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ONE-DIMENSIONAL INFINITE HORIZON VARIATIONAL
PROBLEMS ARISING IN CONTINUUM MECHANICS

ALEXANDER J. ZASLAVSKI

Abstract. In this paper we discuss the existence and the structure of approxi-
mate solutions of autonomous one-dimensional second order variational problems
related to a model in thermodynamics. We are interested in turnpike properties
of the approximate solutions which are independent of the length of the interval,
for all sufficiently large intervals.

1. Introduction

In this paper we consider variational problems defined on infinite intervals which
arise in the theory of thermodynamical equilibrium for materials [3, 5]. We dis-
cuss the existence and the structure of approximate solutions of these variational
problems. Given x ∈ R2 we study the infinite horizon problem of minimizing the
expression

∫ T
0 f(w(t), w′(t), w′′(t))dt as T grows to infinity where

w ∈ Ax = {v ∈ W 2,1
loc ([0,∞)): (v(0), v′(0)) = x}.

Here W 2,1
loc ([0,∞)) ⊂ C1 denotes the Sobolev space of functions possessing a locally

integrable second derivative and f belongs to a space of functions to be described
below.

The following notion known as the overtaking optimality criterion was introduced
in the economic literature [1, 4, 11] and has been used in control theory [2, 17].

A function u ∈ Ax will be called (f)-overtaking optimal if

lim sup
T→∞

[
∫ T

0
f(u(t), u′(t), u′′(t))dt−

∫ T

0
f(w(t), w′(t), w′′(t))dt] ≤ 0

for any w ∈ Ax.
In this paper we employ the following weakened version of this criterion.
A function u ∈ Ax will be called (f)-weakly optimal if

lim inf
T→∞

[
∫ T

0
f(u(t), u′(t), u′′(t))dt−

∫ T

0
f(w(t), w′(t), w′′(t))dt] ≤ 0

for any w ∈ Ax.
Denote by A the set of all continuous functions f : R3 → R such that for each

N > 0 the function |f(x, y, z)| → ∞ as |z| → ∞ uniformly on the set {(x, y) ∈ R2 :
|x|, |y| ≤ N}. For the set A we consider the uniformity which is determined by the
base

E(N, ε, Γ) = {(f, g) ∈ A×A :
|f(x1, x2, x3)− g(x1, x2, x3)| ≤ ε
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for all (x1, x2, x3) ∈ R3 such that |xi| ≤ N, i = 1, 2, 3,

(|f(x1, x2, x3)|+ 1)(|g(x1, x2, x3)|+ 1)−1 ∈ [Γ−1,Γ]
for all (x1, x2, x3) ∈ R3 such that |x1|, |x2| ≤ N)},

where N > 0, ε > 0, Γ > 1. Clearly, the uniform space A is Hausdorff and has
a countable base. Therefore A is metrizable. It is easy to verify that the uniform
space A is complete.

Let a = (a1, a2, a3, a4) ∈ R4, ai > 0, i = 1, 2, 3, 4 and let α, β, γ be positive
numbers such that 1 ≤ β < α, β ≤ γ, γ > 1. Denote by M(α, β, γ, a) the set of all
functions f ∈ A such that:

(1.1) f(w, p, r) ≥ a1|w|α − a2|p|β + a3|r|γ − a4, (w, p, r) ∈ R3;

f, ∂f/∂p ∈ C2, ∂f/∂r ∈ C3, ∂2f/∂r2(w, p, r) > 0 for all (w, p, r) ∈ R3;
there is a monotone increasing function Mf : [0,∞) → [0,∞) such that for every
(w, p, r) ∈ R3

max{f(w, p, r), |∂f/∂w(w, p, r)|, |∂f/∂p(w, p, r)|, |∂f/∂r(w, p, r)|} ≤
Mf (|w|+ |p|)(1 + |r|γ).

Denote by M̄(α, β, γ, a) the closure of M(α, β, γ, a) in A and consider any f ∈
M̄(α, β, γ, a). Of special interest is the minimal long-run average cost growth rate

(1.2) µ(f) = inf{lim inf
T→∞

T−1

∫ T

0
f(w(t), w′(t), w′′(t))dt : w ∈ Ax}.

It is easy to verify that µ(f) is well defined and is independent of the initial
vector x. A function w ∈ W 2,1

loc ([0,∞)) is called (f)-good if the function φf
w :

T →
∫ T
0 [f(w(t), w′(t), w′′(t)) − µ(f)]dt, T ∈ (0,∞) is bounded. For every w ∈

W 2,1
loc ([0,∞)) the function φf

w is either bounded or diverges to ∞ as T → ∞ and
moreover, if φf

w is a bounded function, then sup{|(w(t), w′(t))| : t ∈ [0,∞)} < ∞.
Leizarowitz and Mizel [5] established that for every f ∈ M(α, β, γ, a) satisfying

µ(f) < inf{f(w, 0, s) : (w, s) ∈ R2} there exists a periodic (f)-good function. In
[12] we generalized their result and proved the following assertion.

Theorem 1.1. Let f ∈M(α, β, γ, a). Then there exists an (f)-good function v and
a number T > 0 such that v(t) = v(t + T ) for all t ≥ 0 and∫ T

0
f(v(t), v′(t), v′′(t))dt = Tµ(f).

In [5] Leizarowitz and Mizel considered for each T > 0 the function Uf
T : R2 ×

R2 → R which is defined as follows:

(1.3) Uf
T (x, y) = inf

{∫ T

0
f(w(t), w′(t), w′′(t)dt : w ∈ AT

x,y

}
,

where

AT
x,y = {v ∈ W 2,1([0, T ]) : (v(0), v′(0)) = x, (v(T ), v′(T )) = y},

and established the following representation formula

(1.4) Uf
T (x, y) = Tµ(f) + πf (x)− πf (y) + θf

T (x, y), x, y ∈ R2, T > 0,
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where πf : R2 → R and (T, x, y) → θf
T (x, y), x, y ∈ R2, T > 0 are continuous

functions,

(1.5) πf (x) = inf{lim inf
T→∞

∫ T

0
[f(w(t), w′(t), w′′(t))− µ(f)]dt : w ∈ Ax}, x ∈ R2,

θf
T (x, y) ≥ 0 for each T > 0, and each x, y ∈ R2, and for every T > 0, and every

x ∈ R2 there is y ∈ R2 satisfying θf
T (x, y) = 0.

Leizarowitz and Mizel established the representation formula for any integrand
f ∈ M(α, β, γ, a), but their result also holds for every f ∈ M̄(α, β, γ, a) without
change in the proofs.

In [13] we investigated the structure of (f)-good functions and established for a
generic f ∈ M̄(α, β, γ, a) and for every given x ∈ R2 the existence of a (f)-weakly
optimal solution v ∈ Ax. Most studies which are concerned with the existence of op-
timal solutions on an infinite horizon assume convex integrands f . One contribution
of [13] was in establishing optimal solutions without such convexity assumptions.

2. Existence and structure of good functions

We use the notation and definitions introduced in Section 1 and denote by | · | the
Euclidean norm in Rn. For τ > 0 and v ∈ W 2,1([0, τ ]) we define Xv : [0, τ ] → R2 as
follows:

Xv(t) = (v(t), v′(t)), t ∈ [0, τ ].

We also use this definition for v ∈ W 2,1
loc ([0,∞)).

Fix a = (a1, a2, a3, a4) ∈ R4 and positive numbers α, β, γ such that ai > 0,
i = 1, 2, 3, 4, 1 ≤ β < α, β ≤ γ, γ > 1. We denote be M0(α, β, γ, a) the set of
continuous functions f = f(w, p, r) : R3 → R satisfying (1.1) for any (w, p, r) ∈ R3.

Denote by M1(α, β, γ, a) the set of all functions f ∈M0(α, β, γ, a) such that:
the function f(w, p, r) is convex in r for all (w, p) ∈ R2;
the function ∂f/∂r : R3 → R is continuous;
there exists a monotone increasing function Mf : [0,∞) → [0,∞) such that

f(w, p, r) ≤ Mf (|w|+ |p|)(1 + |r|γ) for all (w, p, r) ∈ R3.

We consider the topological subspaces M̄(α, β, γ, a), M̄1(α, β, γ, a) ⊂ A which have
the relative topology. The set M̄1(α, β, γ, a) is the closure of M1(α, β, γ, a) in A
and the set M̄(α, β, γ, a) was defined in Section 1.

We consider functionals of the form

(2.1) If (T1, T2, w) =
∫ T2

T1

f(w(t), w′(t), w′′(t))dt

where −∞ < T1 < T2 < +∞, w ∈ W 2,1([T1, T2]) and f ∈M0(α, β, γ, a).
Let f ∈ M̄1(α, β, γ, a). A function v ∈ W 2,1

loc ([0,∞)) is (f)-weakly optimal if

lim inf
T→∞

[If (0, T, v)− If (0, T, w)] ≤ 0

for all w ∈ W 2,1
loc ([0,∞)) satisfying Xw(0) = Xv(0).

Of special interest is the minimal long-run average cost growth rate µ(f) defined
by (1.2). By a result of Leizarowitz and Mizel [5, p. 164] µ(f) ∈ (−∞, f(0, 0, 0)].
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A function v ∈ W 2,1
loc ([0,∞)) is called (f)-good function if sup{|If (0, τ, w) −

τµ(f)| : τ ∈ (0,∞)} < ∞.
For f ∈ M0(α, β, γ, a) and T > 0 we consider the function Uf

T : R2 × R2 → R
defined by (1.3). In [5] Leizarowitz and Mizel established the representation formula
(1.4) where πf : R2 → R is a continuous function defined by (1.5) and (T, x, y) →
θf
T (x, y), T > 0, x, y ∈ R2, is a nonnegative continuous function such that for every

T > 0 and every x ∈ R2 there is y ∈ R2 satisfying θf
T (x, y) = 0.

Leizarowitz and Mizel established the representation formula for any integrand
f ∈ M(α, β, γ, a), but their result also holds for every f ∈ M̄1(α, β, γ, a) without
changes in the proofs.

In [13] we investigated the structure of (f)-good functions and established for a
generic f ∈ M̄(α, β, γ, a) and every x ∈ R2 the existence of a (f)-weakly optimal
function v ∈ Ax.

For a function w ∈ W 2,1
loc ([0,∞)) we denote by Ω(w) the set of all points z ∈ R2

such that Xw(tj) → z as j →∞ for some sequence of numbers tj →∞.
We denote d(x,B) = inf{|x − y| : y ∈ B} for x ∈ Rn, B ⊂ Rn and denote by

dist(A,B) the Hausdorff metric for two sets A ⊂ Rn and B ⊂ Rn.
A function w ∈ W 2,1

loc (−∞,+∞) is called almost subperiodic if for every ε > 0
there exists a number Tε > 0 such that for each τ1, τ2 ∈ R there is T ∈ [0, Tε) which
satisfies the conditions

(2.2) |Xw(τ1 + t)−Xw(τ2 + t + T )| ≤ ε, t ∈ [0, Tε − T ],

|Xw(τ1 + t + Tε − T )−Xw(τ2 + t)| ≤ ε, t ∈ [0, T ].

A function w ∈ W 2,1
loc ([0,∞)) is called asymptotically almost subperiodic if for

any ε > 0 there exist numbers Tε > 0 and tε > 0 such that for every τ1 ≥ tε and
every τ2 ≥ tε there is T ∈ [0, Tε) which satisfies (2.2).

In [13] we proved the existence of a set F ⊂ M̄(α, β, γ, a) which is a countable in-
tersection of open everywhere dense sets in M̄(α, β, γ, a) and for which the following
theorems are valid.

Theorem 2.1. 1. Let f ∈ F. Then there is a compact set H(f) ⊂ R2 such that
Ω(w) = H(f) for any (f)-good function w. Moreover, for every (f)-good function
w and every positive number ε there exist Tε > 0 and tε > 0 such that

dist({(w(t), w′(t)) : t ∈ [τ, τ + Tε]},H(f)) ≤ ε for any t ≥ tε.

2. For every f ∈ F and every ε > 0 there exist a number T > 0 and a function
v ∈ C2([0,∞)) such that v(t + T ) = v(t) for all t ≥ 0, and

dist({(v(t), v′(t)) : t ∈ [0, T ]},H(f)) ≤ ε.

3. Let f ∈ F . Then every (f)-good function is asymptotically almost subperiodic.
4. Let f ∈ F and let ε be a positive number. Then there exist a neighborhood U

of f in M̄1(α, β, γ, a) and a number T > 0 such that for every g ∈ U and every
(g)-good function w

dist({(w(t), w′(t)) : t ∈ [τ, τ + T ]},H(f)) ≤ ε for all large enough τ.
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For f ∈ F we may consider H(f) as an analog of a turnpike set [6, 9, 10,
17]. Assertion 1 of Theorem 2.1 establishes that for f ∈ F all (f)-good functions
converge to the turnpike set H(f). Assertion 2 shows that for f ∈ F the set H(f) is
approximated by periodic curves in R2 and Assertion 4 of Theorem 2.1 shows that
for every g belonging to a small neighborhood of f and every (g)-good function
w, the set Ω(w) is close enough to H(f) in the Hausdorff metric. If we think of
H(f) as an analog of a turnpike set Assertion 4 yields the stability of the turnpike
phenomenon.

Theorem 2.2. Let f ∈ F and x ∈ R2. Then there exists v ∈ Ax such that

(2.3) If (T1, T2, v) = (T2 − T1)µ(f) + πf ((v(T1), v′(T1))− πf ((v(T2), v′(T2))

for each T1, T2 satisfying 0 ≤ T1 < T2. Moreover, for every v ∈ Ax which satisfies
(2.3) for each T1 ≥ 0, T2 > T1 there exists a sequence of numbers tj →∞ as j →∞
such that:

lim sup
j→∞

[If (0, tj , v)− If (0, tj , w)] ≤ 0 for all w ∈ Ax;

if w ∈ Ax and lim sup
j→∞

[If (0, tj , v)− If (0, tj , w)] = 0, then

If (T1, T2, w) = (T2 − T1)µ(f) + πf ((w(T1), w′(T1))− πf ((w(T2), w′(T2))

for each T1, T2 satisfying 0 ≤ T1 < T2.

Theorem 2.2 shows that for every f ∈ F and every initial value x ∈ R2 there
exists an (f)-weakly optimal solution v ∈ Ax satisfying (2.2) for each T1, T2 such
that 0 ≤ T1 < T2.

Theorem 2.3. Let C(Rn) be the space of all continuous functions g : Rn → R
with the topology of uniform convergence on bounded subsets of Rn. We define
L : M̄(α, β, γ, a) → R× C(R2) by

L(f) = (µ(f), πf ), f ∈ M̄(α, β, γ, a).

Then the set of continuity points of the operator L contains F .

For f ∈ M̄(α, β, γ, a) and x ∈ R2 we set

A(f, x) = {v ∈ Ax : (2.3) holds for each T1, T2 satisfying 0 ≤ T1 < T2}.

Let f ∈ F . Theorem 2.4 establishes that for each g belonging to some small
neighborhood of f in M̄1(α, β, γ, a), each x belonging to some small neighborhood
of H(f) and each v ∈ A(g, x), the point (v(t), v′(t)) is contained in a small neigh-
borhood of H(f) for all t ≥ 0.

Let f ∈ F and K > 0. By Theorem 2.5 for every g belonging to some small
neighborhood of f in M̄1(α, β, γ, a), every x ∈ R2 satisfying |x| ≤ K, and every
v ∈ A(g, x), the point (v(t), v′(t)) is contained in a small neighborhood of H(f) for
all t ≥ Q, where Q is a constant which depends on K and the neighborhoods, but
does not depend on g and x.
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Theorem 2.4. Let f ∈ F , ε > 0. Then there exist a neighborhood U of f in
M̄1(α, β, γ, a) and numbers l > 0, δ ∈ (0, ε) such that for every g ∈ U, each x ∈ R2

satisfying d(x,H(f)) ≤ δ, every v ∈ A(g, x), and every T ≥ 0,

(2.4) dist({(v(t + T ), v′(t + T )) : t ∈ [0, l]},H(f)) ≤ ε.

Theorem 2.5. Let f ∈ F , ε > 0, K > 0. Then there exist a neighborhood U of f
in M̄1(α, β, γ, a) and numbers l > 0, Q > 0 such that for every g ∈ U, every x ∈ R2

satisfying |x| ≤ K and every v ∈ A(g, x), equation (2.4) holds for all T ≥ Q.

Corollary 2.6. Let f ∈ F and v ∈ W 2,1
loc (−∞,+∞). Assume that (2.3) holds for

each T1, T2 satisfying −∞ < T1 < T2 < +∞ and lim inft→−∞ |(v(t), v′(t))| < ∞.
Then (v(t), v′(t)) ∈ H(f) for all t ∈ R.

Theorem 2.7. 1. Let f ∈ F and x ∈ H(f). Then there exists v ∈ W 2,1
loc (−∞,+∞)

such that (v(t), v′(t)) ∈ H(f) for all t ∈ R, (v(0), v′(0)) = x and (2.3) holds for
each T1, T2 satisfying −∞ < T1 < T2 < +∞.

2. Let f ∈ F . Then each function v ∈ W 2,1
loc (−∞,+∞) such that (2.4) holds for

each T1, T2 satisfying −∞ < T1 < T2 < +∞ and lim inft→−∞ |(v(t), v′(t))| < ∞, is
almost subperiodic.

Example. Set ai = 1, i = 1, 2, 3, 4, α = 4, β, γ = 2. Consider the space
of functions M̄(α, β, γ, a) and let F be as assumed in this section. Consider an
integrand

f(w, p, r) = 8w2(w − 1)2 + p2 + r2 + b, where b > 0.

It is easy to see that f ∈ M(α, β, γ, a) for all b large enough, µ(f) = b and the
functions w1(t) = 0, t ∈ [0,∞) and w2(t) = 1, t ∈ [0,∞) are (f)-good functions.
Therefore f ∈ M̄(α, β, γ, a) \ F for all b large enough.

In [15] for α = 4, β, γ = 2 we constructed a function ḡ ∈ M(α, β, γ, a) where
a = (a1, a2, a3, a4), ai > 0, i = 1, 2, 3, 4, which has the following properties:

for each x ∈ R2 there exists a (ḡ)-weakly optimal function v ∈ W 2,1
loc ([0,∞))

satisfying Xv(0) = x;
there exists a neighborhood U of ḡ in M̄1(α, β, γ, a) such that for each f ∈ U

there are no (f)-overtaking optimal functions.

3. The turnpike property

In this section we use the notation and definitions introduced in the previous
sections. Fix a = (a1, a2, a3, a4) ∈ R4 and positive numbers α, β, γ such that ai >
0, i = 1, 2, 3, 4, 1 ≤ β < α, β ≤ γ, γ > 1. We consider the topological subspaces
M̄(α, β, γ, a), M̄1(α, β, γ, a) ⊂ A defined in Sections 1 and 2.

For every f ∈M0(α, β, γ, a), every x ∈ R2, and every T > 0, we set

σ(f, x, T ) = inf{Uf
T (x, y) : y ∈ R2}.

For a function w ∈ W 2,1
loc ([0,∞)) we denote by Ω(w) the set of all points z ∈ R2

such that Xw(tj) → z as j →∞ for some sequence of numbers tj →∞.
We denote d(x,B) = inf{|x − y| : y ∈ B} for x ∈ Rn, B ⊂ Rn, and denote by

dist(A,B) the Hausdorff metric for two sets A ⊂ Rn and B ⊂ Rn.
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In [14] we established the existence of a set F ⊂ M̄(α, β, γ, a) which is a count-
able intersection of open everywhere dense sets in M̄(α, β, γ, a) and for which the
following theorems are valid.

Theorem 3.1. Let f ∈ F . Then there exists a compact set H(f) ⊂ R2 such that
Ω(w) = H(f) for any (f)-good function w.

Theorem 3.1 describes the limit behavior of (f)-good functions for a generic
f ∈ M̄(α, β, γ, a). The following results show that for a generic f ∈ M̄(α, β, γ, a)
the strong turnpike property holds with the set H(f) being the attractor.

Theorem 3.2. Let f ∈ F and ε,K > 0. Then there exist a neighborhood U of f in
M̄1(α, β, γ, a) and numbers l0 > l > 0, K∗ > K, δ > 0 such that for each g ∈ U ,
each τ ≥ 2l0 and each v ∈ W 2,1([0, τ ]) which satisfies

|(v(0), v′(0))|, |(v(τ), v′(τ))| ≤ K and

Ig(0, τ, v) ≤ Ug
τ ((v(0), v′(0)), (v(τ), v′(τ))) + δ,

the relation |(v(t), v′(t))| ≤ K∗ holds for all t ∈ [0, τ ], and

(3.1) dist(H(f), {(v(t), v′(t)) : t ∈ [T, T + l]}) ≤ ε

for each T ∈ [l0, τ − l0].

Theorem 3.3. Let f ∈ F and ε,K > 0. Then there exist a neighborhood U of f
in M̄1(α, β, γ, a) and numbers l0 > l > 0, K∗ > K, δ > 0 such that for each g ∈
U, each τ ≥ 2l0 and each v ∈ W 2,1([0, τ ]) which satisfies

|(v(0), v′(0))| ≤ K, Ig(0, τ, v) ≤ σ(g, (v(0), v′(0)), τ) + δ,

the relation |(v(0), v′(0))| ≤ K∗ holds for all t ∈ [0, τ ] and (3.1) holds for each
T ∈ [l0, τ − l0].

4. Spaces of smooth integrands

In this section we use the notation and definitions introduced in the previous
sections. Fix a = (a1, a2, a3, a4) ∈ R4 and positive numbers α, β, γ such that ai >
0, i = 1, 2, 3, 4 and 1 ≤ β < α, β ≤ γ, γ > 1. Let k ≥ 2 be an integer. Denote by
M0

k(α, β, γ, a) the set of all integrands f = f(w, p, r) ∈ Ck(R3) such that:

f(w, p, r) ≥ a1|w|α − a2|p|β + a3|r|γ − a4, (w, p, r) ∈ R3;

there is an increasing function Mf : [0,∞) → [0,∞) such that for every (w, p, r) ∈
R3

sup{f(w, p, r), |∂f/∂w(w, p, r)|, |∂f/∂p(w, p, r)|, |∂f/∂r(w, p, r)|} ≤

Mf (|w|+ |p|)(1 + |r|γ); ∂f/∂p ∈ C2, ∂f/∂r ∈ C3.

For q = (q1, q2, q3) ∈ {0, . . . k}3 such that q1 + q2 + q3 ≤ k and f ∈M0
k(α, β, γ, a)

we set

|q| = q1 + q2 + q3, Dqf = ∂|q|f/∂wq1∂pq2∂rq3 . (Here D0f = f).
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For the set M0
k(α, β, γ, a) we consider the uniformity which is determined by the

following base

E(N, ε, Γ) = {(f, g) ∈M0
k(α, β, γ, a)×M0

k(α, β, γ, a) :

|Dqf(x1, x2, x3)−Dqg(x1, x2, x3)| ≤ ε (xi ∈ R, |xi| ≤ N, i = 1, 2, 3),

for each q ∈ {0, . . . k}3 satisfying |q| ≤ k, for each q = (q1, q2, q3) ∈ {0, 1, 2, 3}3

such that q1 ≥ 1, |q| = 3 and for each q = (q1, q2, q3) ∈

{0, 1, 2, 3, 4}3 such that q3 ≥ 1, |q| ∈ {3, 4},

(|Dqf(x1, x2, x3)|+ 1)(|Dqg(x1, x2, x3)|+ 1)−1 ∈ [Γ−1,Γ]

((x1, x2, x3) ∈ R3, |x1|, |x2| ≤ N), q ∈ {0, 1}3, |q| ≤ 1},

where N, ε > 0, Γ > 1. Clearly, the uniform space M0
k(α, β, γ, a) is Hausdorff and

has a countable base. Therefore M0
k(α, β, γ, a) is metrizable. It is easy to verify

that the uniform space M0
k(α, β, γ, a) is complete.

Let ρ(·, ·) : M̄1(α, β, γ, a)× M̄1(α, β, γ, a) → R be a metric which generates the
uniformity for M̄1(α, β, γ, a). Set

Mk(α, β, γ, a) = {f ∈M0
k(α, β, γ, a) : ∂2f/∂r2(w, p, r) > 0 for all (w, p, r) ∈ R3}

and denote by M̄k(α, β, γ, a) the closure of Mk(α, β, γ, a) in M0
k(α, β, γ, a). Clearly

Mk(α, β, γ, a) = M0
k(α, β, γ, a) ∩M(α, β, γ, a), M̄k(α, β, γ, a) ⊂ M̄(α, β, γ, a),

and M̄k(α, β, γ, a) is a countable intersection of open everywhere dense sets in
M̄k(α, β, γ, a).

In [14] we considered the topological subspace

M̄k(α, β, γ, a) ⊂M0
k(α, β, γ, a)

with the relative topology and established the existence of a set Fk ⊂Mk(α, β, γ, a)
which is a countable intersection of open everywhere dense sets in M̄k(α, β, γ, a)
and for which the following theorems are valid.

Theorem 4.1. Let f ∈ Fk. Then there exist a function vf ∈ C5(R)∩Ck+1(R) and
a number Tf > 0 such that the following assertions hold:

1. vf (t + Tf ) = vf (t) for all t ∈ R and If (0, Tf , vf ) = Tfµ(f).
2. If µ(f) < inf{f(z, 0, 0) : z ∈ R} then (vf (t1), v′f (t1)) 6= (vf (t2), v′f (t2)) for each

t1, t2 satisfying 0 ≤ t1 < t2 < Tf . Otherwise vf (t) = vf (0) for all t ∈ R.
3. For every periodic (f)-good function w there exists a number τ such that

w(t) = vf (t + τ) for all t ∈ [0,∞).
4. For every ε > 0 there exists a neighborhood U of f in M̄1(α, β, γ, a) such that

for every g ∈ U, every (g)-good function w and every large enough τ there exists
h ≥ 0 for which

(4.1) sup{|(w(t), w′(t))− (vf (t + h), v′f (t + h))| : t ∈ [τ, τ + Tf ]} ≤ ε.
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Theorem 4.2. Let f ∈ Fk, and let ε,K > 0. Then there exist a neighborhood U of
f in M̄1(α, β, γ, a) and numbers Q > 0, δ ∈ (0, ε) such that:

1. For every g ∈ U, every x ∈ R2 satisfying |x| ≤ K, every w ∈ A(g, x) and
every τ ≥ Q, equation (4.1) holds with some h ≥ 0.

2. For every g ∈ U, every x ∈ R2 satisfying d(x, {(vf (t), v′f (t)) : t ∈ [0, Tf ]}) ≤ δ,
every w ∈ A(g, x) and every τ ≥ 0, equation (4.1) holds with some h ≥ 0.

Corollary 4.3. Let f ∈ Fk and w ∈ W 2,1
loc (R). Suppose that

If (t1, t2, w) = µ(f)(t2 − t1) + πf (w(t1), w′(t1))− πf (w(t2), w′(t2))

for each t1, t2 satisfying −∞ < t1 < t2 < +∞ and lim inft→−∞ |(w(t), w′(t))| < ∞.
Then there exists a number h such that w(t) = vf (t + h) for all t ∈ R.

Theorem 4.4. Let f ∈ Fk and ε,K > 0. Then there exist a neighborhood U of f
in M̄1(α, β, γ, a) and numbers l > Tf , K∗ > K, δ > 0 such that:

1. For each g ∈ U, each T ≥ 2l and each w ∈ W 2,1([0, T ]) which satisfies

|(w(0), w′(0))|, |(w(T ), w′(T ))| ≤ K,

Ig(0, T, w) ≤ Ug
T ((w(0), w′(0)), (w(T ), w′(T ))) + δ

the relation |(w(t), w′(t))| ≤ K∗ holds for all t ∈ [0, T ], and for each τ ∈ [l, T − l]
equation (4.1) holds with some h ≥ 0.

2. For each g ∈ U, each T ≥ 2l and each w ∈ W 2,1([0, T ]) which satisfies

|(w(0), w′(0))| ≤ K, Ig(0, T, w) ≤ σ(g, (w(0), w′(0)), T ) + δ,

the relation |(w(t), w′(t))| ≤ K∗ holds for all t ∈ [0, T ] and for each τ ∈ [l, T − l]
equations (4.1) holds with some h ≥ 0.

Analogs of Theorems 2.2 and 2.3 hold for every f ∈ Fk. By the analog of Theorem
2.2 for every f ∈ Fk and every x ∈ R2 there exists an (f)-weakly optimal solution
v ∈ Ax and the analog of Theorem 2.3 establishes that every f ∈ Fk is a continuity
point of the operator

g → (µ(g), πg), g ∈ M̄(α, β, γ, a).

5. The structure of periodic good functions

In this section we use the notation and definitions introduced in the previous
sections. Fix a = (a1, a2, a3, a4) ∈ R4 and positive numbers α, β, γ such that ai >
0, i = 1, 2, 3, 4, 1 ≤ β < α, β ≤ γ, γ > 1.

Let f ∈M(α, β, γ, a).
The following results were established in [7].

Theorem 5.1. Assume that w ∈ W 2,1
loc (R1), T > 0,

w(t + T ) = w(t), t ∈ R1, If (0, T, w) = Tµ(f),

and w′(t) 6= 0 for some t ∈ R1. Then there exists τ > 0 such that

w(t + τ) = w(t), t ∈ R1, Xw(T1) 6= Xw(T2)

for each T1 ∈ R1 and each T2 ∈ (T1, T1 + τ).
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Theorem 5.2. Assume that w ∈ W 2,1
loc (R1), τ > 0,

w(t + τ) = w(t), t ∈ R1, If (0, τ, w) = τµ(f),

w(0) = inf{w(t) : t ∈ R1}, and w′(t) 6= 0 for some t ∈ R1.

Then there exist τ1 > 0, τ2 > τ1 such that the function w is strictly increasing in
[0, τ1], w is strictly decreasing in [τ1, τ2], and

w(τ1) = sup{w(t) : t ∈ R1}, w(t + τ2) = w(t), t ∈ R1.

6. Asymptotic turnpike property

In this section we use the notation and definitions introduced in the previous
sections. The results presented in this section was obtained in [7].

Fix a = (a1, a2, a3, a4) ∈ R4 and positive numbers α, β, γ such that ai > 0, i =
1, 2, 3, 4, 1 ≤ β < α, β ≤ γ, γ > 1. Set

M = M(α, β, γ, a) and M̄ = M̄(α, β, γ, a).

Let f ∈ M̄. We will say that w is optimal on compacts, or briefly c-optimal, if
w ∈ W 2,1

loc ([0,∞)) ∩W 1,∞([0,∞)) and for all T > 0,

Uf
T ((w,w′)(0), (w,w′)(T )) = If (0, T, w).

Let f ∈ M. We say that f has the asymptotic turnpike property, or briefly
(ATP), if there exists a compact set H(f) ⊂ R2 such that Ω(w) = H(f) for every
(f)-good function w.

Clearly, if f has (ATP) and v is a periodic (f)-good function, then H(f) =
{(v, v′)(t) : 0 ≤ t < ∞}.

The asymptotic turnpike property for optimal control problems was studied in [2,
17]. Here we will consider, besides (ATP), the strong turnpike property, or briefly
(STP), which is defined as follows.

Let f ∈ M and let w be a periodic (f)-good function with period Tw > 0. We
say that f has the strong turnpike property if, for every ε > 0 and every bounded
set K ⊂ R2, there exists L > 0 such that every v ∈ W 2,1([0, T ]) satisfying

Xv(0) = x, Xv(T ) = y, If (0, T, v) = Uf
T (x, y),

with x, y ∈ K and T > Tw + 2L, satisfies the following:
For every a ∈ [L, T − L− Tw] there exists ā ∈ [0, Tw) such that,

|(v, v′)(a + t)− (w,w′)(ā + t)| ≤ ε, ∀t ∈ [0, Tw].

Note that (STP) implies uniqueness up to translation for periodic (f)-good func-
tions.

The following results were obtained in [7].

Theorem 6.1. Assume that g ∈ M satisfies (ATP). Let w be a periodic (g)-good
function and let Tw > 0 be a period of w.

Given ε, M > 0 there exists a neighbourhood of g in M̄, say Ug, and positive
numbers δ, l such that the following statement holds :

Let f ∈ Ug and let T ≥ Tw + 2l. Suppose that,

v ∈ W 2,1([0, T ]), |Xv(0)|, |Xv(T )| ≤ M, If (0, T, v) ≤ Uf
T (Xv(0), Xv(T )) + δ.
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Then, for each s ∈ [l, T − Tw − l] there exists ξ ∈ [0, Tw] such that,

(6.1) |Xv(s + t)−Xw(ξ + t)| ≤ ε, ∀t ∈ [0, Tw].

Remark. The conclusion of the theorem can be slightly strengthened as follows:

There exist τ1 ∈ [0, l] and τ2 ∈ [T − l, T ] such that, for every s ∈ [τ1, τ2 − Tw]
there exists ξ ∈ [0, Tw] such that (6.1) holds. Furthermore, if

d(Xv(0),Ω(w)) ≤ δ, (respectively d(Xv(T ),Ω(w)) ≤ δ),

the statement holds with τ1 = 0, (respectively τ2 = T ).

Theorem 6.2. Assume that g ∈ M has (ATP) and w ∈ W 2,1
loc (R1) is a periodic

(g)-good function with a period Tw > 0. Then, for every ε > 0, there exists a
neighborhood U of g in M̄ such that for each f ∈ U :

If v is an (f)-good function then, for every sufficiently large T (depending on v)
there exists ξ ∈ [0, Tw) such that,

|Xv(T + t)−Xw(ξ + t)| ≤ ε, t ∈ [0, Tw].

7. Nonintersecting property

In this section we use the notation and definitions introduced in the previous
sections. The results presented in this section was obtained in [8]. Fix a =
(a1, a2, a3, a4) ∈ R4 and positive numbers α, β, γ such that ai > 0, i = 1, 2, 3, 4, 1 ≤
β < α, β ≤ γ, γ > 1. Set

M = M(α, β, γ, a) and M̄ = M̄(α, β, γ, a).

Let f ∈M. We continue to study c-optimal functions introduced in Section 6.

Proposition 7.1. For every point x = (x1, x2) ∈ R2 there exists a c-optimal func-
tion w on [0,∞) such that (w(0), w′(0)) = x.

Another class of minimizers, which plays an important role in our theory, is the
class of perfect functions. First we define the concept of a perfect function on an
arbitrary interval. The definition requires some additional notation. If v ∈ W 2,1(D),
D = [T1, T2], put

(1.4) Γf (D, v) := If (T1, T2, v)− (T2 − T1)µ(f) + πf (Xv(T2))− πf (Xv(T1)).

If {Dj}k
j=1 is a partition of D into disjoint subintervals, then,

Γf (D, v) =
k∑

j=1

Γf (Dj , v).

We refer to this property of Γ as additivity on intervals.

Proposition 7.2. For every x ∈ R2 there exists a perfect function v on [0,∞) such
that (v(0), v′(0)) = x.

We turn now to a description of the main results of the work [8]. The first main
result concerns the non-intersecting property of c-optimal functions.
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Theorem 7.3. (a) Let v be a c-optimal function. If there exists T > 0 such that

(v, v′)(0) = (v, v′)(T )

then v is periodic with period T .
(b) Let v1, v2 be c-optimal functions such that

(v1, v
′
1)(0) = (v2, v

′
2)(0).

If there exist t1, t2 ∈ [0,∞) such that (t1, t2) 6= (0, 0) and

(v1, v
′
1)(t1) = (v2, v

′
2)(t2),

then v1(t) = v2(t) for all t ≥ 0.

The next two results describe the limiting set of c-optimal functions in the phase
plane and their asymptotic behavior at infinity. The non-intersecting property plays
a crucial role in the derivation of these results. We use the following notation. If
v ∈ W 2,1

loc ([0,∞))∩W 1,∞([0,∞)), then the set of limiting points of (v, v′) as t →∞
is denoted by Ω(v).

Theorem 7.4. Let

(N) µ(f) < inf{f(x, 0, 0) : x ∈ R1}

and let v be a c-optimal function. Then there exists a periodic (f)-good function w
such that Ω(v) = Ω(w) and the following assertion holds:

Let T > 0 be a period of w. Then, for every ε > 0 there exists τ(ε) > 0 such that
for every τ ≥ τ(ε) there exists s ∈ [0, T ) such that,

(7.1) |(v, v′)(t + τ)− (w,w′)(s + t)| ≤ ε, t ∈ [0, T ].

Our next result describes the structure of the limiting set of c-optimal functions,
in the absence of assumption (N). In this case the structure of the limiting set is
considerably more complicated.

Theorem 7.5. Suppose that µ(f) = inf{f(d, 0, 0) : d ∈ R1} and that the set
D = {d ∈ R1 : f(d, 0, 0) = µ(f)} is finite. Let v be a c-optimal function. Then
Ω(v) is a compact connected set and the following alternative holds. Either there
exists a periodic (f)-good function w such that Ω(v) = Ω(w) and (7.1) holds, or
Ω(v) is a finite union of arcs ∪k

j=1Ξ̄j such that each arc Ξj is the phase plane image
of a perfect function uj, i.e.,

Ξj = {(uj , u
′
j)(t) : t ∈ R1}, j = 1, · · · , k.

Furthermore, each function uj is monotone in neighborhoods of +∞ and −∞ and
satisfies,

lim
t→∞

(uj , u
′
j)(t) ∈ D × {0}, lim

t→−∞
(uj , u

′
j)(t) ∈ D × {0}.
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8. Structure of optimal solutions

In this section we continue to analyze the structure of optimal solutions of the
variational problems

(P )
∫ T

0
f(w(t), w′(t), w′′(t))dt → min

w ∈ W 2,1([0, T ]), (w(0), w′(0)) = x and (w(T ), w′(T )) = y,

where T > 0, x, y ∈ R2, W 2,1([0, T ]) ⊂ C1 and f belongs to a space of functions
considered in the previous section.

We also consider the following problem on the half line:

(P∞) inf
{

lim inf
T→∞

T−1

∫ T

0
f(w(t), w′(t), w′′(t))dt : w ∈ W 2,1

loc ([0,∞))
}

.

Let a = (a1, a2, a3, a4) ∈ R4, ai > 0, i = 1, 2, 3, 4 and let α, β, γ be positive
numbers such that 1 ≤ β < α, β ≤ γ, γ > 1. We consider the spaces M(α, β, γ, a)
and M̄(α, β, γ, a) introduced in Section 2.

Denote by | · | the Euclidean norm in Rn. For τ > 0 and v ∈ W 2,1([0, τ ]) we
define Xv : [0, τ ] → R2 as follows:

Xv(t) = (v(t), v′(t)), t ∈ [0, τ ].

We also use this definition for v ∈ W 2,1
loc ([0,∞)) and v ∈ W 2,1

loc (R).
Put

M = M(α, β, γ, a), M̄ = M̄(α, β, γ, a).

We consider functionals of the form

If (T1, T2, v) =
∫ T2

T1

f(v(t), v′(t), v′′(t))dt,

Γf (T1, T2, v) = If (T1, T2, v)− (T2 − T1)µ(f)− πf (Xv(T1)) + πf (Xv(T2)),

where −∞ < T1 < T2 < +∞, v ∈ W 2,1([T1, T2]) and f ∈ M̄.
We denote by mes(E) the Lebesgue measure of a measurable set E ⊂ R and by

int(D) the interior of a subset D of a metric space.
If v ∈ W 2,1

loc ([0,∞)) satisfies

sup{|Xv(t)| : t ∈ [0,∞)} < ∞,

then the set of limiting points of Xv(t) as t →∞ is denoted by Ω(v).
Denote by Card(A) the cardinality of the set A. If f ∈ M̄, J = [T1, T2] with

T2 > T1, v ∈ W 2,1([T1, T2]), then we set

Γf (J, v) = Γf (T1, T2, v).

In [7, 14] we considered certain important subspaces of the space M equipped
with natural uniformities and showed that each of them contains an everywhere
dense Gδ subset such that each its element f has the following two properties:

The problem (P∞) has a unique up to translation periodic minimizer w.
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Let Tw > 0 be a period of w. For any ε > 0 there exists a constant L > 0 which
depends only on |x|, |y| and ε such that for each optimal solution v of problem (P)
and each τ ∈ [L, T − L− Tw] there exists s ∈ [0, Tw) such that

|(v(τ + t), v′(τ + t))− (w(s + t), w′(s + t))| ≤ ε for each t ∈ [0, Tw].

The results of [7, 14] establish that most integrands (in the sense of Baire’s
categories) have the turnpike properties. Since the space M̄ and its subspaces
considered in [7, 14] contain integrands which do not have the turnpike properties
these results cannot be essentially improved. Nevertheless, some questions are still
open. It is very important and interesting to obtain some knowledge about the
structure of extremals of problem (P) with arbitrary integrand f ∈M.

In this section we discuss the results of [16] which show that for each integrand
f ∈M the following property holds:

For each pair of positive numbers ε, l there exists a constant L > l which depends
only on |x|, |y|, l and ε such that for each optimal solution v of problem (P) and each
closed subinterval D ∈ [0, T ] of length L there exists a closed subinterval D1 ⊂ D
of length l and a periodic minimizer w of problem (P∞) such that

|(v(t), v′(t))− (w(t), w′(t))| ≤ ε for each t ∈ D1.

Let f ∈M. Denote by σ(f) the set of all w ∈ W 2,1
loc (R) which have the following

property:
There is Tw > 0 such that

w(t + Tw) = w(t) for all t ∈ R and If (0, Tw, w) = µ(f)Tw.

In other words σ(f) is the set of all periodic minimizers of (P∞). By Theorem
4.1 of [12], σ(f) 6= ∅.

The following result established in [7, Lemma 3.1] describes the structure of
periodic minimizers of (P∞).

Proposition 8.1. Let f ∈M. Assume that w ∈ σ(f),

w(0) = inf{w(t) : t ∈ R}
and w′(t) 6= 0 for some t ∈ R. Then there exist τ1(w) > 0 and τ(w) > τ1(w) such
that the function w is strictly increasing on [0, τ1(w)], w is strictly decreasing in
[τ1(w), τ(w)],

w(τ1(w)) = sup{w(t) : t ∈ R} and w(t + τ(w)) = w(t) for all t ∈ R.

Corollary 8.2. Let f ∈M, t0 ∈ R, w ∈ σ(f),

w′(t) 6= 0 for some t ∈ R and w(t0) = inf{w(t) : t ∈ R}.
Then there exist τ1(w) > 0 and τ(w) > τ1(w) such that the function w is strictly
increasing in [t0, t0 + τ1(w)], w is strictly descreasing in [t0 + τ1(w), t0 + τ(w)],

w(t0 + τ1(w)) = sup{w(t) : t ∈ R} and w(t + τ(w)) = w(t) for all t ∈ R.

Let f ∈ M. By Corollary 8.2, each w ∈ σ(f) which is not a constant has a
minimal period which will be denoted by τ(w). Put

σ(f, 0) = {w ∈ σ(f) : w is a constant}.
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For each T > 0 set

σ(f, T ) = σ(f, 0) ∪ {w ∈ σ(f) : w is not a constant and τ(w) ≤ T}.

The following theorem is the main result of [16].

Theorem 8.3. Let f ∈ M and let l,M0,M1, ε be positive numbers. Then there
exist L > l and a neighborhood U of f in M̄ such that for each g ∈ U , each T ≥ L
and each v ∈ W 2,1([0, T ]) which satisfies

|(v(0), v′(0))|, |(v(T ), v′(T ))| ≤ M0,

Ig(0, T, v) ≤ Ug
T ((v(0), v′(0)), (v(T ), v′(T ))) + M1

the following property holds:
For each s ∈ [0, T − L] there are s1 ∈ [s, s + L− l] and w ∈ σ(f) such that

(8.1) |(v(s1 + t), v′(s1 + t))− (w(t), w′(t))| ≤ ε for all t ∈ [0, l].

The next theorem describes the structure of good functions.

Theorem 8.4. Let f ∈ M and let l, ε be positive numbers. Then there exist L > l
and a neighborhood U of f in M̄ such that for each g ∈ U and each (g)-good function
v ∈ W 2,1

loc ([0,∞)) there exist T0 ≥ 0 such that the following property holds:
For each s ≥ T0 there are s1 ∈ [s, s + L − l] and w ∈ σ(f) such that inequality

(8.1) is valid.

The next two results describe the structure of approximate solutions of problem
(P∞).

Theorem 8.5. Let f ∈M, l, ε be positive numbers and let v ∈ W 2,1
loc ([0,∞)) satisfy

lim sup
T→∞

T−1If (0, T, v) = µ(f)

and

(8.2) sup{|(v(t), v′(t))| : t ∈ [0,∞)} < ∞.

Then there exists L0 > l such that the following assertion holds:
For each γ > 0 there is Tγ > L0 such that for each T ≥ Tγ there are a finite

number of closed intervals J1, . . . , JqT such that

qT ≤ γT,

mes(Ji) ≤ L0, i = 1, . . . , qT ,

int(Ji) ∩ int(Jp) = ∅ for each pair of integers

i, p ∈ {1, . . . , qT } such that i 6= p,

and if
s ∈ [0, T − L0] and [s, s + L0] ∩ Ji = ∅ for all i = 1, . . . , qT ,

then there are s1 ∈ [s, s + L0 − l] and w ∈ σ(f) such that (8.1) is valid.
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Theorem 8.6. Let f ∈M, l, ε be positive numbers and let v ∈ W 2,1
loc ([0,∞)) satisfy

(8.2). Assume that there exists a strictly increasing sequence of positive numbers
{Ti}∞i=1 such that limi→∞ Ti = ∞ and

lim
i→∞

T−1
i If (0, Ti, v) = µ(f).

Then there exists L0 > l such that the following assertion holds:
For each γ > 0 there is a natural number jγ with Tjγ > L0 such that for each

integer j ≥ jγ the inequality Tj ≥ L0 holds and there are a finite number of closed
intervals J1, . . . , Jqj such that

qj ≤ γTj , mes(Ji) ≤ L0 for all i = 1, . . . , qj ,

int(Ji) ∩ int(Jp) = ∅ for each pair of integers

i, p ∈ {1, . . . , qj} such that i 6= p,

and if
s ∈ [0, Tj − L0] and [s, s + L0] ∩ Ji = ∅ for all i = 1, . . . , qj ,

then there are s1 ∈ [s, s + L0 − l] and w ∈ σ(f) such that (8.1) is valid.

In [7, Lemma 3.2] it was proved the following result.

Proposition 8.7. Let f ∈M satisfy

µ(f) < inf{f(t, 0, 0) : t ∈ R}.

Then no element of σ(f) is a constant and sup{τ(w) : w ∈ σ(f)} < ∞.

Let f ∈M satisfy
µ(f) < inf{f(t, 0, 0) : t ∈ R}.

We can choose l in Theorems 8.3-8.6 as

l = k sup{τ(w) : w ∈ σ(f)}

where k is a large natural number. Let L > l be as guaranteed by Theorem 8.3. If
an approximate solution v of problem (P) satisfies conditions of Theorem 8.3, then
for each closed subinterval D ∈ [0, T ] of length L there exists a closed subinterval
D1 ⊂ D of length k sup{τ(w) : w ∈ σ(f)} and a periodic minimizer w of problem
(P) such that

|(v(t), v′(t))− (w(t), w′(t))| ≤ ε for each t ∈ D1.

Clearly, the restriction of v to interval D1 is a good approximation of the periodic
minimizer w.

If µ(f) = inf{f(t, 0, 0) : t ∈ R}, then there is a periodic minimizer w ∈ σ(f)
which is a constant and Proposition 8.7 does not hold. Namely, the set {τ(w) :
w ∈ σ(f)} can be unbounded. In this case the turnpike property in Theorems 8.3-
8.6 (see inequality (8.4)) does not provide sufficient information about the periodic
minimizer w if its period is larger than l.

Now we state a result which is a concretization of Theorem 8.3.
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Theorem 8.8. Let f ∈ M and let M0,M1, ε, l0 be positive numbers. Then there
exists h > l0 such that the following assertion holds:

For each l > h there are L > l and a neighborhood U of f in M̄ such that for
each g ∈ U , each T ≥ L, each v ∈ W 2,1([0, T ]) satisfying

|(v(0), v′(0))|, |(v(T ), v′(T ))| ≤ M0,

Ig(0, T, v) ≤ Ug
T ((v(0), v′(0)), (v(T ), v′(T ))) + M1

and each s ∈ [0, T − L] there is s1 ∈ [s, s + L − l] such that at least one of the
following properties holds:

(i) there exists w ∈ σ(f, h) such that

|(v(s1 + t), v′(s1 + t))− (w(t), w′(t))| ≤ ε for all t ∈ [0, l];

(ii) for each τ ∈ [s1, s1 + l − h] there are τ1 ∈ [τ, τ + h− l0] and ξ ∈ σ(f, 0) such
that

|(v(τ1 + t), v′(τ1 + t))− (ξ(0), 0)| ≤ ε for all t ∈ [0, l0].

The next theorem is a concretization of Theorem 8.4.

Theorem 8.9. Let f ∈ M and let l0, ε be positive numbers. Then there exists
h > l0 such that the following assertion holds:

For each l > h there are L > l and a neighborhood U of f in M̄ such that for each
g ∈ U , each (g)-good function v ∈ W 2,1

loc ([0,∞)) and each sufficiently large number
s there is s1 ∈ [s, s + L − l] such that at least one of the properties (i) and (ii) of
Theorem 8.8 holds.

The next two theorems describe the structure of approximate solutions of problem
(P∞).

Theorem 8.10. Let f ∈M and v ∈ W 2,1
loc ([0,∞)) satisfy

sup{|(v(t), v′(t))| : t ∈ [0,∞)} < ∞,

lim sup
T→∞

T−1If (0, T, v) = µ(f).

Assume that ε, l0 are positive numbers. Then there exists h > l0 such that for each
l > h there is L > l for which the following assertion holds:

For each γ > 0 there is Tγ > L such that for each T ≥ Tγ there are a finite
number of closed intervals J1, . . . , Jq such that

(8.3) q ≤ γT,

(8.4) mes(Ji) ≤ L, i = 1, . . . , q,

int(Ji) ∩ int(Jp) = ∅ for each pair of integers

(8.5) i, p ∈ {1, . . . , q} satisfying i 6= p

and if

(8.6) s ∈ [0, T − L], [s, s + L] ∩ Ji = ∅, i = 1, . . . , q,

then there is s1 ∈ [s, s + L − l] such that at least one of the properties (i), (ii) of
Theorem 8.8 holds.
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Theorem 8.11. Let f ∈ M, v ∈ W 2,1
loc ([0,∞)) satisfy (8.3) and let {Ti}∞i=1 be a

strictly increasing sequence of positive numbers such that limi→∞ Ti = ∞ and

lim
i→∞

T−1
i If (0, Ti, v) = µ(f).

Assume that ε > 0, l0 > 0. Then there exists h > l0 such that for each l > h there
is L > l such that the following assertion holds:

For each γ > 0 there is a natural number iγ such that Tiγ > L and that for each
integer i ≥ iγ there are a finite number of closed intervals J1, . . . , Jq such that

q ≤ γTi,

(8.4), (8.5) hold and that for each number s satisfying (8.6) there is s1 ∈ [s, s+L−l]
for which at least one of the properties (i), (ii) of Theorem 8.8 holds.
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