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ON ASYMPTOTICALLY OPTIMAL INVESTMENT WITH THE
RANK DEPENDENT EXPECTED UTILITY CRITERION

VLADIMIR ROTAR

Abstract. This paper concerns the well known paradox of inconsistency of the
maximum-expected-utility (MEU) and the maximum-expected-log (MEL) crite-
ria in investment dynamic models for large horizons. The goal of the paper is to
consider this phenomenon at the level of premises, and to suggest a generalized
criterion, namely the rank dependent expected utility (RDEU) approach which
allows to “bridge the gap” between the MEU and MEL criteria. The preference
order in the RDEU approach is preserved by the functional

U(F ) =

∫ ∞

0

u(x)dΨ(F (x)),

where F is a probability distribution, u is a utility function, and Ψ is a trans-
forming or weighting function: the subject “transforms” the real distribution
function F (x) into another one, Ψ(F (x)), assigning different weights to different
probabilities.

One of main goals of the paper is to establish conditions on the tail of Ψ, and
on the utility function u, under which the asymptotically optimal investment in
the long run corresponds to the MEL policy.

The result of the paper is relevant also to the questions of the survival of
economic agents in the market and the accuracy of their predictions or beliefs.

1. Introduction and an example

1.1. Background and motivations.

1.1.1. The MEU and MEL criteria. This paper considers optimal investment in
time, and concerns the long-known fact that the maximum-expected-utility (MEU)
and the maximum-expected-log (MEL) criteria prove to be inconsistent even for
large time horizons. In a certain sense, this is a paradox since both criteria have
reasonable justifications based on assumptions which, though maybe are restrictive
(as, say, the independence axiom), but are natural at least as the first approxima-
tion. Below, we explain the inconsistency mentioned at the level of premises, and
give a possible solution to the problem proceeding from two issues: some relatively
recent achievements of the modern utility theory, and a technique of determining
asymptotically optimal controls in the long run.

More specifically, we make use of the rank dependent expected utility (RDEU)
approach which, as will be seen, allows to “bridge the gap” between the MEU and
MEL criteria, and in a sense to “reconcile” the results based on the two approaches.

In Section 1.1.3, we will also connect this problem with the questions of the
survival of economic agents in the market and the accuracy of their predictions or
beliefs.

The history of the question will be considered later in Section 1.1.4 after we state
the problem.
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Let the initial wealth of an investor W0 = 1, and the wealth after T periods of
time

WT = WTπ =
T∏

t=1

(1 + Rt(π)),

where Rt(π) is a (random) return at time t corresponding to an investment policy
π. More formally, the map Rt : Π → K, where Π is a space of a general nature
whose elements π are viewed as investment policies, and K is a space of random
variables with values in R.

In the standard framework, π = (π1, ..., πn), a portfolio-vector, where n is the
number of securities in the market, and πk is the share of the capital invested in
the kth security. In this case, Π = {π = (π1, ..., πn) :

∑n
k=1 πi = 1}, the return

Rt(π) = π ·Rt, where Rt is the random vector of the returns of the securities, and
· stand for dot product. Below, we do not need such a specification and may view
π as a policy of a general nature.

Suppose that for each π, the random returns {Ri(π)} are independent and iden-
tically distributed (i.i.d.), and at each period t, the investor chooses the same policy
not depending on the previous history. It is worth noting that in the asymptotic
analysis, the last assumption does not, in essence, restrict generality; we discuss
this issue in more detail in Section 1.1.3. Nevertheless strategies π may depend on
the horizon T .

Let m(π) := E{ln(1 + R1(π))}, and there exist a policy

π̂ =Arg max
π

m(π)

which we call a maximum-expected-log (MEL) policy. Formally, we do not assume
the uniqueness of such a policy. Note also that for results below we do not need to
impose particular conditions on the map Rt for the existence of π̂: we just suppose
it exists. In Section 2.3, we introduce some additional conditions on π̂ and Rt itself.

If for a π and some c > 0, it is true that m(π̂) −m(π) ≥ c, then by the strong
law of large numbers (see also references in Section 1.1.4)

(1.1.1) (WT π̂/WTπ) →∞, as T →∞, almost surely.

In view of (1.1.1), it might seem that in the long run any “reasonable” policy π
should be close, in a sense, to π̂. However, as is well known, it is not the case for
the MEU criterion

(1.1.2) E{u(WTπ)} =
∫ ∞

0
u(x)dFTπ(x),

where u(x) is the utility function of the investor, and FTπ is the (cumulative)
distribution function of the random variable (r.v.) WTπ. Say, if u(x) = xα, then

E{u(WTπ)} = (E{(1 + R1(π)α})T ,

and the maximum is attained under a policy π′ which maximizes E{(1+R1(π))α}.
Clearly, π′ is not close to π̂ in general, and cannot be close asymptotically since π′

does not depend on T at all. For more complicated u, the analysis is more complex,
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but the conclusion is the same; see, e.g., Merton and Samuelson (1974), Markowitz
(1976), references therein and in Section 1.1.4.

There has been a great deal of discussion on which criterion, MEU or MEL, is
more preferable or realistic; for references see again Section 1.1.4. In this paper,
we are not concerned about which approach is better, but rather what makes them
different, and the answer to this question is simple. Any integral criterion of the type
(1.1.2) takes into account possibilities of “very large” values occurring with “very
small” probabilities, while the property (1.1.1) has to do only with probabilities,
and in a certain sense eliminates events with negligible probabilities.

If one deals with fixed, not growing, variables as, say, in a one-time fixed invest-
ment, the difference between the two criteria can be not significant. However, once
we deal with growing variables (as WTπ in dynamics; for example, in a long period
investment into a retirement fund), the difference mentioned may be dramatic.

The question is whether it is possible, maintaining at least some features of the
classical MEU criterion, to make the decision process more flexible with respect to
large deviations. One of possible answers is in making use of the Rank Dependent
Expected Utility (RDEU) approach.

1.1.2. The RDEU criterion. On a space of probability distributions F on [0,∞)
consider a preference order preserved by the functional

(1.1.3) U(F ) =
∫ ∞

0
u(x)dΨ(F (x)),

where u is a utility function, and the function Ψ is assumed to be non-decreasing,
Ψ(0) = 0, Ψ(1) = 1.

The “transformation” function Ψ reflects the attitude of the subject to different
probabilities: the subject “transforms” the real distribution function F (x) into
another one, Ψ(F (x)), assigning different weights to different probabilities.

Historical comments on the RDEU approach and a rich bibliography may be
found in monographs Wakker (1989), Quiggin (1993), and Luce (2000). Some re-
marks and references are also given in Section 1.1.4.

There are several axiomatic justifications of the criterion (1.1.3), for references
see also Section 1.1.4. A key axiom is either the trade-off consistency requirement
or the different, though in a certain sense similar, ordinal dependence axiom. The
latter axiom requires that, if two probability distribution functions (d.f.’s) coincide
on an interval, then their values on that interval do not affect the preference order
between these distributions. This is very much similar to the Savage sure-thing
principle. Certainly, such an axiom is considerably weaker than the independence
axiom.

A simple example is Ψ(p) = pβ. If β = 1, the subject perceives F as it is,
and hence deals with the “usual” expected utility (1.1.2). If β < 1, the investor
overestimates the probability for the wealth to be less that a fixed value: the investor
is “security-minded”. In the case β > 1, the investor underestimates the probability
mentioned, being “potentially-minded”.
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A limiting example is a truncation: if for a fixed q ∈ [0, 1]

Ψ(p) =
{

p if p < 1− q,
1 if p ≥ 1− q,

then

(1.1.4) U(F ) = qu(γq(F )) +
∫ γq(F )

0
u(x)dF (x),

where γq(F ) is the (1− q)-quantile of F . In this case, the investor does not distin-
guish values greater than γq(F ) (viewed as too large) and occurring with a proba-
bility of q (viewed as too small). One may view it as the existence of a perception
threshold. The functional (1.1.4) is not linear and should be distinguished from the
naive criterion where truncation is carried out at a fixed, perhaps, big value not
depending on F .

If F is a distribution of a r.v. taking only two values, say, a and b > a, with
probabilities p and 1− p, respectively, then

(1.1.5) U(F ) = u(a)Ψ(p) + u(b)[1−Ψ(p)],

and Ψ(p) “transforms” the probability p.
Consider a simple example. Let an investor having, say, the utility function

u(x) =
√

x, choose from two future retirement plans: either the annual pension will
be equal to X = $100, 000, or to Y = $50, 000 or $200, 000 with equal probabilities.
(We do not consider here annuities in dynamics.) For the numbers above, the
expected utility criterion leads to a slight preference for the latter plan (E{u(X)} ≈
316 and E{u(Y )} ≈ 335), which does not look realistic. (At least the author would
choose X.) On the other hand, under the criterion (1.1.5), as is easy to calculate,
the investor would prefer X if Ψ(1/2) > 0.59 > 1/2, which means that such
an investor would slightly overestimate the probability of the unlucky event to get
$50, 000. So, one can expect Ψ(p) to be concave for large p’s. Certainly, the above
primitive example is given merely for illustration.

1.1.3. The goal of the paper. In this paper, we establish conditions on Ψ, under
which the optimal policy converges to the MEL-policy as T → ∞. Roughly, these
conditions require the tail 1− Ψ(p) as p → 1, or/and Ψ(p) as p → 0, to vanish
sufficiently fast.

The former condition means that the investor underestimates the probabilities of
“too large” values of the income, viewing them as “very small”. One may say that
the investor practically does not count on too large values, considering them “too
non-plausible (though very good) for taking them into account”.

The smallness of Ψ(p) for “very small” p means that the investor underestimates
the probabilities of very small values of the income. So to speak, the investor views
“very bad” events as too rare for taking them into account when determining a
routine investment strategy.

The particular conditions we state below are non-necessary for the optimal policy
to be an asymptotically MEL-policy. However, as will be seen in Section 1.2, in a
certain sense, these conditions are close to minimal. The asymptotic optimality of
the MEL-policy is understood as follows.
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Let {πT } denote a sequence of policies where the integer T →∞. Suppose that
for such a sequence, and some c > 0

m(π̂)−m(πT ) ≥ c

at least for large T , that is, πT is not optimal with respect to (w.r.t.) the MEL-
criterion at least for large T . Then, under the conditions established in the next
sections, there exists T0 such that for all T > T0

(1.1.6) U(FTπT
) < U(FT π̂).

If the space of policies under consideration is endowed by a metric ‖ · ‖ - in the
standard framework it may be Euclidean, and if the policy π̂ is, in a certain sense,
unique with respect to this metric (see Section 2.3 for detail), then for the policy
π̃T maximizing U(FTπ), (1.1.6) would imply that ‖π̃T−π̂‖ → 0, as T →∞.

It is worth noting that such a type of results is connected with the question
of the “survival” of investors with not accurate predictions of future states of the
market. The distortion of probabilities under the rank dependent criterion leads to
a discrepancy between the investor’s beliefs and real probabilities. Nevertheless we
see that in the long run and under some conditions, the policy which the investor
views as optimal proceeding from her/his beliefs, proves to be optimal with respect
to the real probability measure also, if optimality is understood in the sense of the
maximization of the expected logarithm of the return.

This fact, though being correct asymptotically, in the long run, is relevant to
survival since, as was proved for example in Blume and Easley (1992), under some
conditions on saving rules, the agents who maximize the expected logarithm occur
eventually “most prosperous”. See also results in the same direction in De Long,
Shleifer, Summers and Waldman (1991), Palomino (1996), and references therein.

This paper does not aim to consider the survival issue in detail; it would require
the consideration of a special model with several agents, and comparison of different
restrictions on savings, investment decisions, and beliefs. Say, Sandroni (2000)
considered the situation when agents with incorrect beliefs are driven out of the
market by agents with correct beliefs. Sandroni’s paper contains also an interesting
discussion and examples. The goal of the remarks above was just to point to a
connection between the results below and the survival issue.

The last but important remark concerns the fact that we deal here only with
policies not depending on the previous history. This is certainly a restriction but
not as serious as it might look: under the i.i.d. assumption and some rather mild
additional conditions optimal strategies are asymptotically, for large time horizons,
close to stationary strategies of the type mentioned. However, the rigorous proof of
this fact (especially when we apply the RDEU criterion) would take long calculations
and make the framework and the result much less explicit. For this reason, to make
the exposition clearer, we start with stationary strategies from the very beginning:
in the asymptotic analysis it does not, in essence, restrict generality.

In this connection, it worthwhile to note that in practically all papers where the
difference between the MEL and MEU criteria has been discussed (for example, in
basic papers by Merton and Samuelson (1974), and Markowitz (1976)) the choice
of policies under consideration was the same and apparently for the same reason.
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The goal of this paper is in the introduction and analysis of a new criterion. So, it
makes sense probably, at least in the first stage, to do this in the framework of the
same model as has been considered before.

1.1.4. Further historical remarks. The MEL criterion itself was considered, for ex-
ample, in Markowitz (1959), Latane (1959) and Breiman (1961). For properties
of the MEL-portfolio as applied to bounded utilities see also Goldman (1974). A
rather general model was investigated later in Algoet and Cover (1988), see also
references therein.

It is worth noting that the maximization of the expected logarithm appears also
in the analysis of stochastic analogues of the von Neumann-Gale model. In par-
ticular, the only natural stochastic analogue of the von Neumann ray is the bal-
anced path that maximizes the expected logarithm of the growth rate. See, e.g.,
Arnold, Evstigneev, Gundalach (1994), Evstigneev and Taksar (2001), and refer-
ences therein.

Different aspects of the application of the MEU criterion to portfolio optimization
were considered in a great many of papers; see, e.g., Samuelson (1969), Hakansson
(1971), Merton (1973), Breeden (1979); these papers also contain substantial refer-
ence lists.

The comparison of the two criteria, and a deep sophisticated discussion may be
found in Samuelson (1969, 1971), Goldman (1974), Merton and Samuelson (1974),
Markowitz (1976), Ophir (1978, 1979), Latane (1979), Samuelson (1979), and also
in Markowitz’s remarks following Samuelson (1988).

One can find in the literature some remarks on the relevancy of large deviations
to the inconsistency of the MEU and MEL criteria (see, e.g., Latane (1959), Ophir
(1978, 1979); Samuelson (1979)), though all these remarks are implicit. To my
knowledge, the only paper where the inconsistency of the MEL and MEU criteria
has been explicitly connected with large deviations, is the working paper by Kim,
Omberg and Russell (1993) [20].

In [20] the authors suggest to divide the whole space of elementary events in two
groups: “non-extreme events” which correspond to “moderate” values of the wealth,
and extreme events “to be remaining events farther out in the tails”. The authors
suggest to consider the expected utility only over the “non-extreme outcomes”, that
is, to truncate integration in (1.1.2) by a “large” number depending on T (the same
for all F ). Some examples in [20] show that it may lead to the MEL policy.

Next remarks concern the RDEU approach. For binary gambles the RDEU crite-
rion was suggested by Kahneman and Tversky (1979) in their Prospect Theory, the
full model was considered in Quiggin (1982), though some earlier Quigin’s papers
contained some relevant ideas; see references in Quiggin (1993). A special case of
RDEU was independently considered in the “dual model” of Yaari (1987) devel-
oped further by Roell (1987). To my knowledge, an axiomatic system for the most
general case including continuous distributions was considered in Wakker (1993).
As was told already, a rather full history of the question and a rich bibliography
may be found in monographs Wakker (1989), Quiggin (1993), and Luce (2000), and
brief survey of facts concerning the weighting function Ψ - in Rotar (2002). Some
terminology and interpretations may be found in Lopes (1987, 1990).
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It is worth noting that the general modern RDEU model is more flexible than
(1.1.3), and deals not only with probability distributions but with the corresponding
events structures as well. The description of this model which coincides with that
of (1.1.3) in the case of so called coalescing, may be found in Luce (2000); one of
the most recent axiomatic systems - in Marley and Luce (1992). In the present
paper we restrict ourselves to (1.1.3), and hence to orders on spaces of probability
distributions.

As was told, there are several axiomatic justifications of the criterion (1.1.3); all
of them can be found in books Wakker (1989), Quiggin (1993), and Luce (2000).
A key axiom is either the trade-off consistency requirement [Wakker (1993)] or the
ordinal dependence axiom [Green and Jullien (1988), Quiggin (1989), Segal (1989)].

To the author’s knowledge, there are few papers where the RDEU approach
are applied to portfolio optimization (for example, Chew, Karni and Safra (1987),
Dentcheva and Ruszczynski (2005, 2006); though in general the idea of using RDEU
in Economics is not new [see, e.g., Simonsen & Sérgio (1991), Dow and Sérgio (1992),
Epstein and Tan Wang (1994), Mukerji & Tallon (1998), Tallon (1998), which does
not exhaust the whole possible references.

The rest of the paper is organized as follows. In Section 1.2 we consider a par-
ticular example with the power transforming function in the standard geometrical
Brownian motion framework. This example shows to what extent we should narrow
the class of Ψ’s.

The rest results concern the discrete time model as more difficult for analysis.
The reader will easily see that similar results are true for the continuous time model
too. General results are given in Section 2. Section 3 concerns a truncation criterion;
see also comments in the end of Section 2. Proofs are given in Section 4.

1.2. An example with power transformation functions for a simple contin-
uous time model. Next we consider a simple example when Ψ is a power function.
This is the case of the so called first order reduction of compound gambles; see for
a definition and comments, e.g., Luce (2000, p.84). In the context of the modern
utility theory, this case is viewed as too simple to be “realistic”, but it can serve as
a good preliminary illustration of what one can expect in the RDEU framework.

To make an example simpler, we consider here just a power utility function
and the standard continuous time scheme with a risk free and one risky securities
governed, respectively, by the equations

dBt = rBtdt, and dSt = St(mdt + σdZt),

where Zt is a Wiener process.
Let Wt be the total wealth at time t, W0 = 1, and θ be the share of the wealth

invested into the risky security. We assume θ to be a constant perhaps depending
on the time horizon T . As is well known, in this case

(1.2.1) Wt = exp {µ(θ)t + θσZt} ,

where µ(θ) = r +(m− r)θ− θ2σ2/2. From (1.2.1), one gets the well known optimal
θ under the MEL-criterion: θMEL = (m− r)/σ2.
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Next, we apply the RDEU criterion. We will see that the result should depend
on the type of the utility function. Let first u(x) = xa, 0 < α < 1.

In this case, large values of Wt matter, so the main property of Ψ(p) should
concern its behavior for p close to one. Set Ψ(p) = 1 − (1 − p)β, β ≥ 1. Then for
the distribution FT of WT

(1.2.2) U(FT ) = −
∫ ∞

−∞
exp

{
α

(
µ(θ)T + θσ

√
Tz

)}
d[1− Φ(z)]β,

where Φ is the standard normal distribution function. Calculations show that the
maximizer of (1.2.2) is

(1.2.3) θ = θ(T ) =
m− r

(1− α/β)σ2

(
1 + (β − 1)O

(
1√
T

))
.

For β = 1, we naturally get the optimal policy in the Merton’s MEU model:
θMEU = (m − r)

/
[(1− α)σ2] (see, e.g., Duffie [11], Merton [32]). For β > 1 and

large T , the value θ shifts to θMEL, and

θ̄ := lim
T→∞

θ(T ) =
m− r

(1− α/β)σ2
.

The greater the value of β, the closer θ̄ to θMEL, and farther from θMEU. In the
limiting case β → ∞, one has θ̄ → θMEL. [If T → ∞, and β → ∞ simultaneously,
the picture is more complicated, depending on which characteristic grows faster. ]

Consider now u(x) = −x−α, α > 0. Unlike in the previous case, here small
values of Wt matter. Hence now the asymptotics of Ψ(p) for p → 0 is important.
Set Ψ(p) = pβ, β ≥ 1. It is not difficult to calculate that in this case the maximizer
of U(FT ) is

(1.2.4) θ(T ) =
m− r

(1 + α/β)σ2

(
1 + (β − 1)O

(
1√
T

))
,

to which similar comments apply.
Thus, though the power transforming function causes a shift towards the MEL

policy, for the optimal policy to converge to the MEL strategy, as T →∞, the tail
of Ψ(p) should vanish faster than a power function. It is lucky that this is the case
that - for other reasons - attracted the attention of a number of researchers last
years. We use one of these results in the next section.

2. A discrete time model: general results

2.1. Conditions on Ψ. Note first that the criterion (1.1.3) is often specified in
the literature in terms of the function w(p) = 1 − Ψ(1 − p) which is referred to
as a weighting function. If u(0) = 0 (which does not restricts generality if u(x) is
bounded from below), integration by parts leads to

U(F ) =
∫ ∞

0
w(1− F (x))du(x).

In some calculations, the last representation proves to be more convenient.
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We make here use of the well known result by Prelec (1998), who established
axioms under which the weighting function admits the explicit representation

(2.1.1) w(p) = wβη(p) = exp {− [−β ln(p)]η} ,

where β, η are positive parameters. The corresponding transformation function
Ψβη(p) = 1− wβη(1− p).

Luce (2000, 2001) suggested another, and in the author’s opinion, simpler system
of axioms leading to (2.1.1); see also a discussion and generalizations in Luce (2000).

A detailed discussion of properties of the representation mentioned may be found,
e.g., in Luce (2000). Here we just note that if η = 1, then (2.1.1) directly leads to the
power function pβ, while for η > 1 the function wβη is S-shaped, and wβη(p) → 0
as p → 0 (and hence Ψβη(p) → 1 as p → 1) faster than any power function. In
this case, the subject (investor) is “strongly security-minded”, and in a rather small
degree takes into account possibilities of “lucky” large deviations.

Below we use Prelec’s representation. However, since we are concerned only with
large deviations, we do not need to specify the precise shape of Ψ(p) but rather its
asymptotic behavior for p → 1, and/or p → 0. Namely, we impose

Condition (Ψ): For some β > 0 and η > 1

Ψ(p) ≤ wβη(p) for p ≤ 1/2,(2.1.2)

Ψ(p) ≥ 1− wβη(1− p) for p > 1/2.(2.1.3)

If, as a matter of fact, (2.1.2) and (2.1.3) hold separately for different parameters β
and η, we can choose the “worst”, that is, the smallest, β and η. Since, when taking
a smaller positive β, we still have a property (Ψ), we can choose β small enough for
wβη(1/2) ≥ 1/2, which makes (2.1.2) and (2.1.3) consistent.

As will be seen, if the utility function u is bounded from below, (2.1.2) may be
replaced by the weaker condition

(2.1.4) Ψ(p) ≤ Mpa for p ≤ 1/2,

and some positive M,a. Clearly, for (2.1.4) and (2.1.3) to be consistent, one should
have M2−a ≥ 1 − wβη(1/2). Note also that, as is easy to check, Prelec’s function
Ψβη itself satisfies (2.1.4).

If u is bounded from above, (2.1.3) may be replaced by the condition

(2.1.5) Ψ(p) ≥ 1−M(1− p)a for p > 1/2.

and some M,a > 0. The similar remarks on consistency apply to this case too.

2.2. Conditions on u. The goal here is to make these conditions rather weak. This
leads to a bit complicated formulations, so it is worth emphasizing that conditions
below are very mild in the context of the utility maximization, and exclude just “very
bad” utility functions. In particular, these conditions hold for “classical” functions
u(x) = x1−γ

1−γ , γ 6= 1, or u(x) = lnx, or more generally for functions

(2.2.1) u(x) =
h(x)x1−γ

1− γ
, γ 6= 1,
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where h is a slowly varying function (s.v.f.)1, or for s.v.f.’s themselves from a very
large class of those. More detailed comments are given below.

We could avoid some conditions, if we had restricted ourselves to regularly varying
functions but it would have narrowed the setup of the problem too much, and not
only from a mathematical point of view: the behavior of human beings is not always
regular.

It proves also to be convenient to consider the case u(∞) < ∞ separately, which
we do in Section 2.4. Nevertheless the scheme of this section includes some bounded
from above functions too.

Clearly, we can consider only non-decreasing and taking at least two values func-
tions u. Then without loss of generality we can assume that u(x) > 0 for sufficiently
large x. (As usual, here and below, when saying that something is true for large x,
we mean that it is true for all x greater than a fixed x0.)

Condition (u1). There exist non-negative constants s and C1 such that
(a) for all y ≥ 1 and sufficiently large x

(2.2.2) u(xy) ≤ C1u(x)ys;

(b) for all y ≤ 1 and sufficiently small (that is, close to zero) x > 0

(2.2.3) |u(xy)| ≤ C1|u(x)| /ys .

If (2.2.2) and (2.2.3) hold separately with different C1 and s, we can choose the
“worst” from these parameters. Next, we discuss (2.2.2) and (2.2.3).

1. If u(∞) < ∞, (2.2.2) holds automatically. The same concerns (2.2.3) if
u(0) > −∞.

2. If u(x) = h(x)xα where α ≥ 0, and h is s.v. as x →∞, then (2.2.2) holds.
For (2.2.3) to hold, it suffices that u(x) = h̄(x)x−α where α ≥ 0, and h̄ is
s.v. as x → 0.

3. If u(0) = 0 and u(x) is concave, then (2.2.2) is true for all x with C = s = 1,
while (2.2.3) holds automatically.

4. It is easy to see that, if (2.2.2) holds, u(x) ≤ Cxs for some C and large x, that
is, u(x) grows, as x →∞, not faster than a power function. For instance, the
exponential utility function ex does not satisfy (2.2.2). Similarly, if (2.2.3)
holds, u(x) ≥ −Cx−s for sufficiently small x.

Conditions (2.2.2) and (2.2.3) require u to grow not too fast and not too irregu-
larly. The next condition requires u to grow not too slow.

Condition (u2). For any d > 1 and any l > 0, there exists a constant C(d, l) >
0 such that for large x,

(2.2.4)
u(x)
u(xd)

≤ 1− C(d, l)
xl

.

1A function h is s.v. as x→∞ if [h(kx)/h(x)]→ 1, as x→∞, for any k > 0. Say, ln x, (ln x)s

for any s, ln ln x, etc., are s.v.f.’s. Certainly, if h(x) → const, it is s.v. If h is a s.v.f., then
[h(x)/xε] → 0, as x → ∞ for any ε > 0. Similarly one defines a s.v.f. as x → 0. For details, see,
e.g., Seneta (1976) [50], also Ibragimov and Linnik (1971), Rotar (1998).
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This condition covers a large class of utility functions but also requires some
remarks.

1. Clearly (2.2.4) is true if

(2.2.5) lim sup
x→∞

[
u(x)

/
u(xd)

]
< 1

As to (2.2.5), it obviously holds, say, for all u(x) = h(x)xα where α > 0
and h is s.v., or if, for example, u(x) ∼ lnα(1 + x), α > 0, as x → ∞. On
the other hand, (2.2.5) excludes u growing “too slowly”, say, as ln ln(e+x).
Since for such functions the theorem below, as a matter of fact, is true, we
impose the weaker condition (2.2.4) that covers such functions.

2. Condition (2.2.4) holds for some bounded functions also, as, for example,
u(x) = 1− 1/ ln(e + x), but for instance, for u(x) = 1− 1/(1 + x)α, α > 0,
(2.2.4) is not true for all l. We consider such functions in Section 2.4 in a
bit different terms.

3. Functions that grow as power ones at least for sequences of x’s, but do
not satisfy (2.2.4), certainly exist but look exotic. Let, say, u(xk) =

√
xk

for xk = exp{4k}, k = 1, 2, ... , and u(x) is constant on [xk, xk+1). Then[
u(xk)

/
u(x2

k)
]

= 1 for all k, that is, (2.2.4) is not true for d = 2.
4. It is not true however that (2.2.4) holds for any s.v.f. tending to infinity, but

examples are rather exotic and we skip them here.

2.3. The main theorem. First, we need some conditions on r.v.’s Rt(π).
Conditions (R). (1) There exists a policy π̂ maximizing m(π), and m̂ :=

m(π̂) > 0.

(2) For σ2(π) := V ar{ln(1 + R1(π))}, it is true that

(2.3.1) sup
π

σ(π) < ∞.

(3) For a positive c0, and all π

(2.3.2) | ln(1 + R1(π))−m(π)| ≤ c0σ(π),

that is, the normalized r.v. [ln(1 + R1(π)) −m(π)]/σ(π) is bounded uniformly in
π.

The third requirement is imposed to avoid complicated conditions on the tails
of the distributions of Rt(π). It means, in particular, that the r.v. ln(1 + R1(π))
is bounded, and it excludes policies π for which the variance σ2(π) is “very small”
while the r.v. ln(1 + R1(π)) itself may take “not small” values with “very small”
probabilities.

We turn to the first result. When comparing the policy π̂ with a policy π, we
presuppose that π = πT , that is, perhaps depends on T . This is the case, for
example, if we consider a policy maximizing U(FTπ). When considering a sequence
of policies {πT } we assume that the integer parameter T → ∞ but perhaps takes
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on not all sequential natural values, that is, {πT } = {πT1 ,πT2 , ...} where {Tk} is an
increasing sequence of integers, and Tk →∞, as k →∞.

Theorem 1. Assume that conditions (Ψ), (u1), (u2) and (R) hold. Suppose that
for a sequence {πT } and a fixed c > 0 it is true that m(π̂) − m(πT ) ≥ c at least
for large T . Then there exists T0 perhaps depending on the sequence {πT } and such
that for all T > T0

(2.3.3) U(FTπT
) < U(FT π̂).

If u(0) > −∞, condition (2.2.3) in (u1) holds automatically, and instead of
(2.1.2) in (Ψ) it suffices to assume (2.1.4) to be true for some positive M and a.

Let now the space of all possible policies be endowed by a metric ‖ · ‖, and π̂ is
unique w.r.t. this metric in the following usual sense.

Condition (π̂) : For each δ > 0 there exists a positive ε depending only on δ
and such that, if ‖π̂ − π‖ ≥ δ, then m(π̂)−m(π) ≥ ε.

Clearly, Theorem 1 implies

Corollary 2. Suppose that all conditions of Theorem 1 plus condition (π̂) hold,
and for each T there exists a policy π̃T maximizing U(FTπ). Then ‖π̃T−π̂‖ → 0,
as T →∞.

2.4. The case of u bounded from above. In this case, we slightly change con-
ditions. First, without loss of generality, we assume u(∞) = 0. Next, instead of
both conditions (u1), we consider

Condition (u1+). There exist non-negative s and C1 such that (2.2.3) hold for
all x and all y ≤ 1.

The sense of (2.2.3) for small x’s has been already discussed. Regarding large
x’s, note the following.

1. Condition (2.2.3) is true for all x and y ≤ 1 for strictly negative u(x) =
h(x)/xα, where α ≥ 0, and h is s.v.f. for x → 0, and x →∞, as well.

2. As is easy to see, (2.2.3) implies u(x) ≥ −C/xs for a constant C (= u(1)/C1),
and x > 1, that is, u(x) → 0, as x →∞, not faster than a power function.

The last remark means that the theorem below does not cover bounded functions
u(x) converging to u(∞) too fast; say, the exponential utility function −e−αx, α > 0.
An analysis of proofs below allows to conjecture that this reflects the essence of the
matter, and the corresponding result cannot be proved in the rank-dependent-utility
framework.

Next we formulate the following counterpart of (2.2.4).
Condition (u2+). For any d > 1 and any l there exists a constant C(d, l) such

that for large x

(2.4.1)
∣∣∣∣u(xd)
u(x)

∣∣∣∣ ≤ 1− C(d, l)
xl

.

Note that in (2.4.1) we deal with u(x) → 0, as x → ∞. The remarks similar to
those following (2.2.4) may apply to this case too.
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Theorem 3. Assume that conditions (u1+), (u2+) and (R) hold. Regarding the
function Ψ suppose that (2.1.2) for some β > 0 and η > 1, and (2.1.5) for some
positive M and a, are true. Let m(π̂) − m(πT ) ≥ c for a sequence {πT } and a
fixed c > 0 at least for large T . Then there exists T0 such that U(FTπT

) < U(FT π̂)
for all T > T0. If in addition condition (π̂) holds, and there exists a policy π̃T

maximizing U(FTπ), then ‖π̃T−π̂‖ → 0, as T →∞.

The above general results should be viewed rather as qualitative. In concrete
situations, even if we accept the hypothesis that the investor assigns different weights
to different probabilities, it could be still a problem to figure out the particular
weighting function of the investor. One can hope that in future some models for a
“typical” investor will be elaborated - and Prelec’s representation is a step in this
direction, but for now this topic is not so developed. In the light of this, the simple
but explicit truncation criterion could occur to be useful. In the next section we
consider it in detail. It will allow to remove or essentially weaken some conditions,
and to consider a quantitative estimate for the time T0.

3. On the truncation criterion

To include into consideration a larger class of utility function we consider trunca-
tion from both sides. More specifically, we fix q ∈ [0, 1], and consider the criterion

(3.1) U(F ) = q[u(γq+(F )) + u(γq−(F ))] +

γq+(F )∫
γq−(F )

u(x)dF (x),

where γq−(F ) and γq+(F ) are q- and (1 − q)-quantiles of F , respectively. As was
noted in Section 1.1.2, this is a limiting case of the rank dependent utility: the
investor does not distinguish “too large” values occurring with a small probability
of q, as well as “too small values” occurring with the same probability. Truncation
in the areas of large and small values should be interpreted differently.

If an investor does not distinguish too large values of gains, she/he exhibits a
threshold of perception in the zone of “lucky” events, demonstrating a cautious
behavior. On the other hand, if the investor does not distinguish too small values
of the wealth, that is, too large values of losses, she has a threshold of perception
in the area of ruin. It reflects the well known phenomenon when people exhibit
different types of behavior depending on whether they deal with gains or losses
(see, e.g., Luce (2000)).

By the significance of q, it is small, so we can assume q ≤ 1/4̇.
By virtue of (2.3.1),

(3.2) WTπ = exp
{

m(π)T + σ(π)
√

T · ξTπ

}
,

where

ξTπ =
lnWTπ −m(π)T

σ(π)
√

T
=

∑T
t=1 [ln(1 + Rt(π))−m(π)]

σ(π)
√

T
.

The last r.v. is asymptotically normal for each π such that σ(π) 6= 0. If σ(π) = 0,
we define ξTπ as a standard normal r.v.; it will not cause a misunderstanding below.
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For each pair of distributions F and G, set ‖F −G‖∞ = supx |F (x)−G(x)|. Let,
as before, FTπ(x) = P (WTπ ≤ x), F ∗

Tπ(x) = P (ξT ≤ x) and ∆T (π) = ‖F ∗
Tπ−Φ‖∞.

Clearly, ∆T (π) → 0, as T →∞, for each π.
Condition (UNA: Uniform Normal Approximation):

(3.3) sup
π

∆T (π) → 0, as T →∞.

It is a rather weak condition. For example, by the Berry-Esseen theorem (see,
e.g., [14]) if σ(π) 6= 0, then

(3.4) ∆T (π) ≤ β(π)
σ3(π)

√
T

,

where β(π) = E{| lnR1(π) − m(π)|3. Hence, condition (3.3) holds, say, if the
supremum of the Lyapunov ratios,

(3.5) L = sup
π:σ(π) 6=0

(β(π)/σ3(π)) < ∞.

Theorem 4. Let the policy π̂ exist, and m(π̂) > 0. Let m(π̂) − m(πT ) ≥ c for
a sequence {πT } and some fixed c > 0. Then, in the case of the criterion (3.1),
U(FTπT

) < U(FT π̂) for T greater than some T0 if the following conditions hold:
(2.3.1), UNA, and either (2.2.4) if u(∞) = ∞, or (2.4.1) if u(∞) = 0.

If we deal just with (3.1), we can estimate the above threshold time T0. To make
the expressions below simpler, instead of (3.3), we consider condition (3.5) - the
latter implies the former, and instead of (2.2.4) or (2.4.1) - a simpler though slightly
stronger

Condition (u <). There exist a positive ku such that for k > ku

(3.6) ũ(k) := sup
x≥1

u(x)
u(kx)

<
1
4
,

and

(3.7) ũ(k) := sup
x≥1

∣∣∣∣u(kx)
u(x)

∣∣∣∣ <
1
4
, if u(∞) = 0.

We write 1/4 just for simplicity; any number less than 1/2 can be chosen. Clearly,
any function (2.2.1) satisfies (3.7).

Let ϕ(x) be the standard normal density, and

(3.8) Cq = 1/ϕ(γq(Φ) + 1) =
√

2πe(γq(Φ)+1)2/2.

Theorem 5. Consider the criterion (3.1), and assume conditions (σ), (3.5), and
(u <) to hold. Then U(FTπ) ≤ U(FT π̂) for all

(3.9) T > T0 = Γ1 +
Γ2

m(π̂)
+

Γ3

m(π̂)−m(π)
+

Γ4

(m(π̂)−m(π))2
,

where

Γ1 = 4L2(C2
q + 4), Γ2 = ln ku, Γ3 = 2 ln ku,

Γ4 = 4(γq(Φ) + 1)2σ̄2, and σ̄ = sup
π

σ(π).
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The above values of Γ’s are just rough estimates. More accurate estimation may
lead to much more precise though more cumbersome expressions for Γ’s.

4. Proofs

4.1. Proof of Theorem 1. Below, we will consider only sequences of policies {πT }
for which infT m(πT ) > 0 and infT σ(πT ) > 0; otherwise calculations are much
simpler.

We make use of the exponential bounds for large deviations (see, e.g., [14], [23],
[43]). For the r.v. ξTπ under consideration it may be formulated as follows: for all
π

P (ξTπ > x) ≤ exp
{
−x2

2

(
1− xc0

2
√

T

)}
for 0 ≤ x ≤

√
T/c0,

P (ξTπ > x) ≤ exp

{
−x

√
T

4c0

}
for x ≥

√
T/c0,

where c0 is the constant from (2.3.2). The same bounds are true for P (ξT <
−x), x > 0.

We simplify this as

(4.1.1) P (ξTπ > x) ≤ gT (x), P (ξTπ < −x) ≤ gT (x),

where x is arbitrary, and

(4.1.2) gT (x) =


1 for x < 0,

exp{−x2/4} for 0 ≤ x ≤
√

T/c0,

exp{−x
√

T/4c0} for x ≥
√

T/c0.

Set, as before, FTπ(x) = P (WTπ ≤ x), and F ∗
Tπ(x) = P (ξTπ ≤ x). If it cannot

cause a misunderstanding, we omit sometimes the index T in πT , and the index π
in ξTπ, FTπ and F ∗

Tπ, and write m and σ instead of m(π) and σ(π).
As usual, saying below that something, for example, an inequality, is true for

large T we mean that it is true for all T greater or equal than some fixed T1. Once
it has been said, for the rest of the proof we consider only T ≥ T1. It means, in
particular, that if, say, another inequality is true for T ≥ some T2, than we consider
T ≥ max{T1, T2}. We will not repeat it each time. The numbers T1, T2, etc.,
mentioned depend perhaps on parameters of the problem: c0, C1,M, a, etc.

Let c be a continuity point of Ψ(F ∗
T (x)). Then,

U(FT ) =
∫ ∞

0
u(x)dΨ(FT (x))

=
∫ ∞

−∞
u(emT eσ

√
Ty)dΨ(F ∗

T (y))

=
∫ c−0

−∞
u(emT eσ

√
Ty)dΨ(F ∗

Tπ(y))−
∫ ∞

c
u(emT eσ

√
Ty)d[1−Ψ(F ∗

T (y))]
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=
∫ c

−∞
u(emT eσ

√
Ty)dΨ(F ∗

Tπ(y))−
∫ ∞

c
u(emT eσ

√
Ty)d[1−Ψ(F ∗

T (y))]

= u(emT eσ
√

Tc) +
∫ ∞

c
[1−Ψ(F ∗

T (y))]du(emT eσ
√

Ty)(4.1.3)

−
∫ c

−∞
Ψ(F ∗

T (y))du(emT eσ
√

Ty).

Hence, by (4.1.1) and since u is non-decreasing, for c ≥ 0,

(4.1.4) U(FT ) ≤ u(emT eσ
√

Tc) +
∫ ∞

c
[1−Ψ(1− gT (y))]du(emT eσ

√
Ty).

Let Ψ̃(p) be any non-decreasing and continuous at zero function such that Ψ̃(0) =
0, Ψ̃(1) = 1, and Ψ̃(p) ≤ Ψ(p) for all p. Then (4.1.4) implies that

U(FT ) ≤ u(emT eσ
√

Tc) +
∫ ∞

c
[1− Ψ̃(1− gT (y))]du(emT eσ

√
Ty)

= u(emT eσ
√

Tc)Ψ̃(1− gT (c)) +
∫ ∞

c
u(emT eσ

√
Ty)dΨ̃(1− gT (y)).

Since c can be chosen arbitrary close to zero and Ψ̃(p) is continuous at zero, even-
tually

(4.1.5) U(FT ) ≤
∫ ∞

0
u(emT eσ

√
Ty)dΨ̃(1− gT (y)).

Recall that in the case of Theorem 1 we assume that u(x) > 0 for sufficiently large
x. Consequently, since we consider only the case infT m(πT ) > 0, for sufficiently
large T all values of u(emT eσ

√
Ty) in the r.-h.s. of (4.1.5) are positive for all y. Set

(4.1.6) k1 = k1(T ) = 2β−1/2T 1/2η.

Since η > 1, there exists T1 = T1(β, η) such that for T ≥ T1 one has k1(T ) ≤
√

T/c0.
So, for T ≥ max{T1, (β ln 2)η}

(4.1.7) gT (k1) = exp{−k2
1/4} = exp{−T 1/η/β} ≤ 1/2.

Then we can use (2.1.3) and set Ψ̃(p) = 1 − wβη(1 − p) for p ≥ 1/2, and Ψ̃(p) =
min{Ψ(p), 1− wβη(1− p)} for p < 1/2. The Ψ̃ so chosen is continuous at zero. By
(4.1.5)

U(FT ) ≤
∫ ∞

0
u(emT eσ

√
Ty)dΨ̃(1− gT (y)) =

k1∫
0

+

∞∫
k1

= J1 + J2.(4.1.8)

For J1 it suffices to write

(4.1.9) J1 ≤ u(exp{mT + k1σ
√

T}) = u(exp{mT + 2σβ−1/2T (1+η)/2η}),

where the r.-h.s. is positive for large T .
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For large T we have also 1 − gT (k1(T )) > 1/2, and hence Ψ̃(1 − gT (y)) = 1 −
wβη(gT (y)) for y ≥ k1(T ). Next we use (2.2.2) which is true for x > some x1. Since
exp{mT + k1(T )σ

√
T} > x1 for large T , we can use (2.2.2) when estimating J2.

Consequently, for sufficiently large T

J2 =

∞∫
k1

u(emT eσ
√

Ty)d[−wβη(gT (y))]

≤ C1u(emT )I,(4.1.10)

where

(4.1.11) I = I(T ) =

∞∫
k1(T )

exp{sσ
√

Ty}d[−wβη(gT (y))].

As was told already, k1(T ) ≤
√

T/c0 for large T , and hence we can write

I =

∞∫
k1

=

√
T/c0∫

k1

+

∞∫
√

T/c0

= I1 + I2.

Furthermore,

I1 = I1(T ) =

√
T/c0∫

k1(T )

exp{sσ
√

Ty}d[−wβη(gT (y))]

=

√
T/c0∫

k1(T )

exp
{

sσ
√

Ty
}

d
[
− exp

{
−

[
βy2/4

]η}]

=

√
β
√

T/2c0∫
√

βk1(T )/2

exp
{

2β−1/2sσ
√

Ty
}

d
[
− exp

{
−y2η

}]

≤
∞∫

√
βk1(T )/2

exp
{

2β−1/2sσ
√

Ty
}

d
[
− exp

{
−y2η

}]
.(4.1.12)
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Thus, we need an estimate for integrals of the type
∞∫

R

xl exp{tx− x2η}dx ≤
∞∫

R

xl exp{tx− x2R2η−2}dx

=
1

R(η−1)(l+1)

∞∫
Rη

yl exp{(t/Rη−1)y − y2}dx

≤ C(l)
R(η−1)(l+1)

∞∫
Rη

exp{(t/Rη−1)y − y2/2}dx

=
C(l)

R(η−1)(l+1)
exp

{
1
2

(
t/Rη−1

)2
} ∞∫

Rη

exp{−(y − (t/Rη−1))2/2}dx

≤ C(l)
R(η−1)(l+1)

exp
{

1
2

(
t/Rη−1

)2
}

[1− Φ(Rη − (t/Rη−1))].

where C(·) as usual, denotes a constant depending only on the argument in (·),
and which may be different in different formulas. Applying the last inequality to
(4.1.12), we have

I1(T ) ≤ C(η)(2β−1/2)(η−1)2η

k
(η−1)2η

1 (T )
exp

{
1
2

(
(2/

√
β)ηsσ

√
T/kη−1

1

)2
}

×
[
1− Φ

(
(
√

βk1/2)η − (2/
√

β)ηsσ
√

T/kη−1
1

)]
≤ C(η)

T
(η−1)

exp
{

2β−1s2σ2T 1/η
}[

1− Φ
(√

T − 2β−1/2sσT 1/2η
)]

.(4.1.13)

It suffices now to use that

(4.1.14)
(

1
x
− 1

x3

)
ϕ(x) ≤ 1− Φ(x) = Φ(−x) ≤ 1

x
ϕ(x), for x > 0,

where ϕ(x) = Φ′(x) (see, e.g., [14], [23], [43]). Set σ̄ = supπ σ(π) < ∞ in view of
(2.3.1). It is straightforward to derive from (4.1.13) and (4.1.14) that, if η > 1, then
there exists T2 = T2(σ̄, C1, β, η, s) such that for T ≥ T2

(4.1.15) I1(T ) ≤ e−T/4.

Furthermore,

I2(T ) =

∞∫
√

T/c0

exp{sσ
√

Ty}d[−wβη(exp{−y
√

T/4c0})]

=

∞∫
√

T/c0

exp
{

sσ
√

Ty
}

d

[
− exp

{
−

[
βy
√

T

4c0

]η}]
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=

∞∫
βT/4c20

exp
{
(4c0β

−1sσ)z
}

d [− exp {−zη}] .(4.1.16)

We see that there exists T3 = T3(c0, C1, β, η, s) such that for all T ≥ T3

(4.1.17) I2 ≤ e−T .

From (4.1.15) and (4.1.17) it follows that for large T

(4.1.18) I(T ) ≤ e−T/4 + e−T ≤ 2e−T/4,

and hence

(4.1.19) J2 ≤ C1u(emT )(e−T/4 + e−T ) ≤ u(emT )e−T/5

for sufficiently large T .
Collecting (4.1.8), (4.1.9), and (4.1.19), we obtain that for sufficiently large T

U(FT ) ≤ u(exp{mT + 2σ̄β−1/2T (1+η)/2η}) + u(emT )e−T/5

≤ u(exp{mT + 2σ̄β−1/2T (1+η)/2η})[1 + e−T/5],(4.1.20)

where the r.-h.s. is positive.
We turn to lower bounds for U(FT ). Let c be a continuity point of Ψ(F ∗

T (y)),
and c ≤ 0. Then, by (4.1.4),

U(FT ) ≥ u(emT eσ
√

Tc)−
∫ c

−∞
Ψ(F ∗

T (y))du(emT eσ
√

Ty)

≥ u(emT eσ
√

Tc)−
∫ c

−∞
Ψ(gT (−y))du(emT eσ

√
Ty).(4.1.21)

Let now Ψ̃(p) be any non-decreasing and continuous at p = 1 function such that
Ψ̃(0) = 0, Ψ̃(1) = 1, and Ψ̃(p) ≥ Ψ(p) for all p. Then it follows from (4.1.21) that

U(FT ) ≥ u(emT eσ
√

Tc)−
∫ c

−∞
Ψ̃(gT (−y))du(emT eσ

√
Ty)

= u(emT eσ
√

Tc)(1− Ψ̃(gT (−c))) +
∫ c

−∞
u(emT eσ

√
Ty)dΨ̃(gT (−y))

= u(emT eσ
√

Tc)(1− Ψ̃(gT (−c))) +
∫ ∞

|c|
u(emT e−σ

√
Ty)d[−Ψ̃(gT (y))].

Since c can be chosen arbitrary close to zero and Ψ̃(p) is continuous at one,

(4.1.22) U(FT ) ≥
∫ ∞

0
u(emT e−σ

√
Ty)d[−Ψ̃(gT (y))]

Let now x0 be the number such that u(x) ≤ 0 for x < x0, and u(x) > 0 for x > x0.
By condition (u1) there exists x2 ≤ x0 such that (2.2.3) holds for x ≤ x2. Let y0 =
y0(T ) = m

√
Tσ−1 − (lnx0)(σ

√
T )−1, y2 = y2(T ) = m

√
Tσ−1 − (lnx2)(σ

√
T )−1.

Clearly, k1(T ) < y0(T ) ≤ y2(T ) for large T .
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Set Ψ̃(p) = wβη(p) for p ≤ 1/2, and Ψ̃(p) = max{wβη(p),Ψ(p)} otherwise. Note
that Ψ̃(p) is continuous at p = 1. Furthermore

U(FT ) ≥
∫ ∞

0
u(emT e−σ

√
Ty)d[−Ψ̃(gT (y))] =

∫ k1

0
+

∫ y0

k1

+
∫ y2

y0

+
∫ ∞

y2

= J3 + J4 + J5 + J6.(4.1.23)

Considering T large enough for gT (k1(T )) ≤ 1/2, we get that

J3 ≥ u(exp{mT − k1(T )σ
√

T})[1− Ψ̃(gT (k1(T )))]

= u(exp{mT − k2(T )σ
√

T})[1− wβη(gT (k1(T )))]

= u(exp{mT − 2σβ−1/2T (1+η)/2η})[1− e−T ],(4.1.24)

where the r.-h.s. is positive for large T .
It suffices to write J4 ≥ 0. The next integral

J5 ≥ −|u(x2)|Ψ̃(gT (y0)) ≥ −|u(x2)|wβη(gT (y0))

≥ −|u(x2)|wβη(gT (k1)) = −|u(x2)|e−T .(4.1.25)

Furthermore, for y ≥ y2 we can use (2.2.3) in the following way

J6 =
∫ ∞

y2

u(emT e−σ
√

Ty)d[−wβη(gT (y))]

=
∫ ∞

y2

u(x2 exp{−σ
√

T (y − y2)})d[−wβη(gT (y))]

≥
∫ ∞

y2

u(x2 exp{−σ
√

Ty})d[−wβη(gT (y))]

≥ C1u(x2)
∫ ∞

y2

exp{sσ
√

Ty})d[−wβη(gT (y))]

≥ −C1|u(x2)|
∫ ∞

k1

exp{sσ
√

Ty})d[−wβη(gT (y))]

≥ −2C1|u(x2)|e−T/4(4.1.26)

for large T in view of (4.1.18).
Since there exists a constant C2 > 0, perhaps depending on parameters of the

problem, such that u(mT − 2σβ−1/2T (1+η)/2η) ≥ C2 for large T , (4.1.23), (4.1.24),
(4.1.25), and (4.1.26) imply for large T that

U(FT ) ≥ u(exp{mT− 2σβ−1/2T (1+η)/2η})[1− e−T− C−1
2 |u(x2)|(e−T + 2C1e

−T/4)]

≥ u(exp{mT − 2σβ−1/2T (1+η)/2η})[1− e−T/5],(4.1.27)

where the r.-h.s. is positive.
Turning to the last step of the proof, we fix a policy π and write FT , m,σ for

FTπ,m(π), σ(π), respectively. Symbols F̂T , m̂, σ̂ will correspond to the policy π̂.
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Let ∂m := m̂−m ≥ c > 0. Combining (4.1.20) and (4.1.27), taking into account
that η > 1, and making use of (2.2.4), we have for large T

U(FT )
U(F̂T )

≤ u(exp{mT + 2σ̄β−1/2T (1+η)/2η})[1 + e−T/5]
u(exp{m̂T − 2σ̂β−1/2T (1+η)/2η})[1− e−T/5]

≤ u(exp{(m + ∂m/4)T )})[1 + e−T/5]
u(exp{(m̂− ∂m/4)T )})[1− e−T/5]

≤ [1− C(l, d) exp{−l(m + ∂m/4)T}] ·
[
1 + 3e−T/5

]
,(4.1.28)

where d = m̂−∂m/4
m+∂m/4 ≥

4m̂−c
4m̂−3c > 1. (The denominator is positive since m̂ > m ≥ 0. )

Since the positive l can be arbitrary small, we can set, say, l = 1
6(m+∂m/4) ≥

1
6m̂ > 0.

Note also that without loss of generality we can assume C(l, d) increasing in both
arguments. Similarly, larger l and/or d, larger the set of x’s for which (2.2.4) is
true. Hence, as is now easy to see, the r.-h. side of (4.1.28) is less than one for large
T .

It remains to consider the case when u(0) > −∞, which means that we can set
u(0) = 0. In this case we keep the bound (4.1.20) as it is, and for a lower bound
we can appeal to condition (2.1.4). Set k2 = k2(T ) = 2

√
(ν/a)T , where a is a

parameter from (2.1.4), and a positive fixed ν ≤ a/4c2
0 will be specified later. Set

Ψ̃(p) = Mpa for p ≤ 1/2, and Ψ̃(p) = 1 otherwise. (Note that in (2.1.4) we can
consider M2−a ≤ 1. )

Then

U(FT ) ≥
∫ ∞

0
u(emT e−σ

√
Ty)d[−Ψ̃(gT (y))] ≥

∫ k2

0
u(emT e−σ

√
Ty)d[−Ψ̃(gT (y))]

≥ u(exp{mT − 2(ν/a)1/2σT})[1− Ψ̃(gT (k2))].

Since k2(T ) ≤
√

T/c0, and gT (k2(T )) ≤ 1/2 for large T , by (2.1.4) and (4.1.2)
Ψ̃(gT (k2(T ))) = M exp{−νT}. So, for large T

(4.1.29) U(FT ) ≥ u(exp{(m− 2(ν/a)1/2σ)T})[1−M exp{−νT}],

where the r.-h.s. is positive. Thus, (4.1.20) and (4.1.29) imply that

(4.1.30)
U(FT )
U(F̂T )

≤ u(exp{mT + 2σ̄β−1/2T (1+η)/2η})[1 + e−T/5]
u(exp{(m̂− 2(ν/a)1/2σ̂)T})[1−M exp{−νT}]

.

Let ν = min{(a/4c2
0), a(∂m)2/64σ̂2}. Then, since η > 1, for large T

(4.1.31)
U(FT )
U(F̂T )

≤ u(exp{(m + ∂m/4)T})
u(exp{(m̂− ∂m/4)T})

· 1 + e−T/5

1−M exp{−νT}
.

Proceeding similar to (4.1.28) and applying (2.2.4) it is easy to show now that the
r.-h.s. of (4.1.31) is less than one for large T .

The proof is complete. �
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4.2. Proof of Theorem 3. The proof repeats the previous proof with the following
exceptions. First, we set u(∞) = 0. Second, the upper bound for U(FT ) can be
provided in the following way. Let k2 = k2(T ) be defined as above, and Ψ̃ =
1−M(1− p)a for p > 1/2, and Ψ(p) = 0 otherwise. Then, since u(x) ≤ 0,

U(FT ) ≤
∫ ∞

0
u(emT eσ

√
Ty)dΨ̃(1− gT (y)) ≤

∫ k2

0
u(emT eσ

√
Ty)dΨ̃(1− gT (y))

≤ u(exp{mT + 2(ν/a)1/2σT})Ψ̃(1− gT (k2(T ))).

Similar to what we did before we get that Ψ̃(1− gT (k2(T ))) = 1−M exp{−νT} for
large T and

(4.2.1) U(FT ) ≤ u(exp{(m + 2(ν/a)1/2σ)T})[1−M exp{−νT}],
where the r.-h.s. is negative.

Consider a lower bound. In this case we set Ψ̃(p) = wβη(p) for p ≤ 1/2, and
Ψ̃(p) = max{wβη(p),Ψ(p)}. For the same k1 = k1(T ) as above

(4.2.2) U(FT ) ≥
∫ ∞

0
u(emT e−σ

√
Ty)d[−Ψ̃(gT (y))] =

k1∫
0

+

∞∫
k1

= J7 + J8.

First,

(4.2.3) J7 ≥ u(exp{mT − k1(T )σ
√

T}) = u(exp{mT − 2σβ−1/2T (1+η)/2η}),
where the l.-h.s. is negative.

For J8 we have to use a condition on u(x) of the type (2.2.3) for all x. Taking
into account (4.1.7), we have for large T

J8 =
∫ ∞

k1

u(emT esσ
√

Ty)d[−wβη(gT (y))]

≥ −C1|u(emT )|
∫ ∞

k1

esσ
√

Tyd[−wβη(gT (y))]

= −C1|u(emT )|I,

where I is the integral (4.1.11). So, in virtue of (4.1.18), for sufficiently large T

(4.2.4) U(FT ) ≥ u(exp{mT − 2σβ−1/2T (1+η)/2η})[1 + e−T/5],

where the r.-h.s. is negative.
The rest of the proof is similar to what has been done before. We should only

take into account that U(FT ) is now negative. �

Because of the lack of room we skip here simpler proofs of Theorems 4 and 5.
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