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SUFFICIENT CONDITIONS FOR TURNPIKE PROPERTIES OF
EXTREMALS OF AUTONOMOUS VARIATIONAL PROBLEMS

WITH VECTOR-VALUED FUNCTIONS

ALEXANDER J. ZASLAVSKI

Abstract. In this work we study the structure of approximate solutions of au-
tonomous variational problems with vector-valued functions. We are interested
in turnpike properties of these solutions which are independent of the length of
the interval, for all sufficiently large intervals.

1. Introduction

In this paper we analyze the structure of extremals of the variational problems

(P )
∫ T

0
f(z(t), z′(t))dt→ min, z(0) = x, z(T ) = y,

z : [0, T ] → Rn is an absolutely continuous (a. c. ) function,
where T > 0, x, y ∈ Rn and f : Rn × Rn → R1 is an integrand. We are interested
in a turnpike property of the extremals which is independent of the length of the
interval, for all sufficiently large intervals. To have this property means, roughly
speaking, that the approximate solutions of the variational problems are determined
mainly by the integrand, and are essentially independent of the choice of interval
and endpoint conditions.

Turnpike properties are well known in mathematical economics [6, 13]. The
term was first coined by Samuelson in 1948 (see [7]) where he showed that an
efficient expanding economy would spend most of the time in the vicinity of a
balanced equilibrium path (also called a von Neumann path). This property was
further investigated for optimal trajectories of models of economic dynamics. See,
for example, [3, 6] and the references mentioned therein. For variational problems
the turnpike properties were studied in [4, 5, 8, 9, 11, 12]. Many turnpike results
can be found in [13].

Denote by | · | the Euclidean norm in Rn. Let a be a positive constant and let
ψ : [0,∞) → [0,∞) be an increasing function such that ψ(t) → ∞ as t → ∞.
Denote by A the set of all continuous functions f : Rn × Rn → R1 which satisfy
the following assumptions:

A(i) for each x ∈ Rn the function f(x, ·) : Rn → R1 is convex;
A(ii) f(x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for each (x, u) ∈ Rn ×Rn;
A(iii) for each M, ε > 0 there exist Γ, δ > 0 such that

|f(x1, u1)− f(x2, u2)| ≤ εmax{f(x1, u1), f(x2, u2)}
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for each u1, u2, x1, x2 ∈ Rn which satisfy

|xi| ≤M, i = 1, 2, |ui| ≥ Γ, i = 1, 2, |x1 − x2|, |u1 − u2| ≤ δ.

It is easy to show that an integrand f = f(x, u) ∈ C1(R2n) belongs to A if
f satisfies assumptions A(i), A(ii) and if there exists an increasing function ψ0 :
[0,∞) → [0,∞) such that

max{|∂f/∂x(x, u)|, |∂f/∂u(x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|)
for each x, u ∈ Rn.

For the set A we consider the uniformity which is determined by the following
base:

E(N, ε, λ) = {(f, g) ∈ A×A : |f(x, u)− g(x, u)| ≤ ε

for all u, x ∈ Rn satisfying |x|, |u| ≤ N}
∩{(f, g) ∈ A×A : (|f(x, u)|+ 1)(|g(x, u)|+ 1)−1 ∈ [λ−1, λ]

for all x, u ∈ Rn satisfying |x| ≤ N},
where N, ε > 0 and λ > 1. It was shown in [9] that the uniform space A is metrizable
and complete.

We consider functionals of the form

(1.1) If (T1, T2, x) =
∫ T2

T1

f(x(t), x′(t))dt

where f ∈ A, −∞ < T1 < T2 <∞ and x : [T1, T2] → Rn is an absolutely continuous
(a.c.) function.

For f ∈ A, y, z ∈ Rn and real numbers T1, T2 satisfying T1 < T2 we set

(1.2) Uf (T1, T2, y, z) = inf{If (T1, T2, x) : x : [T1, T2] → Rn

is an a.c. function satisfying x(T1) = y, x(T2) = z}.
It is easy to see that −∞ < Uf (T1, T2, y, z) < ∞ for each f ∈ A, each y, z ∈ Rn

and all numbers T1, T2 satisfying −∞ < T1 < T2 <∞.
Let f ∈ A. For any a.c. function x : [0,∞) → Rn we set

(1.3) J(x) = lim inf
T→∞

T−1If (0, T, x).

Of special interest is the minimal long-run average cost growth rate

(1.4) µ(f) = inf{J(x) : x : [0,∞) → Rn is an a.c. function}.
Clearly −∞ < µ(f) <∞. By a simple modification of the proof of Proposition 4.4
in [2] (see [9, Theorems 8.1, 8.2]) we obtained the representation formula

(1.5) Uf (0, T, x, y) = Tµ(f) + πf (x)− πf (y) + θf
T (x, y),

x, y ∈ Rn, T ∈ (0,∞),

where πf : Rn → R1 is a continuous function and (T, x, y) → θf
T (x, y) ∈ R1 is a

continuous nonnegative function defined for T > 0, x, y ∈ Rn,

(1.6) πf (x) = inf{lim inf
T→∞

[If (0, T, v)− µ(f)T ] : v : [0,∞) → Rn

is an a.c. function satisfying v(0) = x}, x ∈ Rn

and for every T > 0, every x ∈ Rn there is y ∈ Rn satisfying θf
T (x, y) = 0.
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An a. c. function x : [0,∞) → Rn is called (f)-good if the function T →
If (0, T, x) − µ(f)T , T ∈ (0,∞) is bounded. In [9] we showed that for each f ∈ A
and each z ∈ Rn there exists an (f)-good function v : [0,∞) → Rn satisfying
v(0) = z.

Propositions 1.1 and 3.2 of [9] imply the following result.

Proposition 1.1. For any a.c. function x : [0,∞) → Rn either If (0, T, x) −
Tµ(f) →∞ as T →∞ or

sup{|If (0, T, x)− Tµ(f)| : T ∈ (0,∞)} <∞.

Moreover any (f)-good function x : [0,∞) → Rn is bounded.

We denote d(x,B) = inf{|x− y| : y ∈ B} for x ∈ Rn and B ⊂ Rn and denote by
dist(A,B) the distance in the Hausdorff metric for two sets A ⊂ Rn and B ⊂ Rn.
For every bounded a.c. function x : [0,∞) → Rn define

(1.7) Ω(x) = {y ∈ Rn : there exists a sequence {ti}∞i=1 ⊂ (0,∞)

for which ti →∞, x(ti) → y as i→∞}.
We say that an integrand f ∈ A has an asymptotic turnpike property, or briefly

(ATP), if Ω(v2) = Ω(v1) for all (f)-good functions vi : [0,∞) → Rn, i = 1, 2 [4, 9].
In [9, Theorem 2.1] we established the following result.

Theorem 1.2. There exists a set F ⊂ A which is a countable intersection of open
everywhere dense subsets of A such that each integrand f ∈ F possesses (ATP).

Therefore most elements of A (in the sense of Baire category) possess (ATP). In
other words, (ATP) holds for a generic (typical) element of A [1, 13].

By Proposition 1.1 for each integrand f ∈ A which possesses (ATP) there exists
a compact set H(f) ⊂ Rn such that Ω(v) = H(f) for each (f)-good function
v : [0,∞) → Rn.

Let f ∈ A. We say that the integrand f has the strong turnpike property, or
briefly (STP), with a turnpike D ⊂ Rn, where D is a nonempty compact subset of
Rn, if for each ε,K > 0 there exist real numbers δ > 0 and l0 > l > 0 such that the
following assertion holds:

For each T ≥ 2l0 and each a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ K, If (0, T, v) ≤ Uf (0, T, v(0), v(T )) + δ

the inequality

(1.8) dist(D, {v(t) : t ∈ [τ, τ + l]}) ≤ ε

for each τ ∈ [l0, T − l0]. Moreover, if d(v(0), D) ≤ δ, then (1.8) holds for all
τ ∈ [0, T − l0] and if d(v(T ), D) ≤ δ, then (1.8) holds for each τ ∈ [l0, T − l].

Denote by N the set of all functions f ∈ C1(R2n) which satisfy the following
assumptions:

∂f/∂ui ∈ C1(R2n) for i = 1, . . . , n;
the matrix (∂2f/∂ui∂uj)(x, u), i, j = 1, . . . , n is positive definite for all (x, u) ∈ R2n;

f(x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for all (x, u) ∈ Rn ×Rn;
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there exist a number c0 > 1 and monotone increasing functions φi : [0,∞) → [0,∞),
i = 0, 1, 2 such that

φ0(t)/t→∞ as t→∞,

f(x, u) ≥ φ0(c0|u|)− φ1(|x|), x, u ∈ Rn,

max{|∂f/∂xi(x, u)|, |∂f/∂ui(x, u)|} ≤ φ2(|x|)(1 +φ0(|u|)), x, u ∈ Rn, i = 1, . . . , n.
It is easy to see that N ⊂ A.
In [11, Theorem 1.2] we established the following result.

Theorem 1.3. Assume that an integrand f ∈ N has (ATP). Then f possesses
(STP) with the set H(f) being the turnpike.

The set N contains many integrands but actually it is a small subset of the space
A. In this paper we enlarge the set of integrands f ∈ A which possess (STP). We
introduce the following notation.

Let f ∈ A. For each pair of real numbers T2 > T1 and each a.c. function
x : [T1, T2] → Rn set

(1.9) σf (T1, T2, x) = If (T1, T2, x)− (T2 − T1)µ(f)− πf (x(T1)) + πf (x(T2)).

By (1.2), (1,5) and (1.9),
σf (T1, T2, v) ≥ 0

(1.10) for each T1 ∈ R1, each T2 > T1 and each a. c. function v : [T1, T2] → Rn.

We have the following proposition.

Proposition 1.4 ([9, Theorem 8.3]). For every x ∈ Rn there exists an (f)-good
function v : [0,∞) → Rn such that v(0) = x and σf (T1, T2, v) = 0 for each T1 ≥ 0
and each T2 > T1.

The proof of Theorem 1.2 in [11] is based on the following auxiliary result.

Proposition 1.5 ([11, Lemma 4.4]). Let f ∈ N possess (ATP) and ε > 0. Then
there exists q > 0 such that for each h1, h2 ∈ H(f) there exists an a.c. function
v : [0, q] → Rn which satisfies v(0) = h1, v(q) = h2 and σf (0, q, v) ≤ ε.

The following theorem is our main result.

Theorem 1.6. Let f ∈ A possess (ATP) and let the following property hold:
(P) For each ε > 0 there exists q > 0 such that for each x, y ∈ H(f) there exists

an a.c. function v : [0, q] → Rn such that

v(0) = x, v(q) = y and σ(0, q, v) ≤ ε.

Then f has (STP) with the turnpike H(f).

Recall that H(f) is a nonempty compact subset of Rn such that Ω(v) = H(f)
for all (f)-good functions v : [0,∞) ∈ Rn.

We will show that Theorem 1.6 implies the following result.

Theorem 1.7. Let f ∈ A possess (ATP) and H(f) be a singleton. Then f has
(STP) with the turnpike H(f).
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It was shown in [14] that if f ∈ A is strictly convex, then f has (ATP) and H(f)
is a singleton and therefore in view of Theorem 1.7 f has (STP).

Denote by M the set of all f ∈ A which possess (ATP) and the property (P)
and denote by M̄ the closure of M in A. We suppose that the set M is nonempty,
consider the topological subspace M̄ ⊂ A with the relative topology and prove the
following result.

Theorem 1.8. There exists a set F ⊂ M̄ which is a countable intersection of open
everywhere dense subsets of M̄ such that each f ∈ F has (STP) and the property
(P).

2. Auxiliary results for Theorem 1.6

In this paper we use the following auxiliary results.

Lemma 2.1 ([11, Proposition 2.10]). Assume that f ∈ A has (ATP) and ε ∈ (0, 1).
Then there exist L > 0, δ > 0 such that for each T ∈ [L,∞) and each a.c. function
v : [0, T ] → Rn which satisfies

d(v(0),H(f)) ≤ δ, d(v(T ),H(f)) ≤ δ, σf (0, T, v) ≤ δ

the inequality dist(H(f), {v(t) : t ∈ [τ, τ + L]}) ≤ ε holds for all τ ∈ [0, T − L].

Proposition 2.2 ([10, Theorem 1.2]). For each f ∈ A there exists a neighborhood
U of f in A and a number M > 0 such that for each g ∈ U and each (g)-good
function x : [0,∞) → Rn the relation lim supt→∞ |x(t)| < M holds.

Proposition 2.3 ([10, Proposition 2.5]). Assume that f ∈ A, M1 > 0, 0 ≤ T1 < T2

and that xi : [T1, T2] → Rn, i = 1, 2, . . . is a sequence of a.c. functions such that
If (T1, T2, xi) ≤ M1, i = 1, 2 . . . . Then there exist a subsequence {xik}∞k=1 and an
a.c. function x : [T1, T2] → Rn such that

If (T1, T2, x) ≤M1,

xik(t) → x(t) as k → ∞ uniformly on [T1, T2] and x′ik → x′ as k → ∞ weakly in
L1(Rn; (T1, T2)).

Proposition 2.4 ([10, Theorem 1.3]). Let f ∈ A and let M1,M2, c > 0. Then
there exist a neighborhood U of f in A and S > 0 such that for each g ∈ U , each
T1 ∈ [0,∞), each T2 ∈ [T1+c,∞) and each a.c. function v : [T1, T2] → Rn satisfying

|v(Ti)| ≤M1, i = 1, 2, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) +M2

the following inequality holds:

|v(t)| ≤ S, t ∈ [T1, T2].

Proposition 2.5 ([9, Lemma 10.2]). Let f ∈ A possess (ATP), ε0 ∈ (0, 1), K0,M0 >
0 and let l be a positive integer such that for each (f)-good function x : [0,∞) → Rn

the inequality
dist(H(f), {x(t) : t ∈ [T, T + l]}) ≤ 8−1ε0
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holds for all large T (the existence of l follows from Theorem 5.1 of [9]). Then there
exist an integer N ≥ 10 and a neighborhood U of f in A such that for each g ∈ U ,
each S ∈ [0,∞) and each a.c. function x : [S, S +Nl] → Rn satisfying

|x(S)|, |x(S +Nl)| ≤ K0, I
g(S, S +Nl, x)

≤ Ug(S, S +Nl, x(S), x(S +Nl)) +M0

there exists an integer i0 ∈ [0, N − 8] such that

dist(H(f), {x(t) : t ∈ [T, T + l]}) ≤ ε0

for all T ∈ [S + i0l, S + (i0 + 7)l].

Lemma 2.6. Let f ∈ A have (ATP) and z ∈ H(f). Then there exists an a. c.
function v : R1 → H(f) such that v(0) = z and σf (−T, T, v) = 0 for all T > 0.

Proof. Consider any (f)-good function u : [0,∞) → Rn. Then Ω(u) = H(f).
By Proposition 2.2 the function u is bounded. Together with Proposition 1.1 this
implies that

sup{σf (0, T, u) : T > 0} <∞.

Combined with (1.10) this implies the following property:
(P1) For each ε > 0 there exists Tε > 0 such that for each T2 > T1 ≥ Tε the

inequality σf (T1, T2, u) ≤ ε holds.
There exists a sequence of numbers {Tp}∞p=1 ⊂ (0,∞) such that

(2.1) Tp+1 ≥ Tp + 4, p = 1, 2, . . . , u(Tp) → z as p→∞.

For every integer p ≥ 1 we set

(2.2) up(t) = u(t+ Tp), t ∈ [−Tp,∞).

In view of the boundedness of u, the continuity of πf , (P1) and (2.2), for each
natural number q the sequence If (−q, q, up) (where p is a natural number satisfying
Tp ≥ q) is bounded. Together with Proposition 2.3 this implies that there exist a
subsequence {upi}∞i=1 and an a. c. function v : R1 → Rn such that for each natural
number q

(2.3) uip(t) → v(t) as p→∞ uniformly on [−q, q],

(2.4) If (−q, q, v) ≤ lim inf
i→∞

If (−q, q, uip).

Relations (2.2) and (2.3) imply that

(2.5) v(R1) ⊂ Ω(u) = H(f).

It follows from (2.1), (2.2) and (2.3) that

(2.6) v(0) = z.

Let q be a natural number. By (2.1)-(2.4), the continuity of πf and (P1),

σf (−q, q, v) = If (−q, q, v)− 2qµ(f)− πf (v(−q)) + πf (v(q))

≤ lim inf
i→∞

[If (−q, q, uip)− 2qµ(f)− πf (uip(−q)) + πf (uip(q))]

= lim inf
i→∞

[If (−q + Tip , q + Tip , u)− 2qµ(f)− πf (u(Tip − q)) + πf (u(q + Tip))]
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= lim inf
i→∞

σf (Tip − q, Tip + q, u) = 0.

Lemma 2.6 is proved. �

Lemma 2.7. Let f ∈ A have (ATP) and the property (P) and let ε > 0. Then
there are q > 0, δ > 0 such that for each x, y ∈ Rn satisfying

d(x,H(f)) ≤ δ, d(y,H(f)) ≤ δ

and each T ≥ q there is an a. c. function v : [0, T ] → Rn such that

v(0) = x, v(q) = y, σf (0, T, v) ≤ ε.

Proof. By the property (P) there is q0 > 0 such that for each x, y ∈ H(f) there
exists an a. c. function v : [0, q0] → Rn such that

(2.7) v(0) = x, v(q0) = y, σf (0, q0, v) ≤ ε/8.

Set

(2.8) q = q0 + 2.

By the continuity of πf and Uf (0, 1, ·, ·) there is δ ∈ (0, 1) such that for each
x1, x2, y1, y2 ∈ Rn satisfying

(2.9) |xi|, |yi| ≤ sup{|z| : z ∈ H(f)}+ 8, i = 1, 2,

|x1 − x2|, |y1 − y2| ≤ 2δ
the following inequalities hold:

(2.10) |πf (x1)− πf (x2)| ≤ ε/16, |πf (y1)− πf (y2)| ≤ ε/16,

|Uf (0, 1, x1, y1)− Uf (0, 1, x2, y2)| ≤ ε/16.
Assume that T ≥ q and that x, y ∈ Rn satisfy

(2.11) dist(x,H(f)) ≤ δ, dist(y,H(f)) ≤ δ.

There exist x1, y1 ∈ Rn such that

(2.12) x1, y1 ∈ H(f), |x− x1|, |y − y1| ≤ δ.

By Lemma 2.6 and (2.12) there exist a.c. functions u1, u2 : R1 → H(f) such that
for each i = 1, 2 and each T > 0

(2.14) σf (−T, T, ui) = 0

and

(2.15) u1(0) = x1, u2(0) = y1.

By the choice of q0 (see (2.7)) there exists an a.c. function u3 : [1, q0 + 1] → Rn

such that

(2.16) u3(1) = u1(1) ∈ H(f), u3(q0 + 1) = u2(q0 + 1− T ) ∈ H(f),

σf (1, q0 + 1, u3) ≤ ε/8.
There exists an a. c. function v : [0, T ] → Rn such that

v(0) = x, v(t) = u3(t), t ∈ [1, q0 + 1],

(2.17) If (0, 1, v) = Uf (0, 1, x, u3(1)),
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v(t) = u2(t− T ), t ∈ [q0 + 1, T − 1],

v(T ) = y, If (T − 1, T, v) = Uf (0, 1, u2(−1), y).

By (2.17) in order to complete the proof of the lemma it is sufficient to show that
σf (0, T, v) ≤ ε. It follows from (2.17), (2.16) and (2.14) that

σf (0, T, v) = σf (0, 1, v) + σf (1, q0 + 1, v) + σf (q0 + 1, T − 1, v) + σf (T − 1, T, v)

= σf (0, 1, v) + σf (T − 1, T, v) + σf (1, q0 + 1, u3) + σf (q0 + 1− T,−1, u2)

(2.18) ≤ σf (0, 1, v) + σf (T − 1, T, v) + ε/8.

By the choice of δ (see (2.9), (2.10)), (2.13), (2.17), (2.15) and (2.12),

|Uf (0, 1, x, u1(1))− Uf (0, 1, u1(0), u1(1))| ≤ ε/16,

|πf (x)− πf (u1(0))| ≤ ε/16,

|Uf (0, 1, u2(−1), y)− Uf (0, 1, u2(−1), u2(0))| ≤ ε/16,

|πf (y)− πf (u2(0))| ≤ ε/16.

Together with (2.17), (2.14) and (2.16) these inequalities imply that

σf (0, 1, v) = If (0, 1, v)− µ(f)− πf (v(0)) + πf (v(1))

= Uf (0, 1, x, u1(1))− µ(f)− πf (x) + πf (u1(1))

≤ Uf (0, 1, u1(0), u1(1)) + ε/16− µ(f)− πf (u1(0)) + ε/16 + πf (u1(1))

≤ σf (0, 1, u1) + ε/8 = ε/8,

σf (T − 1, T, v) = If (T − 1, T, v)− µ(f)− πf (v(T − 1)) + πf (v(T ))

= Uf (0, 1, u2(−1), y)− µ(f)− πf (u2(−1)) + πf (y)

≤ Uf (0, 1, u2(−1), u2(0)) + ε/16− µ(f)− πf (u2(−1)) + πf (u2(0)) + ε/16

≤ σf (−1, 0, u2) + ε/8 = ε/8.

In view of these inequalities and (2.18)

σf (0, T, v) ≤ ε/8 + ε/8 + ε/8 < ε.

Lemma 2.7 is proved.
�



TURNPIKE PROPERTIES 353

3. Proof of Theorem 1.6

Let ε ∈ (0, 1) and

(3.1) K > sup{|z| : z ∈ H(f)}+ 1.

By Lemma 2.1 there exist l > 0, δ0 ∈ (0, 1) such that for each T ∈ [l,∞) and each
a. c. function v : [0, T ] → Rn which satisfies

(3.2) d(v(0),H(f)) ≤ δ0, d(v(T ),H(f)) ≤ δ0,

σf (0, T, v) ≤ δ0

the inequality

(3.3) dist(H(f), {v(t) : t ∈ [τ, τ + l]}) ≤ ε

holds for all τ ∈ [0, T − l]. By Lemma 2.7 there are δ1 ∈ (0, 1), q > 0 such that for
each x, y ∈ Rn satisfying

(3.4) d(x,H(f)) ≤ δ1, d(y,H(f)) ≤ δ1

and each T ≥ q there is an a. c. function v : [0, T ] → Rn such that

(3.5) v(0) = x, v(q) = y, σf (0, T, v) ≤ δ0/16.

Set

(3.6) δ = min{δ0, δ1}/4.
By Proposition 2.4 there is K1 > K such that for each T ≥ 1 and each a. c. function
v : [0, T ] → Rn which satisfies

(3.7) |v(0)|, |v(T )| ≤ K, If (0, T, v) ≤ Uf (0, T, v(0), v(T )) + 1

the following inequality holds:

(3.8) |v(t)| ≤ K1, t ∈ [0, T ].

By Proposition 2.5 there is N > 0 such that for each a. c. function v : [0, N ] → Rn

satisfying

|v(0)|, |v(N)| ≤ K1, I
f (0, N, v) ≤ Uf (0, N, v(0), v(N)) + 1

there is τ ∈ [0, N ] for which

(3.9) d(v(τ),H(f)) ≤ δ.

Set

(3.10) l0 = 8(N + l + q + 2).

Assume that T ≥ 2l0 and v : [0, T ] → Rn is an a. c. function such that

(3.11) |v(0)|, |v(T )| ≤ K, If (0, T, v) ≤ Uf (0, T, v(0), v(T )) + δ.

By (3.11) and the definition of K1 the inequality (3.8) is true. In view of (3.8),
(3.10), (3.11) and the definition of N there are

(3.12) τ1 ∈ [0, N ], τ2 ∈ [T −N,T ]

such that

(3.13) d(v(τi),H(f)) ≤ δ, i = 1, 2.
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If d(v(0),H(f)) ≤ δ, then we choose τ1 = 0. If d(v(T ),H(f)) ≤ δ, then we choose
τ2 = T .

By (3.12), (3.13), (3.10) and the definition of δ1, q there is an a.c. function
u : [τ1, τ2] → Rn such that

(3.14) u(τi) = v(τi), i = 1, 2, σf (τ1, τ2, u) ≤ δ0/16.

Relations (3.14) and (3.11) imply that

σf (τ1, τ2, v)− σf (τ1, τ2, u) = If (τ1, τ2, v)− If (τ1, τ2, u)

≤ If (τ1, τ2, v)− Uf (0, τ2 − τ1, v(τ1), v(τ2)) ≤ δ.

Combined with (3.14) and (3.6) this implies that

(3.15) σf (τ1, τ2, v) ≤ δ + σf (τ1, τ2, u) ≤ δ + δ0/16 ≤ δ0/2.

By (3.12), and (3.10),

(3.16) τ2 − τ1 ≥ T − 2N ≥ l0 − 2N ≥ 8l.

It follows from (3.15), (3.16), (3.14) and (3.13) and the definition of l, δ0 that (3.3)
is valid for all τ ∈ [τ1, τ2 − l]. Theorem 1.6 is proved. �

4. Proof of Theorem 1.7

By Theorem 1.6 it is sufficient to show that the property (P) holds. Let H(f) =
{z} with z ∈ Rn. Set v(t) = z for all t ∈ R1. In view of Lemma 2.6 σf (−T, T, v) = 0
for all T > 0. Thus (P) holds. Theorem 1.7 is proved. �

5. Proof of Theorem 1.8

We need the following auxiliary results. �

Proposition 5.1 ([13, Chapter 4, Theorem 4.1.1]). Let f ∈ A have (ATP) and
ε,K > 0. Then there exists a neighborhood U of f in A such that for each g ∈ U
and each x ∈ Rn satisfying |x| ≤ K, |πf (x)− πg(x)| ≤ ε.

Proposition 5.2 ([13, Chapter 4, Theorem 4.1.1]). Let f ∈ A have (ATP). Then
the functional g → µ(g), g ∈ A is continuous at the point f .

Proposition 5.3 ([9, Theorem 2.3]). Let f ∈ A have (ATP) and let ε > 0. Then
there exists a neighborhood U of f in A such that for each g ∈ U and each (g)-good
function v : [0,∞) → Rn, dist(Ω(v),H(f)) ≤ ε.

Proposition 5.4 ([10, Proposition 2.8]). Let f ∈ A, 0 < c1 < c2 < ∞ and let
D, ε > 0. Then there exists a neighborhood V of f in A such that for each g ∈ V ,
each T1, T2 ≥ 0 satisfying T2−T1 ∈ [c1, c2] and each a. c. function x : [T1, T2] → Rn

satisfying
min{Ig(T1, T2, x), If (T1, T2, x)} ≤ D

the inequality |If (T1, T2, x)− Ig(T1, T2, x)| ≤ ε holds.

For each g ∈ A put

(5.1) Ωg = ∪{Ω(v) : v : [0,∞) → Rn is an (g)− good function}.
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Lemma 5.5. Let f ∈ A have (ATP) and the property (P) and let ε ∈ (0, 1). Then
there exist q > 0 and a neighborhood U of f in A such that for each g ∈ U and each
x, y ∈ Ωg there is an a. c. function v : [0, q] → Rn such that v(0) = x, v(q) = y
and σg(0, q, v) ≤ ε.

Proof. Since f has the property (P) it follows from Lemma 2.7 that there are q > 0
and δ ∈ (0, ε) such that for each x, y ∈ Rn satisfying

(5.2) d(x,H(f)) ≤ δ, d(y,H(f)) ≤ δ

there is an a. c. function v : [0, q] → Rn such that

(5.3) v(0) = x, v(q) = y, σf (0, q, v) ≤ ε/16.

By Proposition 5.3 there is a neighborhood U1 of f in A such that for each g ∈ U1

(5.4) dist(Ωg,H(f)) ≤ δ.

By Propositions 5.1 and 5.2 there is a neighborhood U2 of f in A such that for each
g ∈ U2

(5.5) |µ(f)− µ(g)| ≤ (ε/16)(q + 1)−1

and that for each x ∈ Rn satisfying d(x,H(f)) ≤ 4

(5.6) |πf (x)− πg(x)| ≤ ε/16.

By Proposition 5.4 there is a neighborhood U3 of f in A such that for each g ∈ U3

and each a.c. function v : [0, q] → Rn satisfying

min{If (0, q, v), Ig(0, q, v)}

(5.7) ≤ (q + 1)|µ(f)|+ 2 sup{|πf (z)| : z ∈ Rn, d(z,H(f)) ≤ 4}+ 8

the following inequality holds:

(5.8) |If (0, q, v)− Ig(0, q, u)| ≤ ε/16.

Set

(5.9) U = U1 ∩ U2 ∩ U3.

Assume that

(5.10) g ∈ U , x, y ∈ Ωg.

By (5.10), (5.9) and the definition of U1 (see (5.4)),

(5.11) d(x,H(f)), d(y,H(f)) ≤ δ.

By (5.11), the definition of δ, q (see (5.2) and (5.3)) there is an a. c. function
v : [0, q] → Rn which satisfies (5.3). Relation (5.3) implies that

If (0, q, v) = µ(f)q + πf (x)− πf (y) + σf (0, q, v)

≤ µ(f)q + πf (x)− πf (y) + 1.
Together with (5.9), (5.11), (5.10) and the definition of U3 (see (5.7), (5.8)) this
inequality implies that

(5.12) |If (0, q, v)− Ig(0, q, v)| ≤ ε/16.
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In view of (5.9), (5.10) and the definition of U2, the relation (5.5) is true. By (5.9),
the definition of U2 (see (5.6)) and (5.11),

(5.13) |πf (x)− πg(x)|, |πf (y)− πg(y)| ≤ ε/16.

It follows from (5.3), (5.12), (5.5) and (5.13) that

σg(0, q, v) = Ig(0, q, v)− µ(g)q − πg(x) + πg(y)

≤ If (0, q, v) + ε/16− µ(f)q + ε/16− πf (x) + πf (y) + ε/8

= σf (0, q, v) + ε/4 ≤ ε/4 + ε/16.

Lemma 5.5 is proved.
�

Proof of Theorem 1.8 Let f ∈M and let n ≥ 1 be an integer. By Proposition 5.3
there is an open neighborhood U(f, n) of f in M̄ and q(f, n) > 0 such that for each
g ∈ U(f, n) the following properties hold:

(1) For each (g)-good function v : [0,∞) → R1, dist(Ω(v),H(f)) ≤ 1/n.
(2) For each x, y ∈ Ωg there is an a. c. function v : [0, q(f, n)] → Rn such that

v(0) = x, v(q(f, n)) = y, σg(0, q(f, n), v) ≤ 1/n.

Set

F = ∩∞n=1 ∪ {U(f, n) : f ∈M}.

Clearly, F is a countable intersection of open everywhere dense subsets of M̄.
Let g ∈ F and ε > 0. Choose a integer n ≥ 1 such that 8/n < ε. There is f ∈M

such that

(5.14) g ∈ U(f, n).

Let v1, v2 : [0,∞) → Rn be (g)-good functions. By (5.14) and the property (1),

dist(Ω(vi),H(f)) ≤ 1/n, i = 1, 2,

dist(Ω(v1),Ω(v2)) ≤ 2/n < ε.

Since ε is an arbitrary positive number we conclude that Ω(v1) = Ω(v2), g has
(ATP) and

dist(H(g),H(f)) ≤ 1/n.

Now let x, y ∈ H(g) = Ωg. By (5.14) and the property (2) there is an a. c. function
v : [0, q(f, n)] → Rn such that

v(0) = x, v(q(f, n)) = y, σg(0, q(f, n), v) ≤ 1/n < ε.

Since ε is any positive number we conclude that f has (P).
Theorem 1.8 is proved. �
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