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NON-CONVEXITY, DISCOUNTING AND INFINITE HORIZON
OPTIMIZATION

MUKUL MAJUMDAR AND SANTANU ROY∗

Abstract. We consider the discounted aggregative model of optimal economic
growth with non-convex production technology. We review some of the important
results on the nature and long run behavior of optimal accumulation paths and
indicate how these differ qualitatively from the ones in the classical convex version
of the model.

1. Introduction

Consider the following discounted dynamic programming problem: an economy
begins with an initial stock of capital or input x0 which leads to an output at the
end of the period according to a (production) function f(x0) [where f : R+ → R+

is strictly increasing and is typically required to satisfy additional properties]. The
decision maker, upon observing the output, chooses an action: a fraction θ ∈ [0, 1];
the amount

c0 = θf(x0)
is consumed, leaving

x1 = f(x0)− c0

as the stock of capital or input x1 in period 1. Consumption c0 generates an
immediate return or utility u(c0) according to a (utility) function u [where u : R+ →
R is strictly increasing and is often required to satisfy other properties]. The story
is repeated over time. A discount factor δ ∈ (0, 1) is given. The decision maker
is interested in choosing a sequence of actions so as to maximize the discounted
intertemporal sum of returns or utilities

∞∑
t=0

δtu(ct).

This dynamic optimization problem lies at the heart of the well known one-sector
model of optimal economic growth - an important building block in dynamic eco-
nomics that has been analyzed extensively to understand problems of intertempo-
ral resource allocation including macroeconomic growth and capital accumulation,
management of natural resources that are harvested over time and capital accu-
mulation by firms. Based on the (undiscounted) problem of dynamic savings and
consumption analyzed by Frank Ramsey (1928), the discounted one sector opti-
mal growth model was first systematically examined by Cass (1965) and Koopmans
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(1965). The classical Cass-Koopmans version of the model and much of the subse-
quent literature on macroeconomic growth focused on the case where the optimiza-
tion problem is convex i.e., the utility function u and the production function f are
both concave (in addition to various other restrictions).

Concavity of the production function implies that the productivity of (or, the rate
of return on investment in) capital is decreasing in capital stock and is maximized
at zero. Indeed, in a large section of the literature, it is assumed that productivity
of capital is infinitely large at zero. Such assumptions on the technology however
imply that the model cannot be used to understand problems of macroeconomic
growth in economies characterized by significant degrees of “increasing returns” so
that productivity of capital may be low when total capital stock is small and may
increase sharply as the capital stock expands beyond a threshold.1

Moreover, in applications of the one sector growth model to optimal management
of biological and other renewable resources, the production function needs to capture
features of biological reproduction or natural growth of species. The latter may often
be characterized by “depensation” - productivity is low when the population size is
small and the species grows faster after the population attains a moderate size (see,
Clark, 1990). For the model to be relevant to such applications, we need to allow
for production functions that are non-concave (for example, S-shaped).

In this article, we focus on a class of “non-classical” (a term used by Leonid
Hurwicz2) models of one sector optimal growth in which the production function f
is not restricted to be concave and review the basic results on the long run behavior
of optimal sequences of actions.

Section 2 contains a formal specification of the assumptions and a set of basic
results on the dynamic optimization exercise. Section 3 discusses certain qualitative
properties of optimal programs such as monotonicity and convergence of capital
stocks and output over time. Section 4 discusses issues related to the existence of
a non-trivial optimal steady state. In section 5, we provide an exposition of results
related to the characterization of long run (limiting) behavior of optimal capital
stocks and the effect of discounting (including a characterization of extinction and
conservation in the long run). Section 6 contains a discussion of turnpike properties
of optimal capital sequences as discounting vanishes i.e., δ → 1. Section 7 concludes
with some indication of the directions in which the literature has extended the basic
model outlined in Section 2.

2. Preliminaries

Consider the following one sector model of optimal economic growth. Time is
discrete and is indexed by t ∈ Z+, where Z+ = {0, 1, 2, ....} is the set of all non-
negative integers. The economy begins with an initial stock of capital or input
x0 ≥ 0. Capital depreciates fully every period. At the beginning of every time

1Increasing returns may reflect scale economies and indivisibilities in the production technology
and can explain economic phenomena such as low level “poverty traps” in the process of economic
development, the role of the “big push” in moving poor economies out of poverty traps and the
persistence of gaps between “clubs” of rich and poor countries.

2Hurwicz (1972).
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period t ∈ Z+, the current stock of capital or input xt ≥ 0 generates current output

yt = f(xt)

where f : R+ → R+ is the production function. An amount ct ∈ [0, yt] is consumed
at the end of period t. An amount

xt+1 = yt − ct

is invested in capital formation and constitutes the stock of capital or input at the
beginning of period t + 1. Consumption ct in period t generates utility u(ct) where
u is the (one-period) utility function.

Given an initial capital stock x0 ≥ 0, a non-negative sequence x = {xt}∞t=0 is said
to be a capital path if

0 ≤ xt+1 ≤ f(xt),∀t ∈ Z+.

Every capital path x = {xt}∞t=0 generates a corresponding consumption path which
is a non-negative sequence c = {ct}∞t=0 defined by

ct = f(xt)− xt+1, t ∈ Z+.

The dynamic optimization problem is as follows: given a discount factor δ ∈ (0, 1),
and an initial capital stock x0 ≥ 0,

maximize
∞∑

t=0

δtu(ct)(2.1)

subject to : ct = f(xt)− xt+1, xt ≥ 0,∀t ∈ Z+.

A solution {xt, ct}∞t=0 to the maximization problem (2.1) is said to be an optimal
path and, in particular, we refer to {xt}∞t=0 as an optimal capital path and to {ct}∞t=0

as an optimal consumption path.
It may be noted that the model has been re-interpreted as illustrating the in-

tertemporal decentralization of consumption and capital investment decisions by
an appropriate system of “dual” prices supporting an optimal path (see, Majum-
dar, 1988). However, in the non-convex models that we review in this article, this
decentralization interpretation often breaks down.

Observe that the formal optimization problem stresses the role of consumption
explicitly in generating utility. The optimization problem can, however, be written
in an equivalent “reduced form” (used first in Gale, 1967) as: given a discount factor
δ ∈ (0, 1), and an initial capital x0 ≥ 0,

maximize
∞∑

t=0

δtw(xt, xt+1)

subject to : 0 ≤ xt+1 ≤ f(xt),∀t ∈ Z+.

where w is the reduced form utility function defined on {(x, x′) : 0 ≤ x′ ≤ f(x), x ≥
0} by

w(x, x′) = u(f(x)− x′).
See, Mitra (2000) for a useful survey of the literature (when f is concave) using the
“reduced form”.

The following assumptions on the utility function u will be retained throughout
the paper:
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U.1. u : R+ → R is continuous, strictly increasing and strictly concave on R+,
continuously differentiable on R++ with u′(c) > 0, u′′(c) < 0 for all c > 0.

U.2. limc→0 u′(c) = +∞.

U.1 imposes standard smoothness, strict concavity and monotonicity assumptions
on the utility function. In particular, the assumption of strict concavity rules out
environments where utility may be linear in consumption (globally or in segments) in
which case, certain monotonicity, interiority and convergence properties of optimal
paths need not hold (see, Majumdar and Mitra, 1983, Kamihigashi and Roy, 2006).

U.2 imposes the standard Uzawa-Inada condition on the utility function that
requires marginal utility to be infinite at zero consumption; it ensures that optimal
paths are interior i.e., optimal consumption and capital are strictly positive every
period, if x0 > 0.

The following assumptions on the production function f will be retained through-
out the paper:

T.1. f : R+ → R+ is continuous on R+ and continuously differentiable on R++

with f ′(x) > 0 for all x > 0.

T.2. f(0) = 0; f ′(0) = lim supx→0 f ′(x) = lim infx→0 f ′(x) > 1; there exists
K > 0 such that

f(K) = K, f(x) < x for all x > K.

Without loss of generality, we assume that:

x0 ∈ [0,K].
T.1 imposes standard monotonicity and smoothness requirements on the pro-

duction technology. Many of the results described in the paper have been shown
to hold with non-smooth and discontinuous production functions (Mitra and Ray
1984, Kamihigashi and Roy 2006, 2007).

T.2 imposes restriction on the behavior of the production function at zero and
at infinity. In particular, it requires that the technology is “productive” at small
levels of capital stock so that expansion of output and capital is technologically
feasible when the stock of capital is sufficiently small.3 It also requires that the
economy exhibit “bounded growth” i.e., capital and output paths are uniformly
bounded. This rules out sustained growth of the economy in the long run; however,
many of the qualitative properties of optimal paths described in this article can be
easily shown to hold in a framework that allows for unbounded expansion of capital
and consumption (Kamihigashi and Roy, 2007). It should be observed here that in
applications of the model to management of biological species and other renewable
resources, “bounded growth” is a natural assumption as the stocks of such resources
are eventually limited by the carrying capacity of the ecosystem.

3In applications of the model to problems of optimal management of biological species, this
assumption may be restrictive; there are many species that are incapable of sustaining their pop-
ulation (even in the absence of any human intervention) when their biomass falls below a certain
threshold. This is often referred to as “critical depensation”. See, Clark (1990), Bhattacharya and
Majumdar (2007, Chapter 16).
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Note that unlike the classical models of economic growth, the production function
f is not required to be concave (though assumption T.2 does rule out a production
function that is globally convex ). Indeed, this potential non-concavity of the pro-
duction function, distinguishes the class of non-classical growth models reviewed in
this article from the rest of the literature. One implication of this is that, informally
stated, the feasible set of the dynamic optimization problem (more precisely, the set
of capital and consumption paths from any given initial capital stock) is potentially
non-convex.

Further, unlike much of the classical optimal growth literature, the marginal pro-
ductivity at zero is allowed to be finite; there is no “Uzawa-Inada condition” on the
production function. Indeed, the literature on growth with non-convex technology
focuses on capital accumulation in economic environments where productivity can
be relatively small in a neighborhood of zero as a consequence of increasing returns
or due to low natural growth of certain biological species when the stock or biomass
is too small (depensation) etc.

The canonical illustration of a non-concave production function that satisfies T.1
and T.2 is a smooth S-shaped “Knightian” production function with slope greater
than 1 near zero that is initially convex and eventually behaves like a concave
“Solow” production function. However, the assumptions allow for multiple convex-
concave segments, for instance, a production function that may be obtained as a
(non-concave) outer envelope of multiple concave production functions, each cor-
responding to a different production technology, where the economy switches from
one technology to another as capital stock expands (Nguyen et al, 2005).

The existence of a solution to the above dynamic optimization problem follows
from standard results in the dynamic programming literature (our optimization
problem can studied as a discounted dynamic programming problem with bounded
immediate return function and compact action space4) but may also be obtained
by a more direct compactness argument on the space of feasible paths (Majumdar,
1975). Let V (x) denote the value function i.e., the value of the maximand (2.1)
generated by an optimal path from initial capital stock x0 = x. It is easy to
verify that under our assumptions, V (x) is continuous and strictly increasing on R+

and, using standard dynamic programming arguments, V (x) satisfies the functional
equation of dynamic programming (the optimality equation):

(2.2) V (x) = max
0≤x′≤f(x)

[u(f(x)− x′) + δV (x′)].

Let H(x) be the set of solutions to the maximization problem on the right hand
side of (2.2) i.e.,

(2.3) H(x) = {x′ ∈ [0, f(x)] : V (x) = u(f(x)− x′) + δV (x)}.

4See, for example, Maitra (1968). Take the interval [0, K] to be the state space. Interpreting
the action each period to be the fraction of available output that is consumed, we can take the
interval [0, 1] to be the action space. The utility function is continuous and therefore bounded on
[0, K].
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Then, H : R+ → R+ is a non-empty, upper-hemicontinuous correspondence. Stan-
dard stationary dynamic programming arguments can be used to show that a pro-
gram {xt} is optimal if, and only if,

(2.4) xt+1 ∈ H(xt),∀t ≥ 0.

In the rest of this article, we shall refer to H as the optimal investment policy
correspondence.

Using (U.2), one can show that for every x > 0,

(2.5) x′ ∈ H(x) ⇒ 0 < x′ < f(x).

From (2.4) and (2.5), we have that given x0 > 0, every optimal program {xt} is
interior i.e.,

0 < xt+1 < f(xt),∀t ≥ 0,

so that every period, capital and consumption are both strictly positive.
In the classical optimal growth model where the production function f is concave,

the set of consumption and capital paths from any initial capital stock is convex
so that strict concavity of the utility function implies that the value function is
concave, that there is a unique solution to the maximization problem on the right
hand side of (2.2) and therefore, H(x) is a continuous function. In contrast, in our
framework, the potential non-concavity of the value function implies that there may
not exist any continuous selection from the optimal investment policy correspon-
dence; optimal consumption and investment in capital may be discontinuous with
respect to variation in the current capital stock.

Another important point of contrast is that in the classical growth model, con-
cavity of the value function can be used to show that if optimal consumption is
strictly positive at any level of capital, then the value function is differentiable at
that point. Indeed, under an assumption like (U.2), the value function is globally
differentiable in the classical framework.

One implication of the potential non-concavity of the value function in our non-
classical set up is that the value function is not necessarily differentiable everywhere.
However, it has been shown that:

{x ≥ 0 : V (x) is not differentiable at x}
is at most countable (see, Dechert and Nishimura, 1983, Kamihigashi and Roy,
2007). It can also be shown that if {xt} is an optimal capital path from initial
capital stock x0 > 0, the value function is differentiable at every capital stock
xt, t ≥ 1 (see Amir, Mirman and Perkins, 1991, Askri and Le Van, 1998).

Finally, one can show that the Ramsey-Euler equation holds. In particular, given
x0 > 0, for any optimal capital path {xt},
(2.6) u′(f(xt)− xt+1) = δf ′(xt+1)u′(f(xt+1)− xt+2), t ∈ Z+.

The Ramsey-Euler essentially provides a first order necessary condition for an inte-
rior optimal path. In the classical framework, in conjunction with a transversality
condition5, (2.6) is also sufficient for optimality of a given capital path. This no

5In our framework, the transversality condition is satisfied by an input program {xt} provided
δtu′(f(xt)− xt+1) → 0 as t →∞.



NON-CONVEXITY, DISCOUNTING AND INFINITE HORIZON OPTIMIZATION 267

longer holds in the non-classical framework. In particular, even if an interior capital
path satisfies the Ramsey-Euler equation (2.6) and consumption is bounded away
from zero along the path so that the transversality condition is satisfied, it need not
be optimal.

3. Monotonicity and convergence of optimal paths

In the classical model with concave production function, the (unique) optimal
policy is one where both optimal consumption as well as investment are increasing
in current output and hence, in the capital stock. As a consequence, optimal paths of
capital, consumption and output over time are monotonic sequences; being bounded
sequences, they converge to a steady state.

As mentioned above, in the non-classical model, optimal policy need not be
unique. However, one can show the following “monotonicity property” of the opti-
mal investment policy correspondence H(x).

Lemma 3.1. ∀ x ≥ 0,∀ y > x,∀x′ ∈ H(x),∀y′ ∈ H(y), y′ ≥ x′.

The lemma states that it is never optimal to invest less from a higher level of
capital stock. In other words, under an optimal policy, the marginal propensity to
consume is less than one. Thus, the classical property of optimal investment being
an increasing function of current output and capital stock continues to hold. The
basic argument behind this result has to do with the fact that as long as the utility
function is strictly concave, current output yt = f(xt) available at the beginning of
period t and the current investment xt+1 are complementary; for any level of in-
vestment xt+1, an increase in the available current output yt has no effect on future
state or utility; it affects only the current consumption and as long as the utility
function is strictly concave, an increase in output must reduce the opportunity cost
of increasing investment (by reducing the marginal utility from consumption sacri-
ficed). Therefore, an increase in the capital stock xt (and hence output yt) always
increases (weakly) the current investment xt+1. Non-concavity of the production
and value functions do not affect this argument. This important result was formally
established by Majumdar and Nermuth (1982) and Dechert and Nishimura (1983).6

An immediate consequence of Lemma 3.1 is that every optimal capital path is
necessarily monotonic7.

Proposition 3.2. Let {xt} be an optimal capital path. Then either xt ≤ xt+1

∀t ≥ 0, or xt ≥ xt+1 ∀t ≥ 0.

As optimal capital paths are bounded, they necessarily converge.
A capital stock x ≥ 0 is said to be an optimal steady state if there exists an

optimal capital path {xt}∞t=0 from initial capital stock x0 = x such that xt = x, for
all t ∈ Z+.

For any optimal steady state x, it must be true that f(x) ≥ x so that x ∈ [0,K].
Trivially, x = 0 is an optimal steady state.

6Amir, Mirman and Perkins (1991) relate this to the second order necessary condition for the
maximization problem on the right hand side of the functional equation (2.2).

7This result also follows from an argument used in the working paper version of Mitra and Ray
(1984).
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Using (2.2), (2.3) and (2.4), for any optimal capital path {xt}
V (xt) = u(f(xt)− xt+1) + δV (xt+1)

Using continuity of u, f and V , we have that if x = limt→∞ xt, then

V (x) = u(f(x)− x) + δV (x)

so that x is an optimal steady state. Thus,

Proposition 3.3. Every optimal capital path converges to an optimal steady state.

Monotonicity of optimal investment as stated in Lemma 3.1 implies that for any
two optimal capital paths {xt}, {x′t}, x0 < x′0 implies that xt ≤ x′t for every t ∈ Z+

i.e., every optimal capital path is bounded below by optimal capital paths from
lower initial capital stocks and bounded above by optimal capital paths from higher
initial capital stocks.

An important economic implication of this is that the limit (optimal steady state)
to which an optimal capital path converges is weakly increasing in the level of
initial capital stock. In particular, if an optimal capital path converges to zero i.e.,
extinction occurs from a certain initial capital stock, then every optimal capital
path from a smaller initial capital stock must converge to zero. On the other hand,
if the optimal capital path from a certain initial capital stock converges to a strictly
positive optimal steady state, all optimal capital paths from higher initial capital
stocks must converge to the same, or a higher, strictly positive optimal steady state.

In bio-economic applications to management of species, this implies that (loosely
speaking) extinction is more likely to be optimal from small population size rather
than large population size; this, in turn, provides the foundation for the concept of
a critical level such that extinction is optimal from initial capital stocks below this
level and conservation is optimal from initial capital stocks above this level. In bio-
economics, this critical level is referred to as a critical safe standard of conservation.

In macroeconomic applications, one can similarly define a critical capital stock
below which optimal capital paths converge to a steady state with a relatively
small level of sustained consumption (not necessarily zero) - a “low level poverty
equilibrium” and if the initial capital is above this level (for example, through inflow
of foreign capital or aid), the economy may move out of the poverty trap.8

Finally, it should be mentioned that unlike the classical model, in the non-classical
model with non-concave production function, optimal consumption may be non-
monotonic in current output and hence, in the capital stock. The curvature of the
value and production functions play very important roles in determining the effect
of an increase in current output on the “marginal” present and future return from
consumption. In particular, current output and consumption are complementary
if f (and therefore, V ) is concave. In a non-concave framework, they may not be
complementary. Consider, for example, an S−shaped production function where
the marginal productivity is low at small levels of capital stock but is significantly
higher beyond a threshold level. As economic intuition would suggest, the low
return on investment provides incentive for high propensity to consume when the

8In a growth model with non-concave production function, Majumdar and Mitra (1995) show
that international trade may allow an economy to escape such a poverty trap



NON-CONVEXITY, DISCOUNTING AND INFINITE HORIZON OPTIMIZATION 269

output available for investment is small. However, at higher levels of output, it may
be optimal to increase the fraction invested sharply as productivity of capital could
be much higher. As a result, optimal consumption may be smaller at a higher levels
of current output (over a certain range) - a richer economy may optimally consume
less than a poorer one.

One implication of this is that even though optimal capital paths are necessar-
ily monotone over time and therefore convergent, optimal consumption paths may
exhibit non-monotone dynamics and need not converge.

4. Non-zero optimal steady states

If a capital stock x > 0 is an optimal steady state, then there exists an optimal
capital path from initial capital x0 = x that is stationary i.e.,

xt = x > 0, ct = f(x)− x > 0,∀t ∈ Z+.

From the Ramsey-Euler equation (2.6), we have the following necessary condition
for a non-zero optimal steady state:

(4.1) δf ′(x) = 1.

In the classical model with a concave production function, (4.1) is sufficient to
assert that the stationary path from x satisfies the Ramsey-Euler equation and
the transversality condition and hence, is optimal, so that (4.1) is also a sufficient
condition for an optimal steady state (so long as 0 < x < f(x)). In the non-classical
model, (4.1) is necessary but not sufficient for x > 0 to be an optimal steady state.

For x ≥ 0, define:
Γ(x) = δf(x)− x.

Kamihigashi and Roy (2007) call this the “gain function”; it captures the dis-
counted net return when x units of capital are invested to generate f(x) units of
output next period. This function was used by Majumdar and Nermuth (1982),
Dechert and Nishimura (1983) and Mitra and Ray (1984) to examine properties of
optimal steady states.

Note that under our assumptions Γ(x) is a continuously differentiable function
on R++ and

Γ′(x) = δf ′(x)− 1.

If f ′(x) > 1
δ i.e., the marginal productivity of investment exceeds the discount rate,

then Γ′(x) > 0 and the opposite holds if f ′(x) < 1
δ . More generally, whether the

gain function is increasing or decreasing over a certain range depends on whether
the technology over that range of investment exhibits higher productivity relative
to the discount rate.

Observe that for any capital path {xt} and the associated consumption path {ct},
∞∑

t=0

δtct

=
∞∑

t=0

δt[f(xt)− xt+1]

= f(x0)− x1 + δ[f(x1)− x2] + ... + δt[f(xt)− xt+1] + ...
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= f(x0) +
∞∑

t=0

δtΓ(xt+1)

so that Γ(xt+1) is the contribution of xt+1towards the present discounted sum of
consumption over time.

Refining the core arguments made in Majumdar and Nermuth (1982) and Dechert
and Nishimura (1983), Kamihigashi and Roy (2007) establish the following useful
result:

Lemma 4.1. Let {xt} be an optimal capital path that is nonstationary i.e., xt 6= x0

for some t > 0. Then, there exists τ > 0, such that Γ(x0) < Γ(xτ ).

The lemma states that an optimal capital path that is non-stationary must move
in a direction in which higher gain will be available at some point in the future.
One should remark here that concavity of the utility function plays an important
role in this result.

The following result (Kamihigashi and Roy, 2007) is an immediate consequence of
Lemma 4.1 and provides a sufficient condition for a non-zero optimal steady state:

Proposition 4.2. Suppose there exists x̂ > 0 such that Γ(x̂) ≥ Γ(x) for all x ≥ 0.
Then, x̂ is an optimal steady state.

If, under the hypothesis of Proposition 4.2, x̂ is not an optimal steady state, then
there is an optimal capital path {xt} from initial stock x0 = x̂ that is non-stationary
and along this path, Γ(x0) ≥ Γ(xt) for all t ≥ 0, contradicting Lemma 4.1.

Proposition 4.2 clarifies that as long as the gain function is maximized at a strictly
positive capital stock, there is a non-zero optimal steady state and the set of optimal
steady states includes all global maximizers of the gain function (note that Γ is non-
concave and can be maximized at multiple capital stocks). Note that (4.1) is the
first order necessary condition for an interior maximum of the gain function Γ(x).

It is easy to check that Γ attains a maximum in [0,K]. In order to ensure the
existence of a non-zero optimal steady state, it is sufficient to ensure that the gain
function Γ is not maximized at zero. Now, by definition

Γ(0) = 0

and so, as long as there is some x̃ > 0 such that Γ(x̃) > 0, the function Γ(x) attains
an interior maximum. Let Γ′(0) defined by

Γ′(0) = δf ′(0)− 1

where f ′(0) is as defined in T.2. A sufficient condition for Γ(x) to attain an interior
maximumthis is that Γ′(0) > 0; however, as f is non-concave, Γ may be non-
monotonic and even if Γ′(0) < 0, there may be a stock x̃ large enough for which
Γ(x̃) > 0.

Proposition 4.3. Suppose that there exists x̃ > 0 such that Γ(x̃) > 0, i.e.,

(4.2) δf(x̃) > x̃

Then, a non-zero optimal steady state exists. A sufficient condition for this is given
by:

(4.3) δf ′(0) > 1.
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Proposition 4.3 outlines sufficient conditions for the existence of a non-zero opti-
mal steady state. The condition (4.2) is often referred to as a “delta-productivity”
condition; Mitra and Ray (1984) were the first to show that this ensures the ex-
istence of a non-zero optimal steady state for a general non-concave production
function. This was further generalized by Kamihigashi and Roy (2007). For the
case of S-shaped production functions, more precise sufficient conditions for the ex-
istence of a non-zero optimal steady state in terms of the slope of the production
function at zero and at the point of maximum average product were provided by
Majumdar and Mitra (1982) and Dechert and Nishimura (1983).

Finally, Nguyen et al (2005) demonstrate explicitly the possibility of multiple
non-zero optimal steady states that act as local attractors.

5. Long run behavior of optimal paths & the role of discounting

In the classical model of optimal growth with a strictly concave production func-
tion9, if

δ <
1

f ′(0)
,

then every optimal path converges to a unique non-zero optimal steady state (the
modified golden rule) characterized by (4.1); otherwise, every optimal path con-
verges to zero. In particular, the long run destiny is independent of initial state.
The comparison of marginal productivity at zero10 with the discount rate determines
the long run destiny of optimal paths globally.

In the non-classical model with non-concave production function, the marginal
productivity at zero conveys no information about productivity at higher levels of
investment. Therefore, the long run destiny of optimal paths is likely to depend
on the initial capital stock (hysterisis) and the qualitative characterization of the
limiting behavior of optimal capital paths is likely to depend on the productivity of
capital over the entire relevant domain of the production function (and not just at
zero).

5.1. Heavy Discounting and Extinction. As mentioned earlier, every optimal
capital path must converge to an optimal steady state. Therefore, optimal capital
paths from all initial capital stocks converge to zero (i.e., global extinction is optimal)
if, and only if, a non-zero optimal steady state does not exist. Using the necessary
condition (4.1) for a non-zero optimal steady state, it follows that if

(5.1) δ <
1

f ′(x)
for all x ∈ (0,K],

then zero is the unique optimal steady state and therefore all optimal capital paths
must converge to zero. This result was established by Majumdar and Mitra (1982)
and Dechert and Nishimura (1983) and later generalized by Kamihigashi and Roy

9If the production function is weakly concave, then δ < 1
f ′(0) implies that optimal paths converge

to some non-zero optimal steady state but there may be a continuum of such states. If δ > 1
f ′(0) ,

then every optimal path converges to zero.
10Bio-economists refer to this as the “intrinsic growth rate of the specie”.
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(2007). Note that (5.1) implies that Γ′(x) < 0 at every x > 0 so that the gain from
investment attains a global maximum at zero.

Unlike the classical model,

(5.2) δ <
1

f ′(0)
is not sufficient for global extinction to be optimal. However, no matter how high
the productivity at higher levels of investment, if (5.2) holds i.e., the marginal
productivity at zero is smaller than the discount rate, optimal paths converge to
zero from initial capital stocks that are small enough i.e., extinction is optimal
from stocks lying in a neighborhood of zero. This was established by Dechert and
Nishimura (1983) for the case of S-shaped production functions and generalized
by Kamihigashi and Roy (2007). It may be mentioned here that the proof of this
result uses the assumption that marginal utility of consumption is infinite at zero.
Observe that (5.2) implies that Γ′(0) < 0 so that Γ is a decreasing function in a
neighborhood of zero and the gain function attains a local maximum at zero.

5.2. Intermediate Discounting and Critical Stock. For a non-concave produc-
tion function, condition (5.2) does not imply any restriction on productivity and
gain from investment at higher stocks. In particular, as long as the average product
f(x)

x is not maximized at zero, (5.2) is perfectly consistent with the technology being
“delta-productive” i.e., δf(x̃) > x̃ (i.e., the gain from investment Γ(x̃) > 0) at some
x̃ > 0 which (using Proposition 4.3) implies the existence of a non-zero optimal
steady state. In that case, optimal capital paths from initial capital stocks that are
large enough are bounded away from zero; for instance, optimal capital paths from
initial capital stocks higher than the stock at which Γ attains global maximum are
bounded below by the latter.

Let γ be the maximum average product i.e.,

γ = sup
x>0

[
f(x)

x
].

In view of the discussion in the previous sub-section and the monotonicity of optimal
capital paths in initial capital stock (see Lemma 3.1), it is easy to check that if

1
f ′(0)

> δ >
1
γ

,

then there exists a critical stock x∗ ∈ (0,K) such that every optimal capital path
from initial stock x0 < x∗ necessarily converges to zero while every optimal capi-
tal path from initial stock x0 > x∗ is bounded below by x∗. In the bioeconomics
literature, x∗ is referred to as “the minimum safe standard of conservation” - it is
optimal to conserve a biological specie in the long run if the biomass or population
size is above this safe standard.

Extensive analysis of the behavior of optimal capital paths under intermediate
discounting for the specific case of S-shaped production functions is contained in
Majumdar and Mitra (1982, 1983) and Dechert and Nishimura (1983). Majumdar
and Mitra (1982) argue that every optimal capital path from an initial capital stock
that is above the level at which average product is maximized, converges to the
(unique) strictly positive optimal steady state that lies in the concave part of the
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production function. Dechert and Nishimura (1983) show that this holds as long as
the initial stock lies above the smallest stock in the concave part of the production
function where the average product equals 1

δ .
For more general non-concave production functions, Kamihigashi and Roy (2007)

show the following:

Proposition 5.1. Suppose there exists x > 0 such that

(5.3) Γ(x) ≤ Γ(x),∀x ∈ [0, x).

Then, every optimal capital path from x0 ≥ x is bounded below by x. A sufficient
condition for (5.3) is that

(5.4) δ ≥ 1
f ′(x)

,∀x ∈ [0, x).

5.3. Mild Discounting. If

(5.5) δ >
1

f ′(0)
,

then for every x0 > 0 that is sufficiently close to zero, δ > 1
f ′(x) ,∀x ∈ [0, x0] so that

using Proposition 5.1 (in particular, condition (5.4)) we have that every optimal
path from x0 is bounded below by x0 itself and hence, bounded away from zero.
As optimal capital paths are increasing in initial capital stock, it follows that from
any initial capital stock x0 > 0, extinction is never optimal and indeed, every
optimal capital path converges to a non-zero optimal steady state. This is what
bio-economists refer to as “global conservation”.

This result was first established by Majumdar and Mitra (1982) for the case of
S-shaped production functions. Note that for S-shape functions (that are initially
strictly convex and then strictly concave), (5.5) implies that there is a unique level
of capital that meets the necessary condition (4.1) for a non-zero optimal steady
state; it lies in the concave part of the production function and is the unique global
maximizer of the gain function Γ(x). So, in this case, every optimal capital path
converges to a unique non-zero optimal steady state (modified golden rule); there
is no initial state dependence.

For more general non-concave production functions, however, (5.5) is consistent
with multiple non-zero optimal steady states that are locally stable and the limit
to which optimal capital paths converge may depend on the initial capital stock.

6. Behavior as discounting vanishes

The analysis in the previous section indicates that unless discounting is so heavy
that all optimal capital paths converge to zero, the non-classical model always allows
for the possibility that the limit of optimal capital paths is sensitive to initial states
and therefore, optimal capital stocks from two distinct initial capital stocks may
remain distant from each other in the long run (i.e., the paths may not “approach”
each other asymptotically). This contrasts sharply with the fact that in the classical
model with a strictly concave production function, the optimal capital path from
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every positive initial capital stock converges to the same optimal steady state and
as long as

δ >
1

f ′(0)

this steady state capital stock (the “modified golden rule”) is the one where the
gain from investment attains its (unique) maximum.

Further, in the classical model, as δ → 1, the unique optimal steady state con-
verges to the “golden rule” stock i.e., the unique level of capital that maximizes
f(x)− x, the level of constant consumption sustainable over time from initial capi-
tal stock x.

One of the interesting properties of optimal paths in our non-classical model is
that as discounting vanishes or more precisely, for δ close enough to 1, the optimal
capital path from any given initial capital stock converges to a small neighborhood
of a golden rule stock and in that sense, the model behaves similarly to a classical
model.

For ease of exposition, consider the case where the function [f(x) − x] attains
its maximum on [0,K] at a unique capital stock x∗ i.e., there is a unique golden
rule capital stock. Under our assumption that f ′(0) > 1, we have that x∗ ∈ (0,K).
Suppose, further, that f(x)− x > 0 for all x ∈ (0, x∗).

Fix any initial stock x0 > 0. For each δ ∈ (0, 1), let {xδ
t} be an optimal path

from x0 when the discount factor is equal to δ. Then, the neighborhood turnpike
property that holds is as follows:

lim
δ↑1

lim
t↑∞

xδ
t = x∗.

Indeed, for any given initial stock, for δ close enough to 1, every optimal capital
path converges to an optimal steady state which is the global maximizer of the gain
function δf(x)−x and this optimal steady state converges to the golden rule capital
stock x∗ as δ ↑ 1.

Majumdar and Nermuth (1982) were the first to establish this neighborhood
turnpike property of optimal paths for the general non-convex model; Majumdar
and Mitra (1982) established a similar result for the case of S-shaped production
functions. A more general version of this result that, among other things, allows
for multiple stocks that maximize the function f(x)− x as well as non-smooth and
discontinuous f , is contained in Kamihigashi and Roy (2007).

7. Extensions

In this final section, we briefly indicate the main directions in which the literature
has extended the basic one sector deterministic non-classical optimal growth model
discussed in the previous sections.

First, the literature has analyzed versions of the model where the utility function
is concave, but not necessarily strictly concave and in particular, the case of a lin-
ear utility function. The latter is particularly relevant to models of optimal natural
resource exploitation where the net marginal benefit from harvesting is constant
when the resource is sold at a given market price and the harvesting technology
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exhibits constant returns. With linear utility, one can no longer ensure that op-
timal capital paths are interior; more importantly, optimal capital paths need not
necessarily be monotone. Clark (1971) and Majumdar and Mitra (1983) analyze
the behavior of optimal paths for linear utility and S-shaped production functions;
they focus, in particular, on conditions for extinction, conservation and the exis-
tence of a minimum safe standard of conservation. Mitra and Ray (1984) analyze a
more general model with concave utility and fairly general non-concave production
function; they study the existence of non-trivial optimal steady states and show
that optimal capital paths approach optimal steady states asymptotically. Kami-
higashi and Roy (2006) extend the existing results (for the case of linear utility)
to a framework that allows for discontinuous production functions (as well as irre-
versibility in investment). In particular, they show that every optimal capital path
is monotone until it reaches a steady state; further, it either converges to zero or
reaches a positive steady state in finite time and possibly jumps among different
steady states afterwards. They also establish a neighborhood turnpike result about
the limiting behavior of optimal paths as discounting vanishes.

Second, while the basic model in the previous sections assumes that capital de-
preciates fully every period, the literature has discussed more general versions of the
model allowing for partial depreciation and irreversibility in capital formation (that
puts a possibly non-zero lower bound on the feasible range of capital stock next
period, given current capital stock) - see, among others, Majumdar and Nermuth
(1982), Kamihigashi and Roy (2006, 2007).

Third, in a large class of economic situations (such as natural resource extraction),
the utility or immediate return may depend on the level of current capital stock (or
output) in addition to current consumption and this may lead to non-monotone
and other complex dynamics of optimal paths (see, Majumdar and Mitra, 1994).
Olson and Roy (1996) characterize the long run behavior of optimal paths in such
a dynamic optimization problem with non-concave production function.

Fourth, the multi-sector undiscounted version of the model (with non-convex
technology) has been analyzed. Among other issues, the existence of an optimal
path is analyzed by Majumdar and Peleg (1992) and conditions for the existence of
a non-trivial optimal steady state are provided by Mitra (1992).

Finally, the model has been extended to a framework where the production tech-
nology is both non-convex and stochastic. In the stochastic model, the output in
every period depends not only on the accumulated capital stock but also on the
realization of a random production shock. In the rest of this section, we briefly
summarize this literature.

Majumdar, Mitra and Nyarko (1989) were the first to comprehensively analyze
this model with independent and identically distributed (i.i.d.) random shocks.
They showed that most of the qualitative properties of the (stationary) optimal
decision rule obtained in the deterministic framework can be extended to the sto-
chastic case. In particular, optimal investment is increasing in the current level of
output.

In the stochastic model, fluctuations in capital and output can occur over time due
to random shock. The concept of a steady state is that of an invariant distribution
and one is interested in the convergence of capital and output in distribution to
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such a steady state. Majumdar et al (1989) show that non-convexity in production
technology may lead to multiple invariant distributions and the distribution to which
the stochastic process of optimal capital stocks converges may depend on the initial
condition (this is the stochastic analogue of the result about initial state dependence
of limiting capital stock in the deterministic model). They also show that if the
production technology is “sufficiently stochastic”, then there exists a globally stable
invariant distribution (despite the non-convexity).

More recently, Nishimura, Rudnicki and Stachurski (2006) analyze the stochastic
optimal growth model with multiplicative i.i.d. random shocks whose common
distribution has a density function that is strictly positive on R++ so that from
any capital stock, it is possible for the realized current output to be arbitrarily
close to zero as well as arbitrarily large. Under restrictions on the expectation
of the random shock, they show that the Markov process of optimal capital stocks
either converges to zero from every initial state or there is a globally stable non-zero
steady state (they identify conditions for these events).11 In a similar framework,
Nishimura and Stachurski (2005) use the Euler equation to analyze the stability of
the stochastic optimal capital process; in particular, they use the marginal utilities
as Foster-Lyapunov functions in order to obtain stability.

The literature on non-convex stochastic growth also develops “turnpike results”
under which optimal capital processes approach each other asymptotically as dis-
counting vanishes. In a model with non-convex (and non-stationary) technology,
Joshi (1997) shows that, under a strong “value loss” condition that is uniform with
respect to time and state, as discounting vanishes, the asymptotic distance between
optimal paths from two distinct initial states converges to zero with probability one.
However, the uniform value loss condition is not very transparent in terms of its
implications for the primitives of the model.

As in the deterministic version of the model, one of the interesting questions in
stochastic literature relates to the possibility of extinction i.e., of optimal paths
converging to zero. Assuming a bounded growth production function and i.i.d. ran-
dom shocks that have compact support, Mitra and Roy (2006) develop sufficient
conditions on the preferences and technology that ensure that optimal capital stocks
are bounded away from zero with probability one (from all positive initial stocks
as well as from stocks above a critical level) and conditions under which extinction
occurs with probability one from all initial stocks12. In contrast to the conditions
for extinction and conservation discussed in the previous section for the determin-
istic model that are entirely in terms of comparison of the discount factor to the
productivity of capital, the conditions in the stochastic case involve the marginal
utility function - one compares the discount rate to expected “welfare-modified”
return on investment (marginal productivity).13

11To place their results in context, their assumption on the density function automatically
satisfies the “very stochastic” assumption in Majumdar et al (1989) that ensures the existence of
a globally stable invariant distribution.

12See, also Kamihigashi (2006).
13Olson and Roy (2000) characterize conditions for avoidance of extinction in a version of the

stochastic growth model where the utility depends on both consumption and capital stock (or,
output).
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