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WEAK AND STRONG CONVERGENCE THEOREMS FOR
INEXACT ORBITS OF UNIFORMLY LIPSCHITZIAN MAPPINGS

EVGENIY PUSTYLNIK, SIMEON REICH, AND ALEXANDER J. ZASLAVSKI

Abstract. We study the influence of errors on the convergence of orbits of
uniformly Lipschitzian mappings in Banach and metric spaces.

1. Introduction

The study of the convergence of iterates of nonexpansive self-mappings is a central
topic in Nonlinear Functional Analysis. It began with Banach’s classical theorem [1]
regarding the existence of a unique fixed point for a strict contraction. Banach’s cel-
ebrated result also yields convergence of iterates to this unique fixed point. There
are several generalizations of Banach’s fixed point theorem which show that the
convergence of iterates holds for larger classes of nonexpansive mappings. For ex-
ample, Rakotch [9] introduced the class of contractive mappings and showed that
their iterates also converged to their unique fixed point.

In view of the above discussion, it is natural to ask if convergence of the iterates of
nonexpansive mappings will be preserved in the presence of computational errors. In
[2] we provide affirmative answers to this question. Related results can be found, for
example, in [3, 5]. More precisely, in [2] we show that if all exact iterates of a given
nonexpansive mapping converge (to fixed points), then this convergence continues
to hold for inexact orbits with summable errors. In [7] we continued to study the
influence of computational errors on the convergence of iterates of nonexpansive
mappings in both Banach and metric spaces. We show there that if all the orbits of
a nonexpansive self-mapping of a metric space X converge to some closed subset F
of X, then all inexact orbits with summable errors also converge to the attractor F .
On the other hand, we also construct examples which show that the convergence of
inexact orbits fails if the errors are not summable.

Clearly, each power of a nonexpansive mapping is also nonexpansive. In the
present paper we are concerned with a larger class of mappings, namely, the class
of uniformly Lipschitzian mappings. (See, for example, [4, p. 34]). Recall that a
self-mapping T of a metric space (X, ρ) is said to be uniformly Lipschitzian if there
is a constant C = C(T ) such that

ρ(Tnx, Tny) ≤ Cρ(x, y)
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for all x, y ∈ X and for any n = 1, 2, . . .. This notion is metrically invariant, that
is, if a mapping T is uniformly Lipschitzian with respect to a metric ρ1, then it
is also uniformly Lipschitzian with respect to any equivalent metric ρ2. Indeed,
if ρ1(x, y) ≤ c1ρ2(x, y) and ρ2(x, y) ≤ c2ρ1(x, y) for all x, y ∈ X, where c1, c2 are
positive constants, and if ρ1(Tnx, Tny) ≤ Cρ1(x, y) for all x, y ∈ X and all natural
numbers n, then

ρ2(Tnx, Tny) ≤ c2ρ1(Tnx, Tny) ≤ c2Cρ1(x, y) ≤ c1c2Cρ2(x, y).

In particular, any nonexpansive mapping becomes uniformly Lipschitzian when we
pass to an equivalent metric. Conversely, given a uniformly Lipschitzian mapping
T , there is an equivalent metric with respect to which T is nonexpansive [4, p. 35].

Our purpose in the present paper is to discuss the convergence of orbits of uni-
formly Lipschitzian mappings in the presence of computational errors.

2. Convergence to fixed points

We begin with the following basic result.

Theorem 2.1. Let T be a uniformly Lipschitzian self-mapping of a complete metric
space (X, ρ). Assume that for any x ∈ X, the sequence {Tnx} converges in X and
let a sequence {xn}∞n=0 ⊂ X satisfy

(2.1) ρ(xn+1, Txn) ≤ rn, n = 0, 1, . . . .

If
∑∞

n=0 rn < ∞, then the sequence {xn}∞n=0 converges in (X, ρ) to a fixed point of
T .

Proof. For arbitrary positive integers n and k, we have

(2.2) ρ(Tnxk, xn+k) ≤
n∑

i=1

ρ(T ixn+k−i, T
i−1xn+k−i+1)

≤ C

n∑
i=1

ρ(Txn+k−i, xn+k−i+1) ≤ C

n∑
i=1

rn+k−i = C

n+k−1∑
i=k

ri ≤ C

∞∑
i=k

ri

(here, as usual, T 0x = x for any x ∈ X).
For an arbitrary given ε > 0, we can find a number k0 such that C

∑∞
i=k ri < ε/4

for all k ≥ k0. Inequality (2.2) implies that ρ(Tnxk, xn+k) < ε/4 for all k ≥ k0

and all n ≥ 1. Moreover, the assumptions of the theorem ensure the existence of
limn→∞ Tnxk = yk for any fixed k ≥ k0, and thus the existence of a natural number
nk such that ρ(Tnxk, yk) < ε/4 for any n ≥ nk. Consequently,

(2.3) ρ(xn+k, yk) ≤ ρ(xn+k, T
nxk) + ρ(Tnxk, yk) < ε/2

for all n ≥ nk.
Fixing some k ≥ k0 and taking arbitrary natural numbers m,n ≥ nk, we obtain

that
ρ(xn+k, xm+k) ≤ ρ(xn+k, yk) + ρ(xm+k, yk) < ε,

which means that the sequence {xn} is a Cauchy sequence, and therefore has a limit
x̄. Passing to the limit in (2.3), we obtain that ρ(x̄, yk) ≤ ε/2. Since this holds for
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arbitrary ε > 0 and any k ≥ k0, we conclude that limk→∞ yk = x̄. But all yk are
fixed points of the mapping T , i.e., Tyk = yk. Hence

ρ(T x̄, x̄) ≤ ρ(T x̄, Tyk) + ρ(yk, x̄) ≤ (C + 1)ρ(yk, x̄) −→ 0 as k →∞.

Thus T x̄ = x̄, as asserted. �

Corollary 2.2. Let Y be a quasi-normed Abelian group with a generalized triangle
inequality:

(2.4) ‖x + y‖ ≤ M(‖x‖+ ‖y‖), x, y ∈ Y, M > 1.

Let S be a uniformly Lipschitzian (in particular, nonexpansive) self-mapping of the
space Y , equipped with the quasi-metric ρ(x, y) = ‖x−y‖. Assume that the sequence
of iterates {Snx}∞n=0 converges for any x ∈ Y . Then, for any sequence {xn}∞n=0 ⊂ Y
such that ρ(xn+1, Sxn) ≤ rn for all nonnegative integers n, the condition

(2.5)
∞∑

n=0

rα
n < ∞, α =

ln 2
ln 2 + lnM

,

is sufficient for the convergence of the sequence {xn}∞n=0 to some fixed point of S.

Proof. As shown in [6], any quasi-normed Abelian group can be metrized by some
metric ρ1(x, y) equivalent to ‖x− y‖α with the α defined above. In fact, this metric
is defined by ρ1(x, y) := ‖x− y‖∗, where

(2.6) ‖u‖∗ = inf {
n∑

i=1

‖ui‖α : u =
n∑

i=1

ui, n ≥ 1 },

and the (quasi-)metrics are connected by the inequalities

(2.7) ρ1(x, y) ≤ [ρ(x, y)]α ≤ 2ρ1(x, y).

Since all powers of the operator S satisfy the inequality ρ(Snx, Sny) ≤ Cρ(x, y), we
have

ρ1(Snx, Sny) ≤ [ρ(Snx, Sny)]α ≤ Cα[ρ(x, y)]α ≤ 2Cαρ1(x, y),
that is, S remains a uniformly Lipschitzian mapping with respect to the metric
ρ1(x, y) as well. Moreover,

ρ1(xn+1, Sxn) ≤ [ρ(xn+1, Sxn)]α ≤ rα
n .

Hence condition (2.5) allows us to apply Theorem 2.1 and conclude that the sequence
{xn}∞n=0 converges in the metric ρ1(x, y). By inequalities (2.7), it converges in the
quasi-metric ρ(x, y) too. �

3. Nonexpansive mapppings

In the previous section we studied the convergence of inexact orbits of uniformly
Lipschitzian mappings in the presence of errors. Analogous results for nonexpan-
sive mappings, which are a special case of uniformly Lipschitzian mappings, were
obtained in [2, 7, 8]. It should be mentioned that there we investigated not only
strong but also weak convergence of iterates.

In this section we recall some of these results.
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Let (X, ρ) be a metric space. For each x ∈ X and each nonempty and closed set
A ⊂ X, put

ρ(x,A) = inf{ρ(x, y) : y ∈ A}.
In [2] we obtain the following result.

Theorem 3.1. Let (X, ρ) be a complete metric space and let T : X → X satisfy

ρ(Tx, Ty) ≤ ρ(x, y) for all x, y ∈ X.

Suppose that for each x ∈ X, the sequence {Tnx}∞n=1 converges in (X, ρ).
Assume that {γn}∞n=0 ⊂ (0,∞) satisfies

∑∞
n=0 γn < ∞, and let a sequence

{xn}∞n=0 ⊂ X satisfy ρ(xn+1, Txn) ≤ γn, n = 0, 1, . . . . Then the sequence {xn}∞n=0

converges to a fixed point of T in (X, ρ).

In Theorem 3.1 we obtain convergence of iterates to a point while in the next
theorem, established in [7], we deal with convergence to an attracting set.

Theorem 3.2. Let (X, ρ) be a metric space and let T : X → X satisfy

ρ(Tx, Ty) ≤ ρ(x, y) for all x, y ∈ X.

Suppose that F is a nonempty and closed subset of X such that for each x ∈ X,

lim
i→∞

ρ(T ix, F ) = 0.

Assume that {γn}∞n=0 ⊂ (0,∞),
∑∞

n=0 γn < ∞, and let a sequence {xn}∞n=0 ⊂ X
satisfy ρ(xn+1, Txn) ≤ γn, n = 0, 1, . . . . Then

lim
i→∞

ρ(xi, F ) = 0.

In the following two theorems, which were also established in [2, 7], respectively,
we deal with weak convergence of iterates.

Theorem 3.3. Let (E, || · ||) be a Banach space with dual (E∗, || · ||∗), X a nonempty
and closed subset of E, and let F be a nonempty and closed subset of X in the norm
topology.

Let T : X → X be such that

||Tx− Ty|| ≤ ||x− y|| for all x, y ∈ X

Tx = x for all x ∈ F.

Assume that for each x ∈ X, the sequence {Tnx}∞n=1 converges weakly to an
element of F .

Let {γn}∞n=0 ⊂ (0,∞) satisfy
∑∞

n=0 γn < ∞, and let a sequence {xn}∞n=0 ⊂
X satisfy ||xn+1 − Txn|| ≤ γn, n = 0, 1, . . . . Then the sequence {xn}∞n=1 weakly
converges to a point of F .

Theorem 3.4. Let (E, || · ||) be a reflexive Banach space with dual (E∗, || · ||∗), X
be a nonempty and closed subset of E,

ρ(x, y) = ||x− y||, x, y ∈ E,

and let F be a nonempty and closed subset of X in the norm topology.
Let T : X → X satisfy

||Tx− Ty|| ≤ ||x− y|| for all x, y ∈ X.
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Assume that for each x ∈ X, the sequence {Tnx}∞n=1 is bounded and all its weak
limit points belong to F .

Let {γn}∞n=0 ⊂ (0,∞) satisfy
∑∞

n=0 γn < ∞ and let a sequence {xn}∞n=0 ⊂ X
satisfy ||xn+1 − Txn|| ≤ γn, n = 0, 1, . . . . Then the sequence {xn}∞n=1 is bounded
and all its weak limit points belong to F .

4. Uniformly Lipschitzian mappings

Let (X, ρ) be a metric space and let T : X → X be a uniformly Lipschitzian
mapping, namely,

(4.1) ρ(Tnx, Tny) ≤ cρ(x, y) for all natural numbers n and all x, y ∈ X,

where c is a positive constant.
In this section we return to the study of the convergence of inexact orbits of such

a mapping T in the presence of computational errors, which was begun in Section
2. There we presented a direct proof of Theorem 2.1, which is a generalization
of Theorem 3.1. In the next two theorems we show that this generalization of
Theorem 3.1, obtained in Section 2, as well as a generalization of Theorem 3.2, can,
as a matter of fact, be deduced from Theorems 3.1 and 3.2, respectively. As before,
here we also put T 0x = x for all x ∈ X.

Theorem 4.1. Let the metric space (X, ρ) be complete and let the mapping T :
X → X be uniformly Lipschitzian. Suppose that for each x ∈ X, the sequence
{Tnx}∞n=1 converges in (X, ρ).

Assume that {γn}∞n=0 ⊂ (0,∞) satisfies
∑∞

n=0 γn < ∞, and that a sequence
{xn}∞n=0 ⊂ X satisfies ρ(xn+1, Txn) ≤ γn, n = 0, 1, . . . . Then the sequence {xn}∞n=1

converges to a fixed point of T in (X, ρ).

Theorem 4.2. Let (X, ρ) be a metric space and let T : X → X be a uniformly
Lipschitzian mapping. Let F be a nonempty and closed subset of X, and suppose
that for each x ∈ X,

lim
i→∞

ρ(T ix, F ) = 0.

Let {γn}∞n=0 ⊂ (0,∞),
∑∞

n=0 γn < ∞ and let a sequence {xn}∞n=0 ⊂ X satisfy
ρ(xn+1, Txn) ≤ γn, n = 0, 1, . . . . Then

lim
i→∞

ρ(xi, F ) = 0.

Proofs of Theorems 4.1 and 4.2. Put

ρ1(x, y) = sup{ρ(Tnx, Tny) : n = 0, 1, . . . }, x, y ∈ X.

By (4.1), ρ1 is a metric on X and for all x, y ∈ X,

(4.2) ρ(x, y) ≤ ρ1(x, y) ≤ cρ(x, y)

and

(4.3) ρ1(Tx, Ty) ≤ ρ1(x, y).

In both Theorems 4.1 and 4.2 we obtain that for all integers n ≥ 0,

ρ1(xn+1, Txn) ≤ cρ(xn+1, Txn) ≤ cγn,

∞∑
n=0

cγn < ∞.
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In the case of Theorem 4.1, since {Tnx}∞n=0 converges in (X, ρ1) for each x ∈ X,
we can apply Theorem 3.1 with ρ = ρ1 and conclude that {xn}∞n=0 converges to a
fixed point of T in (X, ρ1) and also in (X, ρ).

In the case of Theorem 4.2, since we have for all x ∈ X,

lim
i→∞

ρ1(T ix, F ) ≤ lim
i→∞

cρ(T ix, F ) = 0,

we can apply Theorem 3.2 with ρ = ρ1 and obtain that

lim
i→∞

ρ(xi, F ) ≤ lim
i→∞

ρ1(xi, F ) = 0.

Thus both Theorems 4.1 and 4.2 are proved.
As in the case of convergence to a fixed point (Theorems 2.1 and 4.1), we can

extend Theorem 4.2 to quasi-metric spaces.

Corollary 4.3. Let Y be a quasi-normed Abelian group with a generalized triangle
inequality (2.4), equipped with a quasi-metric ρ(x, y) = ‖x−y‖. Let S be a uniformly
Lipschitzian (in particular, nonexpansive) self-mapping of (Y, ρ) such that

lim
i→∞

ρ(Six, F ) = 0

for some nonempty and closed set F ⊂ Y and each x ∈ Y . Then, for any se-
quence {xn}∞n=0 ⊂ Y such that ρ(xn+1, Sxn) ≤ γn for all nonnegative integers n,
the condition

∞∑
n=0

γα
n < ∞, α =

ln 2
ln 2 + lnM

,

is sufficient for the convergence limn→∞ ρ(xn, F ) = 0.

Analogs of Theorems 3.3 and 3.4 need separate proofs. Before stating them we
first prove a simple auxiliary result.

Lemma 4.4. Assume that {γn}∞n=0 ⊂ (0,∞),
∑∞

n=0 γn < ∞, {xn}∞n=0 ⊂ X and

ρ(xn+1, Txn) ≤ γn, n = 0, 1, . . . .

Then for each integer n > 0 and each integer k ≥ 0,

ρ(Tnxk, xn+k) ≤ c

∞∑
i=k

γi.

Proof. Let n > 0 and k ≥ 0 be integers. Then by (4.1),

ρ(Tnxk, xn+k) ≤
n∑

i=1

ρ(T ixn+k−i, T
i−1xn+k−i+1)

≤ c

n∑
i=1

ρ(Txn+k−i, xn+k−i+1) ≤ c

n∑
i=1

γn+k−i = c

n+k−1∑
i=k

γi ≤ c

∞∑
i=k

γi.

Lemma 4.4 is proved. �
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In the next two theorems we assume that (E, || · ||) is a Banach space with dual
(E∗, || · ||∗), X is a nonempty and closed subset of E, F is a nonempty and closed
subset of X in the norm topology,

ρ(x, y) = ||x− y||, x, y ∈ X,

and that T : X → X satisfies (4.1) with c > 0. The following theorem is a
generalization of Theorem 3.3.

Theorem 4.5. Let Tx = x for all x ∈ F . Assume that for each x ∈ X, the sequence
{Tnx}∞n=1 converges weakly to an element of F .

Let {γn}∞n=0 ⊂ (0,∞) satisfy
∑∞

n=0 γn < ∞ and let a sequence {xn}∞n=0 ⊂ X
satisfy

(4.4) ||xn+1 − Txn|| ≤ γn, n = 0, 1, . . . .

Then the sequence {xn}∞n=1 weakly converges to a point of F .

Proof. Let k ≥ 0 be an integer and define a sequence {y(k)
i }∞i=k by

(4.5) y
(k)
k = xk, y

(k)
i+1 = Ty

(k)
i , i = k, k + 1, . . . .

For each integer k ≥ 0, there exists y
(k)
∗ ∈ F which is a weak limit of {y(k)

i }∞i=k. By
(4.5), Lemma 4.4 and (4.4), for each integer n ≥ 0 and each integer k ≥ 0,

(4.6) ||y(k)
n+k − xn+k|| = ||Tnxk − xn+k|| ≤ c

∞∑
i=k

γi.

By (4.6), for each pair of integers k1, k2 ≥ 0 and each integer p ≥ k1, k2,

(4.7) ||y(k1)
p − y(k2)

p || ≤ 2c

∞∑
i=min{k1,k2}

γi.

We show that the sequence {y(k)
∗ }∞k=0 is a Cauchy sequence. Let ε > 0. Choose a

natural number k̄ such that

(4.8) 2(c + 1)
∞∑

i=k̄

γi < ε/2.

Let k1, k2 ≥ k̄ be integers. We claim that

(4.9) ||y(k1)
∗ − y

(k2)
∗ || ≤ 2(c + 1)

∞∑
i=k̄

γi.

To prove this, it is sufficient to show that for each f ∈ E∗ satisfying ||f ||∗ ≤ 1, we
have

(4.10) |f(y(k1)
∗ − y

(k2)
∗ )| ≤ 2(c + 1)

∞∑
i=k̄

γi.

Assume that f ∈ E∗ and ||f ||∗ ≤ 1. Then by (4.7),

|f(y(k1)
∗ − y

(k2)
∗ )| = | lim

i→∞
f(y(k1)

i − y
(k2)
i )|
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≤ lim sup
i→∞

||y(k1)
i − y

(k2)
i || ≤ 2c

∞∑
i=k̄

γi

and (4.10) holds. Therefore (4.9) is true for each pair of integers k1, k2 ≥ k̄, as
claimed. When combined with (4.8), this implies that

(4.11) ||y(k1)
∗ − y

(k2)
∗ || < ε/2 for all integers k1, k2 ≥ k̄.

Since ε is an arbitrary positive number, we conclude that {y(k)
∗ }∞k=0 is a Cauchy

sequence which converges in norm to ȳ ∈ F . In view of (4.11), we have

(4.12) ||y(k)
∗ − ȳ|| ≤ ε/2 for all integers k ≥ k̄.

Let

(4.13) f ∈ E∗, ||f ||∗ ≤ 1.

By (4.13), (4.6), (4.12) and (4.8), for each integer m > k̄,

|f(xm − ȳ)| ≤ |f(xm − y(k̄)
m )|+ |f(y(k̄)

m − y
(k̄)
∗ )|+ |f(y(k̄)

∗ − ȳ)|

≤ ||xm − y(k̄)
m ||+ |f(y(k̄)

m − y
(k̄)
∗ )|+ ||y(k̄)

∗ − ȳ||

≤ c

∞∑
i=k̄

γi + |f(y(k̄)
m − y

(k̄)
∗ )|+ ε/2 ≤ |f(y(k̄)

m − y
(k̄)
∗ )|+ (3/4)ε.

Since y
(k̄)
m converges weakly for y

(k̄)
∗ as m →∞, we conclude that for all sufficiently

large natural numbers m, |f(xm − ȳ)| < ε. Thus {xi}∞i=0 does indeed converge
weakly to ȳ and Theorem 4.5 is proved. �

Our last theorem is a generalization of Theorem 3.4.

Theorem 4.6. Let the Banach space (E, || · ||) be reflexive. Assume that for each
x ∈ X the sequence {Tnx}∞n=1 is bounded and all its weak limit points belong to F .

Let {γn}∞n=0 ⊂ (0,∞) satisfy
∑∞

n=0 γn < ∞ and let a sequence {xn}∞n=0 ⊂ X
satisfy

(4.14) ||xn+1 − Txn|| ≤ γn, n = 0, 1, . . . .

Then the sequence {xn}∞n=1 is bounded and all its weak limit points belong to F .

Proof. Let k ≥ 0 be an integer and define a sequence {y(k)
i }∞i=k by (4.5). By (4.5),

(4.14) and Lemma 4.1, inequality (4.6) holds. By (4.6), the sequence {xn}∞n=0 is
bounded. Let y∗ be a weak limit point of {xn}∞n=0. In order to prove the theorem
it is sufficient to show that y∗ ∈ F . To this end, consider a subsequence {xip}∞p=1

which converges to y∗ in the weak topology.
Let ε > 0 be given. There is a natural number k such that

(4.15) 2(c + 1)
∞∑

i=k

γi < ε/2.

By (4.15) and (4.6), for all integers j > k, we have

(4.16) ||y(k)
j − xj || ≤ c

∞∑
i=k

γi < ε/4.
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Extracting a subsequence and re-indexing if necessary, we may assume without loss
of generality that the subsequence {y(k)

ip
}∞p=1 weakly converges to y ∈ F .

Assume that

(4.17) f ∈ E∗, ||f ||∗ ≤ 1.

By (4.17) and (4.16),

|f(y∗ − y)| = lim
p→∞

|f(xip − y
(k)
ip

)| ≤ lim sup
p→∞

||xip − y
(k)
ip
|| ≤ ε/4.

Since f is an arbitrary linear functional satisfying (4.17), we conclude that ||y∗−y|| ≤
ε/4. Since ε is an arbitrary positive number and y ∈ F , we see that y∗ ∈ F too.
Theorem 4.6 is proved. �
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intégrales, Fund. Math. 3 (1922), 133–181.

[2] D. Butnariu, S. Reich and A. J. Zaslavski, Convergence to fixed points of inexact orbits of
Bregman-monotone and of nonexpansive operators in Banach spaces, in Fixed Point Theory
and its Applications, Yokohama Publishers, Yokohama, 2006, pp. 11–32.

[3] D. Butnariu, S. Reich and A. J. Zaslavski, Asymptotic behavior of inexact orbits for a class of
operators in complete metric spaces, Journal of Applied Analysis 13 (2007), 1–11.

[4] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Map-
pings, Marcel Dekker, New York and Basel, 1984.

[5] A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech. 47 (1967),
77–81.

[6] J. Peetre and G. Sparr, Interpolation of normed abelian groups, Ann. Mat. Pura Appl. 92
(1972), 217–262.

[7] E. Pustylnik, S. Reich and A. J. Zaslavski, Inexact orbits of nonexpansive mappings, Taiwanese
J. Math. 12 (2008), 1511–1523.

[8] E. Pustylnik, S. Reich and A. J. Zaslavski, Convergence to compact sets of inexact orbits of
nonexpansive mappings in Banach and metric spaces, Fixed Point Theory and Applications
2008 (2008), 1–10.

[9] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459–465.

Manuscript received May 7, 2009

revised August 17, 2009

Evgeniy Pustylnik
Department of Mathematics, The Technion – Israel Institute of Technology, 32000 Haifa, Israel

E-mail address: evg@tx.technion.ac.il

Simeon Reich
Department of Mathematics, The Technion – Israel Institute of Technology, 32000 Haifa, Israel

E-mail address: sreich@tx.technion.ac.il

Alexander J. Zaslavski
Department of Mathematics, The Technion – Israel Institute of Technology, 32000 Haifa, Israel

E-mail address: ajzasl@tx.technion.ac.il


