) = {x ∈ E : f (n)(x) = 0 for some n} where
f (n) is the nth iterate of f , and let Ẽ = E\N(f). Since f(N(f)) ⊆ N(f) we
have the induced endomorphism f̃ : Ẽ → Ẽ. We call f admissible if dim Ẽ < ∞;
for such f we define the generalized trace Tr(f) of f by putting Tr(f) = tr(f̃)
where tr stands for the ordinary trace.

Let f = {fq} : E → E be an endomorphism of degree zero of a graded vector
space E = {Eq}. We call f a Leray endomorphism if (i). all fq are admissible
and (ii). almost all Ẽq are trivial. For such f we define the generalized Lefschetz
number Λ(f) by

Λ(f) =
∑

q

(−1)q Tr (fq).

A linear map f : E → E of a vector space E into itself is called weakly nilpotent
provided for every x ∈ E there exists nx such that fnx(x) = 0.

Assume that E = {Eq} is a graded vector space and f = {fq} : E → E is an
endomorphism. We say that f is weakly nilpotent iff fq is weakly nilpotent for
every q.

It is well known [9, pp 53] that any weakly nilpotent endomorphism f : E → E
is a Leray endomorphism and Λ(f) = 0.

Let H be the C̆ech homology functor with compact carriers and coefficients in
the field of rational numbers K from the category of Hausdorff topological spaces
and continuous maps to the category of graded vector spaces and linear maps of
degree zero. Thus H(X) = {Hq(X)} is a graded vector space, Hq(X) being the
q–dimensional C̆ech homology group with compact carriers of X. For a continuous
map f : X → X, H(f) is the induced linear map f? = {f? q} where f? q : Hq(X) →
Hq(X).
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Let X and Y be Hausdorff topological spaces.

Definition 1.1. A multivalued map F : X → K(Y ) (K(Y ) denotes the class of
nonempty compact subsets of Y ) is in the class Am(X, Y ) if (i). F is continuous,
and (ii). for each x ∈ X the set F (x) consists of one or m acyclic components; here
m is a positive integer. We say F is of class A0(X, Y ) if F is upper semicontinuous
and for each x ∈ X the set F (x) is acyclic.

Definition 1.2. A decomposition (F1, ..., Fn) of a multivalued map F : X → 2Y

is a sequence of maps

X = X0
F1→ X1

F2→ X2
F3→ .....

Fn−1→ Xn−1
Fn→ Xn = Y,

where Fi ∈ Ami(Xi−1, Xi), F = Fn ◦ .... ◦ F1. One can say that the map F
is determined by the decomposition (F1, ..., Fn). The number n is said to be the
length of the decomposition (F1, ..., Fn). We will denote the class of decompositions
by D(X, Y ).

Definition 1.3. An upper semicontinuous map F : X → K(Y ) is permissible pro-
vided it admits a selector G : X → K(Y ) which is determined by a decomposition
(G1, ..., Gn) ∈ D(X, Y ). We denote the class of permissible maps from X into Y
by P(X, Y ).

Let X be a Hausdorff topological space and let a map Φ be determined by
(Φ1, ....,Φk) ∈ D(X, X). Then Φ is said to be a Lefschetz map if the induced
homology homomorphism [7, pp 27] (Φ1, ...,Φk)? : H(X) → H(X) is a Leray
endomorphism.

If Φ : X → X is a Lefschetz map as described above then we define the Lefschetz
number (see [7]) Λ (Φ) (or ΛX (Φ)) by

Λ (Φ) = Λ((Φ1, ...,Φk)?).

A Hausdorff topological space X is said to be a Lefschetz space (for the class
D) provided every compact Φ : X → K(X) determined by a decomposition
(Φ1, ....,Φk) ∈ D(X, X) is a Lefschetz map and Λ(φ) 6= 0 implies Φ has a fixed
point.

Example. If X is a metric ANR then X is a Lefschetz space (for the class D)
(see [7, pp 42] or [9, Section 50-53]).

A map Φ ∈ P(X, X) is said to be a Lefschetz map provided every selector
G : X → K(X) of Φ which is determined by (G1, ..., Gk) ∈ D(X, X) is such that
(G1, ..., Gk)? : H(X) → H(X) is a Leray endomorphism.

If Φ ∈ P(X, X) is a Lefschetz map as described above then we define the Lef-
schetz set Λ (Φ) (or ΛX (Φ)) by

Λ (Φ) = {Λ((G1, ..., Gk)?) : (G1, ..., Gk) ∈ D(X, X)
and (G1, ...., Gk) determines a selector of Φ}.

A Hausdorff topological space X is said to be a Lefschetz space (for the class P)
provided every compact Φ ∈ P(X, X) is a Lefschetz map and Λ(φ) 6= {0} implies



INDEX THEORY 371

Φ has a fixed point.

Example.If X is a metric ANR then X is a Lefschetz space (for the class P) (see
[7, pp 43]).

The following concepts will be needed in Section 3. Let (X, d) be a metric
space and S a nonempty subset of X. For x ∈ X let d(x, S) = infy∈S d(x, y).
Also diamS = sup{d(x, y) : x, y ∈ S}. We let B(x, r) denote the open ball in
X centered at x of radius r and by B(S, r) we denote ∪x∈S B(x, r). For two
nonempty subsets S1 and S2 of X we define the generalized Hausdorff distance
H to be

H(S1, S2) = inf{ε > 0 : S1 ⊆ B(S2, ε), S2 ⊆ B(S1, ε)}.
Now suppose G : S → 2X . Then G is said to be hemicompact if each sequence
{xn}n∈N in S has a convergent subsequence whenever d(xn, G (xn)) → 0 as n →∞.

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of locally
convex spaces. For each α ∈ I, β ∈ I for which α ≤ β let πα,β : Eβ → Eα be a
continuous map. Then the set{

x = (xα) ∈
∏
α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I, α ≤ β

}
is a closed subset of

∏
α∈I Eα and is called the projective limit of {Eα}α∈I and

is denoted by lim← Eα (or lim← {Eα, πα,β} or the generalized intersection [1, 2]
∩α∈I Eα.)

2. Index Theory

In this section we give a slight generalization of the fixed point index for per-
missible maps. In [15] we defined compact absorbing contractions as follows. Let
X be a Hausdorff topological space. A map F : X → K(X) determined by
(F1, ...., Fk) ∈ D(X, X) is said to be a compact absorbing contraction (and we
write F ∈ CAC(X, X) or F ∈ CAC(X)) if there exists Y ⊆ X such that

(i) F (Y ) ⊆ Y ;
(ii) F |Y (which of course is determined by the restriction of (F1, ...., Fk) ∈

D(X, X) to the subset Y ) is a compact map with Y a Lefschetz space;
(iii) for every compact K ⊆ X there is an integer n = n(K) such that Fn(K) ⊆

Y .

Remark 2.1. If Y = U is an open subset of X then (iii) could be changed to

(iii)’ . for every x ∈ X there exists an integer n = n(x) such that Fn(x)(x) ⊆
Y = U .

However for our index below we will need Y in our definition above to be an
open ANR. So in this paper X will be a metric space. A map F : X → K(X)
determined by (F1, ...., Fk) ∈ D(X, X) is said to be a compact absorbing contraction
(written F ∈ CAC(X, X) or F ∈ CAC(X)) if there exists Y ⊆ X such that

(i) F (Y ) ⊆ Y ;
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(ii) F |Y (which of course is determined by the restriction of (F1, ...., Fk) ∈
D(X, X) to the subset Y ) is a compact map with Y an open ANR;

(iii) for every x ∈ X there exists an integer n = n(x) such that Fn(x)(x) ⊆ Y .
We are now in a position to define the index. Let X be a metric space, W open

in X, F ∈ CAC(X, X) (with Y as described above) and x /∈ F x for x ∈ ∂W
(here ∂W denotes the boundary of W in X). We now define

i (X, F,W ) = ind (Y, F |Y ,W ∩ Y )

where ind is as described in [7, pp 38] (note W ∩ Y is an open subset of the ANR
Y and note x /∈ Fx for x ∈ ∂Y (W ∩ Y ) since ∂Y (W ∩ Y ) = (W ∩ Y )Y \(W ∩ Y ) ⊆
(W ∩ Y )\(W ∩ Y ) ⊆ W\W = ∂W ). It is worthwhile remarking that if there exists
x ∈ X with x ∈ F x then from (iii) above we have x ∈ Y .

Our definition is independent of our choice of Y . To see this let (i), (ii) and (iii)
above hold with Y replaced by Y1. First note Y1 ∩ Y is an ANR since it is an
open subset of the ANR Y . Also note F (W ∩ Y ∩ Y1) ⊆ Y1 ∩ Y since F (Y1) ⊆ Y1

and F (Y ) ⊆ Y . Now from the contraction property we have

ind(Y, F, Y1 ∩ Y ∩W ) = ind(Y1 ∩ Y, F, (Y1 ∩ Y ) ∩ (Y1 ∩ Y ∩W ))
= ind(Y1 ∩ Y, F, Y1 ∩ Y ∩W )

and from the localization property, since (Y1 ∩ W ) ∩ Y is open in Y and (Y1 ∩
W ) ∩ Y ⊆ Y ∩W ⊆ Y , we have

ind(Y, F, Y ∩W ) = ind(Y, F, Y1 ∩ Y ∩W ).

Thus

(2.1) ind(Y, F, Y ∩W ) = ind(Y1 ∩ Y, F, Y1 ∩ Y ∩W ).

Similarly from the contraction property we have

ind(Y1, F, Y1 ∩ Y ∩W ) = ind(Y1 ∩ Y, F, (Y1 ∩ Y ) ∩ (Y1 ∩ Y ∩W ))
= ind(Y1 ∩ Y, F, Y1 ∩ Y ∩W )

and from the localization property, since (Y ∩ W ) ∩ Y1 is open in Y1 and (Y ∩
W ) ∩ Y1 ⊆ Y1 ∩W ⊆ Y1, we have

ind(Y1, F, Y1 ∩W ) = ind(Y1, F, Y1 ∩ Y ∩W ).

Thus

(2.2) ind(Y1, F, Y1 ∩W ) = ind(Y1 ∩ Y, F, Y1 ∩ Y ∩W ).

Combining (2.1) and (2.2) gives

ind(Y1, F, Y1 ∩W ) = ind(Y, F, Y ∩W ).

Now we discuss some properties of the index.

Property I. (Additivity) Let W be an open subset of X, F ∈ CAC(X, X) and
assume W1 ⊆ W , W2 ⊆ W are disjoint open sets with Fix F |W ⊆ W1 ∩W2. Then

i(X, F,W ) = i(X, F,W1) + i(X, F,W2).
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Proof. Let Y be as described above. Then the additivity property of ind (see [7,
pp 39], note W1∩Y and W2∩Y are open in Y and disjoint and Fix F |

(W∩Y )Y ⊆
(W1 ∩ Y ) ∪ (W2 ∩ Y )) we have

i(X, F,W ) = ind(Y, F, W ∩ Y ) = ind(Y, F, W1 ∩ Y ) + ind(Y, F, W2 ∩ Y )
= i(X, F,W1) + i(X, F,W2).

�

The following three properties are also immediate.

Property II. (Localization) Let W and W1 be open subsets of X with W1 ⊆ W
and let F ∈ CAC(X, X) with Fix F |W ⊆ W1. Then

i(X, F,W ) = i(X, F,W1).

Property III. (Contraction) Let W be an open subset of X, F ∈ CAC(X, X),
x /∈ F x for x ∈ ∂W , with F (W ) ⊆ A and F (A) ⊆ A. Then

i(X, F,W ) = i(A,F, A ∩W ).

Property IV. (Excision) Let W be an open subset of X, F ∈ CAC(X, X) with
Fix F ⊆ W . Then

i(X, F,W ) = i(X, F,X).

Property V. (Normalization) Let F ∈ CAC(X, X). Then

i(X, F,X) = Λ (F ) (= Λ ((F1, ...., Fk)?));

here F is determined by (F1, ...., Fk) ∈ D(X, X).

Proof. Let Y and F be as described above (i.e. F is determined by (F1, ...., Fk) ∈
D(X, X)). We consider three homomorphisms

(F1, ...., Fk)? X : H(X) → H(X), (F1, ...., Fk)? Y : H(Y ) → H(Y )

and
(F1, ...., Fk)? : H(X, Y ) → H(X, Y ).

Since Y is an ANR (so in particular a Lefschetz space) then (F1, ...., Fk)? Y is a
Leray endomorphism. For any compact K ⊆ X there exists an n with Fn(K) ⊆ Y

and since we consider C̆ech homology with compact carriers then (F1, ...., Fk)?

is weakly nilpotent. Then [9, pp 53] guarantees that (F1, ...., Fk)? is a Leray
endomorphism and Λ ((F1, ...., Fk)?) = 0. Also [9, Property 11.5, pp 52] guar-
antees that (F1, ...., Fk)? X is a Leray endomorphism and Λ ((F1, ...., Fk)? X) =
Λ ((F1, ...., Fk)? Y ). Now [7, pp40] guarantees that

ind(Y, F, Y ) = Λ ((F1, ...., Fk)? Y )

so
Λ ((F1, ...., Fk)? Y ) = ind(Y, F, Y ) = i(X, F,X).

�
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Other properties, for example the homotopy property, could also be formulated.
We leave these to the reader.

Let X be a metric space. A map F ∈ P(X, X) is said to be a compact absorbing
contraction (written F ∈ CACP (X, X) or F ∈ CACP (X)) if every selector G :
X → K(X) of F which is determined by (G1, ...., Gn) ∈ D(X, X) is such that
G ∈ CAC(X, X).

Note from the proof of Property V we have that Λ ((G1, ...., Gn)?) is defined and
as a result we can define the Lefschetz set Λ (F ) as in Section 1.

Let W be an open subset of X with Fix F ∩ ∂W = ∅. We now define

i(X, F,W ) = {i(X, G, W ) : G is a selector of F determined by
(G1, ..., Gn) ∈ D(X, X) and G ∈ CAC(X, X)}.

The following properties (we just list a few) are immediate.

Property I. Let W be an open subset of X, F ∈ CACP (X, X) and assume
W1 ⊆ W , W2 ⊆ W are disjoint open sets with Fix F |W ⊆ W1 ∩W2. Then

i(X, F,W ) ⊆ i(X, F,W1) + i(X, F,W2).

Property II. Let F ∈ CACP (X, X). Then

i(X, F,X) = Λ (F ).

Property III. Let W be an open subset of X, F ∈ CACP (X, X) and Fix F ∩
∂W = ∅. If i(X, F,W ) 6= {0} then F has a fixed point in W .

We now briefly discuss the Lefschetz fixed point theorem for pairs of spaces. Let
X and A be metric spaces with A ⊆ X. Let F ∈ CACP (X, X) and assume
F (A) ⊆ A. If a selector G of F is determined by (G1, ...., Gk) ∈ D(X, X) then
G(A) ⊆ A. The same idea as in the proof of Property V (note G|A ∈ CAC(A,A))
above guarantees that

(G1, ...., Gk)? X : H(X) → H(X) and (G1, ...., Gk)? A : H(A) → H(A)

are Leray endomorphisms. Now [9, Property 11.5, pp 52] guarantees that

(G1, ...., Gk)? : H(X, A) → H(X, A)

is a Leray endomorphism and

Λ ((G1, ...., Gk)?) = Λ ((G1, ...., Gk)? X)− Λ ((G1, ...., Gk)? A).

As a result we can define the relative Lefschetz set ΛX,A (F ) by

ΛX,A (F ) = {Λ((G1, ..., Gk)?) : (G1, ..., Gk)? : H(X, A) → H(X, A)
and (G1, ...., Gk) determines a selector of F}.

Theorem 2.2. Let X and A be metric spaces with F ∈ CACP (X, X) and
F (A) ⊆ A. Then ΛX,A (F ) 6= {0} implies F has a fixed point in X\A.

Proof. Suppose (G1, ...., Gk) ∈ D(X, X) determines a selector of F with
Λ((G1, ..., Gk)?) 6= 0. As above we have

(2.3) Λ ((G1, ...., Gk)?) = Λ ((G1, ...., Gk)? X)− Λ ((G1, ...., Gk)? A).
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Suppose F has no fixed points in X\A. Then Fix G ⊆ X\(X\A) = intX A. Let
W = intX A so W is an open subset of X with W ⊆ A. Therefore from Property
IV and Property V above (note Fix G ⊆ W ) we have

(2.4) i(X, G, W ) = i(X, G, X) = Λ ((G1, ...., Gk)? X).

Similarly since W = intX A ⊆ A is an open subset of A we have

(2.5) i(A,G,W ) = i(A,G,A) = Λ ((G1, ...., Gk)? A).

Also from Property III above (note G(A) ⊆ F (A) ⊆ A) we have

i(X, G, X) = i(A,G,A ∩W ) = i(A,G,W )

so from (2.4) and (2.5) we have

Λ ((G1, ...., Gk)? X) = Λ ((G1, ...., Gk)? A).

As a result (2.3) implies Λ ((G1, ...., Gk)?) = 0, a contradiction. �

3. Fixed point theory in Fréchet spaces

We now present another approach to establishing fixed points based on projective
limits (see [1, 2]). Our results improve those in [3, 4]. Let E = (E, {| · |n}n∈N ) be a
Fréchet space with the topology generated by a family of seminorms {| · |n : n ∈ N};
here N = {1, 2, ....}. We assume that the family of seminorms satisfies

(3.1) |x|1 ≤ |x|2 ≤ |x|3 ≤ ....... for every x ∈ E.

A subset X of E is bounded if for every n ∈ N there exists rn > 0 such that
|x|n ≤ rn for all x ∈ X. For r > 0 and x ∈ E we denote B(x, r) = {y ∈ E :
|x−y|n ≤ r ∀n ∈ N}. To E we associate a sequence of Banach spaces {(En, | · |n)}
described as follows. For every n ∈ N we consider the equivalence relation ∼n

defined by

(3.2) x ∼n y iff |x− y|n = 0.

We denote by En = (E /∼n, | · |n) the quotient space, and by (En, | · |n) the
completion of En with respect to | · |n (the norm on En induced by | · |n and its
extension to En are still denoted by | · |n). This construction defines a continuous
map µn : E → En. Now since (3.1) is satisfied the seminorm | · |n induces a
seminorm on Em for every m ≥ n (again this seminorm is denoted by | · |n). Also
(3.2) defines an equivalence relation on Em from which we obtain a continuous
map µn,m : Em → En since Em /∼n can be regarded as a subset of En. Now
µn,m µm,k = µn,k if n ≤ m ≤ k and µn = µn,m µm if n ≤ m. We now assume the
following condition holds:

(3.3)
{

for each n ∈ N, there exists a Banach space (En, | · |n)
and an isomorphism (between normed spaces) jn : En → En.

Remark 3.1. (i) For convenience the norm on En is denoted by | · |n.
(ii) In many applications En = En for each n ∈ N .
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(iii) Note if x ∈ En (or En) then x ∈ E. However if x ∈ En then x is
not necessaily in E and in fact En is easier to use in applications (even
though En is isomorphic to En). For example if E = C[0,∞), then En

consists of the class of functions in E which coincide on the interval [0, n]
and En = C[0, n].

Finally we assume

(3.4)
{

E1 ⊇ E2 ⊇ ........ and for each n ∈ N,
|jn µn,n+1 j−1

n+1 x|n ≤ |x|n+1 ∀ x ∈ En+1

(here we use the notation from [1, 2] i.e. decreasing in the generalized sense). Let
lim← En (or ∩∞1 En where ∩∞1 is the generalized intersection [1, 2]) denote the
projective limit of {En}n∈N (note πn,m = jn µn,m j−1

m : Em → En for m ≥ n) and
note lim← En

∼= E, so for convenience we write E = lim← En.
For each X ⊆ E and each n ∈ N we set Xn = jn µn(X), and we let Xn, int Xn

and ∂Xn denote respectively the closure, the interior and the boundary of Xn with
respect to | · |n in En. Also the pseudo-interior of X is defined by

pseudo− int (X) = {x ∈ X : jn µn(x) ∈ Xn \ ∂Xn for every n ∈ N}.

The set X is pseudo-open if X = pseudo − int (X). For r > 0 and x ∈ En we
denote Bn(x, r) = {y ∈ En : |x− y|n ≤ r}.

Let M ⊆ E and consider the map F : M → 2E . Assume for each n ∈ N and
x ∈ M that jn µn F (x) is closed. Let n ∈ N and Mn = jn µn(M). Since we first
consider Volterra type operators we assume (note this assumption is only needed in
Theorems 3.2 and 3.6)

(3.5) if x, y ∈ E with |x− y|n = 0 then Hn(F x, F y) = 0;

here Hn denotes the appropriate generalized Hausdorff distance (alternatively we
could assume ∀n ∈ N,∀x, y ∈ M if jn µn x = jn µn y then jn µn F x = jn µn F y
and of course here we do not need to assume that jn µn F (x) is closed for each
n ∈ N and x ∈ M). Now (3.5) guarantees that we can define (a well defined) Fn

on Mn as follows:
For y ∈ Mn there exists a x ∈ M with y = jn µn(x) and we let

Fn y = jn µn F x

(we could of course call it F y since it is clear in the situation we use it); note
Fn : Mn → C(En) and note if there exists a z ∈ M with y = jn µn(z) then
jn µn F x = jn µn F z from (3.5) (here C(En) denotes the family of nonempty closed
subsets of En). In this paper we assume Fn will be defined on Mn i.e. we assume
the Fn described above admits an extension (again we call it Fn) Fn : Mn → 2En

(we will assume certain properties on the extension).
Now we present some fixed point theorems in Fréchet spaces which improve results

in [4]. Our first two results are motivated by Volterra type operators.

Theorem 3.2. Let E and En be as described above, X a subset of E, U a
pseudo-open subset of E and F : Z → 2E with Z ⊆ E, and Xn ⊆ Zn for each
n ∈ N . Also assume for each n ∈ N and x ∈ Z that jn µn F (x) is closed and in
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addition for each n ∈ N that Fn : Xn → 2En is as described above. Suppose the
following conditions are satisfied:

(3.6) for each n ∈ N, Fn ∈ CACP (Xn, Xn)

(3.7)
{

for each n ∈ N, Fn has no fixed points in ∂ Wn; here
Wn = Un ∩Xn and ∂Wn denotes the boundary of Wn in Xn

(3.8) for each n ∈ N, i(Xn, Fn,Wn) 6= {0}
and

(3.9)
{

for each n ∈ {2, 3, ....} if y ∈ Wn solves y ∈ Fn y
in En then jk µk,n j−1

n (y) ∈ Wk for k ∈ {1, ..., n− 1}.
In addition assume either

(3.10) for each n ∈ N, Fn : Wn → 2En is hemicompact

or

(3.11) for each n ∈ N, Fn : Wn → 2En is hemicompact

hold. Then F has a fixed point in E.

Remark 3.3. Note in Theorem 3.2 if x ∈ Xn then x ∈ Zn so there exists a y ∈ Z
with x = jn µn (y) and so Fn (x) = jn µn F (y).

Proof. Fix n ∈ N . It is well known that Un = int Un. To see this note Un ⊆
Un \ ∂Un since if y ∈ Un then there exists x ∈ U with y = jnµn(x) and this
together with U = pseudo − int U yields jnµn(x) ∈ Un \ ∂Un i.e. y ∈ Un \ ∂Un.
In addition notice

Un \ ∂Un = (int Un ∪ ∂Un) \ ∂Un = int Un \ ∂Un = int Un

since int Un ∩ ∂Un = ∅. Consequently

Un ⊆ Un \ ∂Un = int Un, so Un = int Un.

Now (3.8) guarantees that there exists yn ∈ Wn = Un∩Xn with yn ∈ Fn yn in En.
Lets look at {yn}n∈N . Notice y1 ∈ W1 and j1 µ1,k j−1

k (yk) ∈ W1 for k ∈ N\{1}
from (3.9). Note j1 µ1,n j−1

n (yn) ∈ F1 (j1 µ1,n j−1
n (yn)) in E1; to see note for n ∈ N

fixed there exists a x ∈ E with yn = jn µn (x) so jn µn (x) ∈ Fn (yn) = jn µn F (x)
on En so on E1 we have

j1 µ1,n j−1
n (yn) = j1 µ1,n j−1

n jn µn (x) ∈ j1 µ1,n j−1
n jn µn F (x)

= j1 µ1,n µn F (x) = j1 µ1 F (x) = F1(j1 µ1 (x))

= F1(j1 µ1,n j−1
n jn µn (x)) = F1 (j1 µ1,n j−1

n (yn)).

As a result j1 µ1,n j−1
n (yn) ∈ F1 (j1 µ1,n j−1

n (yn)) in E1, j1 µ1,n j−1
n (yn) ∈ W1 for

n ∈ N , together with (3.10) or (3.11) implies there is a subsequence N?
1 of N

and a z1 ∈ W1 (note z1 ∈ W1 if (3.10) holds) with j1 µ1,n j−1
n (yn) → z1 in

E1 as n → ∞ in N?
1 and z1 ∈ F1 z1 since F1 is upper semicontinuous. Note

z1 ∈ W1 (this follows from (3.7) if (3.11) holds). Let N1 = N?
1 \ {1}. Now

j2 µ2,n j−1
n (yn) ∈ W2 for n ∈ N1 together with (3.10) or (3.11) guarantees that

there exists a subsequence N?
2 of N1 and a z2 ∈ W2 with j2 µ2,n j−1

n (yn) → z2
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in E2 as n → ∞ in N?
2 and z2 ∈ F2 z2. Also z2 ∈ W2. Note from (3.4) and

the uniqueness of limits that j1 µ1,2 j−1
2 z2 = z1 in E1 since N?

2 ⊆ N1 (note
j1 µ1,n j−1

n (yn) = j1 µ1,2 j−1
2 j2 µ2,n j−1

n (yn) for n ∈ N?
2 ). Let N2 = N?

2 \ {2}. Pro-
ceed inductively to obtain subsequences of integers

N?
1 ⊇ N?

2 ⊇ ......, N?
k ⊆ {k, k + 1, ....}

and zk ∈ Wk with jk µk,n j−1
n (yn) → zk in Ek as n →∞ in N?

k and zk ∈ Fk zk.
Also zk ∈ Wk. Note jk µk,k+1 j−1

k+1 zk+1 = zk in Ek for k ∈ {1, 2, ...}. Also let
Nk = N?

k \ {k}.
Fix k ∈ N . Now zk ∈ Fk zk in Ek. Note as well that

zk = jk µk,k+1 j−1
k+1 zk+1 = jk µk,k+1 j−1

k+1 jk+1 µk+1,k+2 j−1
k+2 zk+2

= jk µk,k+2 j−1
k+2 zk+2 = ..... = jk µk,m j−1

m zm = πk,m zm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim←En =
E and also note y ∈ Z since zk ∈ Wk ⊆ Xk ⊆ Zk for each k ∈ N . Thus for each
k ∈ N we have

jk µk (y) = zk ∈ Fk zk = jk µk F y in Ek

so y ∈ F y in E. �

Remark 3.4. We can replace (3.9) in Theorem 3.2 with{
for each n ∈ {2, 3, ....} if y ∈ Wn solves y ∈ Fn y
in En then jk µk,n j−1

n (y) ∈ Wk for k ∈ {1, ..., n− 1}
provided (3.11) holds.

Remark 3.5. In Theorem 3.2 it is possible to replace Xn ⊆ Zn with Xn a subset
of the closure of Zn in En provided Z is a closed subset of E so in this case we
could have Z = X if X is closed. To see this note from y = (zk) ∈ lim←En = E
and πk,m (ym) → zk in Ek as m → ∞ we can conclude that y ∈ Z = Z (note
q ∈ Z iff for every k ∈ N there exists (xk,m) ∈ Z, xk,m = πk,n (xn,m) for n ≥ k
with xk,m → jk µk (q) in Ek as m → ∞). Thus zk = jk µk (y) ∈ Zk and so
jk µk (y) ∈ jk µk F (y) in Ek as before.

Essentially the same reasoning as in Theorem 3.2 yields the following result (in
addition here we have the analogue of Remark 3.4 and Remark 3.5).

Theorem 3.6. Let E and En be as described above, X a subset of E, U a
pseudo-open subset of E and F : Z → 2E with Z ⊆ E, and Xn ⊆ Zn for each
n ∈ N . Also assume for each n ∈ N and x ∈ Z that jn µn F (x) is closed and in
addition for each n ∈ N that Fn : Xn → 2En is as described above. Suppose the
following conditions are satisfied:

(3.12) for each n ∈ N, Fn ∈ CACP (Xn, Xn)

(3.13)
{

for each n ∈ N, Fn has no fixed points in ∂ Wn; here
Wn = Un ∩Xn and ∂Wn denotes the boundary of Wn in Xn

and

(3.14) for each n ∈ N, i(Xn, Fn,Wn) 6= {0}.



INDEX THEORY 379

Also assume (3.9) and either (3.10) or (3.11) hold. Then F has a fixed point in E.

Our next two results are motivated by Urysohn type operators. In this case the
map Fn will be related to F by the closure property (3.20).

Theorem 3.7. Let E and En be as described above, X a subset of E, U a
pseudo-open subset of E and F : Z → 2E with Z ⊆ E, and Xn ⊆ Zn for each
n ∈ N . Also for each n ∈ N assume there exists Fn : Xn → 2En and suppose the
following conditions are satisfied:

(3.15) for each n ∈ N, Fn ∈ CACP (Xn, Xn)

(3.16)
{

for each n ∈ N, Fn has no fixed points in ∂ Wn; here
Wn = Un ∩Xn and ∂Wn denotes the boundary of Wn in Xn

(3.17) for each n ∈ N, i(Xn, Fn,Wn) 6= {0}

(3.18)
{

for each n ∈ {2, 3, ....} if y ∈ Wn solves y ∈ Fn y in En

then jk µk,n j−1
n (y) ∈ Wk for k ∈ {1, ..., n− 1}

(3.19)



for any sequence {yn}n∈N with yn ∈ Wn

and yn ∈ Fn yn in En for n ∈ N and
for every k ∈ N there exists a subsequence
Nk ⊆ {k + 1, k + 2, .....}, Nk ⊆ Nk−1 for
k ∈ {1, 2, ....}, N0 = N, and a zk ∈ Wk with
jk µk,n j−1

n (yn) → zk in Ek as n →∞ in Nk

and

(3.20)


if there exists a w ∈ Z and a sequence {yn}n∈N

with yn ∈ Wn and yn ∈ Fn yn in En such that
for every k ∈ N there exists a subsequence S ⊆
{k + 1, k + 2, .....} of N with jk µk,n j−1

n (yn) → jk µk(w)
in Ek as n →∞ in S, then w ∈ F w in E.

Then F has a fixed point in E.

Remark 3.8. Notice to check (3.19) we need to show that for each k ∈ N the
sequence {jk µk,n j−1

n (yn)}n∈Nk−1
⊆ Wk is sequentially compact.

Proof. For each n ∈ N there exists yn ∈ Wn with yn ∈ Fn yn in En. Lets look
at {yn}n∈N . Notice y1 ∈ W1 and j1 µ1,k j−1

k (yk) ∈ W1 for k ∈ {2, 3, ...}. Now
(3.19) with k = 1 guarantees that there exists a subsequence N1 ⊆ {2, 3, ....}
and a z1 ∈ W1 with j1 µ1,n j−1

n (yn) → z1 in E1 as n → ∞ in N1. Look at
{yn}n∈N1 . Now j2 µ2,n j−1

n (yn) ∈ W2 for k ∈ N1. Now (3.19) with k = 2 guaran-
tees that there exists a subsequence N2 ⊆ {3, 4, ...} of N1 and a z2 ∈ W2 with
j2 µ2,n j−1

n (yn) → z2 in E2 as n →∞ in N2. Note from (3.4) and the uniqueness
of limits that j1 µ1,2 j−1

2 z2 = z1 in E1 since N2 ⊆ N1 (note j1 µ1,n j−1
n (yn) =

j1 µ1,2 j−1
2 j2 µ2,n j−1

n (yn) for n ∈ N2). Proceed inductively to obtain subsequences
of integers

N1 ⊇ N2 ⊇ ......, Nk ⊆ {k + 1, k + 2, ....}
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and zk ∈ Wk with jk µk,n j−1
n (yn) → zk in Ek as n → ∞ in Nk. Note

jk µk,k+1 j−1
k+1 zk+1 = zk in Ek for k ∈ {1, 2, ...}.

Fix k ∈ N . Note

zk = jk µk,k+1 j−1
k+1 zk+1 = jk µk,k+1 j−1

k+1 jk+1 µk+1,k+2 j−1
k+2 zk+2

= jk µk,k+2 j−1
k+2 zk+2 = ..... = jk µk,m j−1

m zm = πk,m zm

for every m ≥ k. We can do this for each k ∈ N . As a result y = (zk) ∈ lim←En =
E and also note y ∈ Z since zk ∈ Wk ⊆ Zk for each k ∈ N . Also since yn ∈ Fn yn

in En for n ∈ Nk and jk µk,n j−1
n (yn) → zk = y in Ek as n →∞ in Nk we have

from (3.20) that y ∈ F y in E. �

Remark 3.9. From the proof we see that condition (3.18) can be removed from
the statement of Theorem 3.7. We include it only to explain condition (3.19) (see
Remark 3.8).

Remark 3.10. Note we could replace Xn ⊆ Zn above with Xn a subset of the
closure of Zn in En if Z is a closed subset of E (so in this case we can take
Z = X if X is a closed subset of E).

Remark 3.11. In fact we could replace (3.18) in Theorem 3.7 with{
for each n ∈ {2, 3, ....} if y ∈ Wn solves y ∈ Fn y in En

then jk µk,n j−1
n (y) ∈ Wk for k ∈ {1, ..., n− 1}

and the result above is again true.

Essentially the same reasoning as in Theorem 3.7 yields the following result (in
addition here we have the analogue of Remark 3.10 and Remark 3.11).

Theorem 3.12. Let E and En be as described above, X a subset of E, U a
pseudo-open subset of E and F : Z → 2E with Z ⊆ E, and Xn ⊆ Zn for each
n ∈ N . Also for each n ∈ N assume there exists Fn : Xn → 2En and suppose the
following conditions are satisfied:

(3.21) for each n ∈ N, Fn ∈ CACP (Xn, Xn)

(3.22)
{

for each n ∈ N, Fn has no fixed points in ∂ Wn; here
Wn = Un ∩Xn and ∂Wn denotes the boundary of Wn in Xn

and

(3.23) for each n ∈ N, i(Xn, Fn,Wn) 6= {0}.
In addition assume (3.18), (3.19) and (3.20) hold. Then F has a fixed point in E.
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