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H∞ CHEAP CONTROL FOR A CLASS OF LINEAR SYSTEMS
WITH STATE DELAYS

VALERY Y. GLIZER

Abstract. An infinite horizon H∞ cheap control problem with a given perfor-
mance level for a linear system with point-wise and distributed state delays is
considered. By a proper transformation of the control variable, this problem is
converted to an H∞ control problem for a singularly perturbed system with state
delays. For the latter problem, considered in the sequel as an original one, two
methods of asymptotic analysis and solution are proposed.

1. Introduction

For many decades, controlled systems with disturbances (uncertainties) in dy-
namics are investigated extensively. One of the main objectives in studying such
systems is a design of a robust controller, i.e., a feedback control independent of the
disturbance and providing a desirable property of the closed-loop system regardless
disturbance realizations from a given set. Two main cases of disturbances are con-
sidered in the literature: (i) disturbances with bounded realizations in an Euclidean
space; (ii) disturbances with square-integrable realizations. In the second case, an
H∞ problem is studied (as a rule) for the controlled system.

The H∞ control problem has been studied for systems without and with delays
in the state variables in a number of works (see e.g. [1, 3, 7, 11, 12, 22]). In both
cases, the solution of the H∞ control problem can be reduced to a solution of a
game-theoretic Riccati equation. In the case of an undelayed system, the Riccati
equation is finite dimensional (matrix one), while in the case of a delayed system,
it is infinite dimensional (operator one). The operator Riccati equation can be
reduced to a hybrid system of three matrix equations of Riccati type. Solution of
this system is a very complicated task.

The H∞ cheap control problem is an H∞ problem with a small control cost (with
respect to a state cost and a disturbance cost) in the cost functional (performance
index). It should be noted that a performance index with a small control cost (cheap
control performance index) arises in many topics of control theory. For instance,
it arises in the regularization method of a singular optimal control [2], in studying
the limitations of optimal regulators and filters [5, 25, 34], in analysis of control
problems with a high control gain [24, 42], in the investigation of inverse control
problems [26], in the design of a robust control for systems with disturbances [38],
and some others.

Control problems with a cheap control performance index for systems without
disturbances (uncertainties) were investigated in the literature. The case of systems
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with an undelayed dynamics was treated more extensively (see e.g. [4,21,24,28,29,
33, 35] and references therein). The case of systems with a delayed dynamics was
studied less extensively (see [13,16–18]). In both cases, an optimal control problem
was analyzed.

In this paper, a system with point-wise and distributed state delays, and with a
square-integrable disturbance is considered. For this system, an H∞ cheap control
problem is formulated and analyzed. For our best knowledge, the H∞ cheap control
problem has not yet been studied in the literature, neither for systems without delays
nor for systems with delays in dynamics. However, it should be noted that two-
player zero-sum differential games with a cheap control cost of one of the players in
the performance index were analyzed in [14,32,36,38]. In these works, the case of an
undelayed game dynamics and a cheap control cost for the player, minimizing the
performance index, was treated. This circumstance makes the problems, considered
in [14,32,36,38], to be close to the H∞ cheap control problem for a system without
delays.

In the present paper, two methods of solution of the considered H∞ cheap control
problem are proposed. The first one is based on an asymptotic solution of a set
of Riccati-type matrix equations arising in the solvability conditions for the H∞
control problem. Using this asymptotic solution, a simplified controller, solving the
H∞ cheap control problem, is constructed. The second method is a direct method of
solution of this problem, which does not use its solvability conditions. This method
is based on: (i) an equivalent transformation of the H∞ cheap control problem to
a new H∞ problem for a singularly perturbed controlled system; (ii) an asymptotic
decomposition of the resulting problem into two much simpler parameter-free sub-
problems, the slow and fast ones. It should be noted that the fast state variable
of the new H∞ control problem becomes a control in the slow subproblem. The
slow subproblem is an H∞ control problem for a system with state delays. The fast
subproblem does not contain delays, and it is solved analytically. Using controllers,
solving the slow and fast subproblems, a composite controller, solving the trans-
formed problem, is designed. The latter yields a controller, solving the original H∞
cheap control problem.

Several works, related to the present paper, should be mentioned. Thus, in
[8, 9, 23, 30, 31, 37, 40], the H∞ control problem for singularly perturbed systems
without delays was studied. The H∞ control problem for systems with small delays
in either the state variable or in the state and control variables was investigated
in [11,12,27]. The H∞ control problem for singularly perturbed systems with small
state delays was analyzed in [15, 19]. In [10], the robust sampled-data H∞ control
for a singularly perturbed linear uncertain system was studied. Cheap suboptimal
control of an integral sliding mode for uncertain systems with state delays and
matched bounded uncertainties was analyzed in [20].

The paper is organized as follows. The next section is devoted to a rigorous
problem formulation. In Section 3, an asymptotic solution of the set of Riccati-type
equations, arising in the H∞ problem solvability conditions, is constructed and
justified. Parameter-free solvability conditions of the original H∞ control problem
are derived in Section 4. In Section 5, a simplified controller, solving the original
H∞ control problem, is designed and justified by using the asymptotic solution of
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the set of Riccati-type equations obtained in Section 3. In Section 6, an auxiliary
lemma, formulated in Section 5, is proved. The direct method of constructing a
controller, solving the original H∞ problem, is described in Section 7. Concluding
remarks are presented in Section 8.

The following main notations are applied in the paper:
(1) En is the n-dimensional real Euclidean space;
(2) ‖ · ‖ denotes the Euclidean norm either of a vector or of a matrix;
(3) the prime denotes the transposition of a matrix A, (A

′
) or of a vector x, (x

′
);

(4) L2[b, c;En] is the Hilbert space of n-dimensional vector-valued functions v(t)
defined, measurable and square-integrable on the interval [b, c), the inner prod-
uct in this space is (v(·), w(·))L2 =

∫ c
b v

′
(t)w(t)dt, and the norm is ‖v(·)‖L2 =√

(v(·), v(·))L2 ;
(5) In is the n-dimensional identity matrix;
(6) col(x, y), where x ∈ En, y ∈ Em, denotes the column block-vector of the dimen-
sion n + m with the upper block x and the lower block y, i.e., col(x, y) = (x

′
, y

′
)
′
.

2. Problem Formulation

2.1. H∞ Cheap Control Problem. Consider the controlled system

(2.1) dx(t)/dt = A11x(t)+A12y(t)+H11x(t−h)+
∫ 0

−h
G11(τ)x(t+ τ)dτ +F1w(t),

dy(t)/dt = A21x(t) + A22y(t) + H21x(t− h)

(2.2) +
∫ 0

−h
G21(τ)x(t + τ)dτ + Bu(t) + F2w(t),

where t > 0; x(t) ∈ En, y(t) ∈ Em, u(t) ∈ Em, (u is a control), w(t) ∈ Eq, (w is
a disturbance); h > 0 is a given constant time delay; Aij , (i, j = 1, 2), Hi1, Gi1(τ),
Fi, (i = 1, 2) and B are given time-invariant matrices of corresponding dimensions;
B has the full rank; the matrix-valued functions Gi1(τ), (i = 1, 2) are piece-wise
continuous for τ ∈ [−h, 0].

Assuming that w(t) ∈ L2[0,+∞;Eq], we consider the following functional

(2.3) Jε(u, w) =
∫ +∞

0

[
x
′
(t)D1x(t) + y

′
(t)D2y(t) + ε2u

′
(t)u(t)− γ2w

′
(t)w(t)

]
dt,

where D1 is symmetric positive-semi-definite, while D2 is symmetric positive-definite
matrices; γ > 0 is a given constant; ε is a small positive parameter.

The H∞ control problem with a performance level γ for the system (2.1)-(2.2)
is to find a controller u∗[x(·), y(·)](t) that internally stabilizes this system and en-
sures the inequality Jε(u∗, w) ≤ 0 along trajectories of (2.1)-(2.2) for all w(t) ∈
L2[0,+∞;Eq] and for x(t) = 0, t ≤ 0, y(0) = 0. The presence of a small multi-
plier ε2 in the control cost of the functional (2.3) means that this problem is the
H∞ cheap control problem.

By the control transformation

(2.4) u(t) = (1/ε)v(t),
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where v is a new control, this H∞ cheap control problem becomes

(2.5) dx(t)/dt = A11x(t)+A12y(t)+H11x(t−h)+
∫ 0

−h
G11(τ)x(t+ τ)dτ +F1w(t),

εdy(t)/dt = ε

{
A21x(t) + A22y(t) + H21x(t− h) +

∫ 0

−h
G21(τ)x(t + τ)dτ

}
(2.6) +Bv(t) + εF2w(t), t > 0,

(2.7) x(0) = 0, t ≤ 0; y(0) = 0,

(2.8) J(v, w) =
∫ +∞

0

[
x
′
(t)D1x(t) + y

′
(t)D2y(t) + v

′
(t)v(t)− γ2w

′
(t)w(t)

]
dt.

It should be noted that the system (2.5)-(2.6) is singularly perturbed [24]. The
state variables x(·) and y(·) are the slow and fast ones, respectively. It is seen that
in this system, the slow state variable is with a delay, while the fast state variable
is delay free.

In the sequel, we deal with the H∞ control problem consisting of the system (2.5)-
(2.6), the initial conditions (2.7) and the cost functional (2.8). This problem is called
the original H∞ control problem (OHICP). It is clear that once a controller of the
OHICP is obtained, the respective controller of the H∞ problem (2.1)-(2.2),(2.3) is
obtained directly by using the equation (2.4).

2.2. Solvability Conditions. Consider the following (n + m)× (n + m)-matrices

(2.9) A =
(

A11 A12

A21 A22

)
, H =

(
H11 0
H21 0

)
, G(τ) =

(
G11(τ) 0
G21(τ) 0

)
,

(2.10) D =
(

D1 0
0 D2

)
, S(ε) = γ−2FF ′ − ε−2BB′ ,

where

(2.11) F =
(

F1

F2

)
, B =

(
0
B

)
.

By using (2.10) and (2.11), the matrix S(ε) can be represented in the block form

(2.12) S(ε) =
(

γ−2F1F
′
1 γ−2F1F

′
2

γ−2F2F
′
1 γ−2F2F

′
2 − ε−2BB

′

)
4
=

(
S1 S2

S
′
2 S3(ε)

)
.

Consider the following hybrid set of Riccati-type algebraic, ordinary differential
and partial differential equations for the matrices P , Q(τ) and R(τ, ρ) in the domain
D = {(τ, ρ) : −h ≤ τ ≤ 0, −h ≤ ρ ≤ 0}:

(2.13) PA + A
′
P + PS(ε)P + Q(0) + Q

′
(0) + D = 0,

(2.14) dQ(τ)/dτ =
(
A + S(ε)P

)′
Q(τ) + PG(τ) + R(0, τ),

(2.15) (∂/∂τ + ∂/∂ρ)R(τ, ρ) = G
′
(τ)Q(ρ) + Q

′
(τ)G(ρ) + Q

′
(τ)S(ε)Q(ρ).
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The matrices Q(τ) and R(τ, ρ) satisfy the boundary conditions

(2.16) Q(−h) = PH, R(−h, τ) = H
′
Q(τ), R(τ,−h) = Q

′
(τ)H.

It is seen that the matrix-valued functions Q(τ) and R(τ, ρ) are present in the set
(2.13)-(2.15) with deviating arguments. The problem (2.13)-(2.16) is, in general,
of a high dimension. Moreover, due to the expression for S(ε) (see (2.12)), this
problem is ill-posed for ε → + 0.

Let, for some ε > 0, the triplet {P (ε), Q(τ, ε), R(τ, ρ, ε)} be a solution of (2.13)-
(2.16) in the domain D. Consider the linear systems

dz(t)/dt = [A− ε−2BB′P (ε)]z(t) + Hz(t− h)

(2.17) +
∫ 0

−h
[G(τ)− ε−2BB′Q(τ, ε)]z(t + τ)dτ, t > 0,

In the sequel, we call the system (2.17) to be exponentially stable for a given
ε > 0, if for this ε, and any given ϕz(τ) ∈ L2[−h, 0;En+m] and ϕ0 ∈ En+m, its
solution z(t, ε) with the initial conditions

(2.18) z(τ) = ϕz(τ), τ ∈ [−h, 0); z(0) = ϕ0

satisfies the inequality

(2.19) ‖z(t, ε)‖ ≤ c(ε) exp(−µ(ε)t)
(
‖ϕ0‖+ ‖ϕz‖L2

)
, t ≥ 0,

where c(ε) > 0 and µ(ε) > 0 are some constants.

Remark 2.1. Note that, by virtue of [6] (Theorem 5.3), the system (2.17) is expo-
nentially stable for a given ε > 0, if and only if all roots λ = λ(ε) of its characteristic
equation

det
[
A− ε−2BB′P (ε) + exp(−λh)H

(2.20) +
∫ 0

−h
exp(λτ)[G(τ)− ε−2BB′Q(τ, ε)]dτ − λIn+m

]
= 0

lie inside the left-hand half-plane.

Lemma 2.2. Let, for a given ε > 0, there exist a solution {P (ε), Q(τ, ε), R(τ, ρ, ε)}
of (2.13)-(2.16) such that

(2.21) P
′
(ε) = P (ε), R

′
(τ, ρ, ε) = R(ρ, τ, ε),

and the system (2.17) is exponentially stable. Then, for this ε, the controller
(2.22)

v∗[x(·), y(·)](t) = −ε−1B′
[
P (ε)z(t) +

∫ 0

−h
Q(τ, ε)z(t + τ)dτ

]
, z = col(x, y)

solves the OHICP.

Proof. The lemma is a direct technical extension of the result of [11] (Lemma 1 and
its proof) where the case of only a point-wise state delay in the controlled system
has been considered. �
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2.3. Objectives of the paper. The objectives of this paper are the following:
(i) to construct and justify an asymptotic solution of the set (2.13)-(2.16);
(ii) to derive ε-free conditions, which guarantee the existence of the controller (2.22)
solving the OHICP for all sufficiently small ε > 0;
(iii) to obtain a controller much simpler than (2.22), which is constructed indepen-
dently of ε while solves the OHICP for all sufficiently small ε > 0.

3. Zero-order asymptotic solution of (2.13)-(2.16)

3.1. Transformation of (2.13)-(2.16). In order to remove the singularities at
ε = 0 from the right-hand sides of the equations (2.13)-(2.15), we represent the
solution {P (ε), Q(τ, ε), R(τ, ρ, ε)} of (2.13)-(2.16) in the block form

(3.1) P (ε) =
(

P1(ε) εP2(ε)
εP

′
2(ε) εP3(ε)

)
, Q(τ, ε) =

(
Q1(τ, ε) Q2(τ, ε)
εQ3(τ, ε) εQ4(τ, ε)

)
,

(3.2) R(τ, ρ, ε) =
(

R1(τ, ρ, ε) R2(τ, ρ, ε)
R
′
2(ρ, τ, ε) R3(τ, ρ, ε)

)
,

where Pj(ε), Rj(τ, ρ, ε), (j = 1, 2, 3) are matrices of the dimensions n × n, n ×
m, m × m, respectively; Qi(τ, ε), (i = 1, ..., 4) are matrices of the dimensions
n× n, n×m, m× n, m×m, respectively.

By substituting (3.1)-(3.2), as well as the block representations for the matrices
A, H, G(τ), S(ε) and D (see (2.9),(2.10),(2.12)) into (2.13)-(2.16), one obtains the
following system (in this new system, for simplicity, we omit the designation of the
dependence of the unknown matrices on ε):

P1A11 + A
′
11P1 + εP2A21 + εA

′
21P

′
2 + P1S1P1 + εP2S

′
2P1 + εP1S2P

′
2

(3.3) +ε2P2S3(ε)P
′
2 + Q1(0) + Q

′
1(0) + D1 = 0,

P1A12 + εP2A22 + εA
′
11P2 + εA

′
21P3 + εP1S1P2 + ε2P2S

′
2P2 + εP1S2P3

(3.4) +ε2P2S3(ε)P3 + Q2(0) + εQ
′
3(0) = 0,

εP
′
2A12 + εA

′
12P2 + εP3A22 + εA

′
22P3 + ε2P

′
2S1P2 + ε2P3S

′
2P2 + ε2P

′
2S2P3

(3.5) +ε2P3S3(ε)P3 + εQ4(0) + εQ
′
4(0) + D2 = 0,

dQ1(τ)/dτ = A
′
11Q1(τ) + εA

′
21Q3(τ) + P1S1Q1(τ) + εP2S

′
2Q1(τ)

(3.6) + εP1S2Q3(τ) + ε2P2S3(ε)Q3(τ) + P1G11(τ) + εP2G21(τ) + R1(0, τ),

dQ2(τ)/dτ = A
′
11Q2(τ) + εA

′
21Q4(τ) + P1S1Q2(τ) + εP2S

′
2Q2(τ)

(3.7) +εP1S2Q4(τ) + ε2P2S3(ε)Q4(τ) + R2(0, τ),

εdQ3(τ)/dτ = A
′
12Q1(τ) + εA

′
22Q3(τ) + εP

′
2S1Q1(τ) + εP3S

′
2Q1(τ)

(3.8) +ε2P
′
2S2Q3(τ) + ε2P3S3(ε)Q3(τ) + εP

′
2G11(τ) + εP3G21(τ) + R

′
2(τ, 0),

εdQ4(τ)/dτ = A
′
12Q2(τ) + εA

′
22Q4(τ) + εP

′
2S1Q2(τ) + εP3S

′
2Q2(τ)

(3.9) +ε2P
′
2S2Q4(τ) + ε2P3S3(ε)Q4(τ) + R3(0, τ),
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(∂/∂τ + ∂/∂ρ)R1(τ, ρ) = G
′
11(τ)Q1(ρ) + Q

′
1(τ)G11(ρ)

+εG
′
21(τ)Q3(ρ) + εQ

′
3(τ)G21(ρ) + Q

′
1(τ)S1Q1(ρ)

(3.10) +εQ
′
3(τ)S

′
2Q1(ρ) + εQ

′
1(τ)S2Q3(ρ) + ε2Q

′
3(τ)S3(ε)Q3(ρ),

(∂/∂τ + ∂/∂ρ)R2(τ, ρ) = G
′
11(τ)Q2(ρ) + εG

′
21(τ)Q4(ρ) + Q

′
1(τ)S1Q2(ρ)

(3.11) +εQ
′
3(τ)S

′
2Q2(ρ) + εQ

′
1(τ)S2Q4(ρ) + ε2Q

′
3(τ)S3(ε)Q4(ρ),

(∂/∂τ + ∂/∂ρ)R3(τ, ρ) = Q
′
2(τ)S1Q2(ρ) + εQ

′
4(τ)S

′
2Q2(ρ)

(3.12) +εQ
′
2(τ)S2Q4(ρ) + ε2Q

′
4(τ)S3(ε)Q4(ρ),

(3.13) Q1(−h) = P1H11 + εP2H21, Q2(−h) = 0,

(3.14) Q3(−h) = P
′
2H11 + P3H21, Q4(−h) = 0,

(3.15) R1(−h, τ) = H
′
11Q1(τ) + εH

′
21Q3(τ), R1(τ,−h) = Q

′
1(τ)H11 + εQ

′
3(τ)H21,

(3.16) R2(−h, τ) = H
′
11Q2(τ) + εH

′
21Q4(τ), R2(τ,−h) = 0,

(3.17) R3(−h, τ) = R3(τ,−h) = 0.

It is verified directly that we can set

(3.18) Q2(τ) ≡ 0, Q4(τ) ≡ 0, R2(τ, ρ) ≡ 0, R3(τ, ρ) ≡ 0, (τ, ρ) ∈ D
without a formal contradiction with the system (3.3)-(3.17). In the sequel, we seek
the solution of this system satisfying the condition (3.18).

By substitution (3.18) into (3.3)-(3.17), the latter is reduced to the system

P1A11 + A
′
11P1 + εP2A21 + εA

′
21P

′
2 + P1S1P1 + εP2S

′
2P1 + εP1S2P

′
2

(3.19) +ε2P2S3(ε)P
′
2 + Q1(0) + Q

′
1(0) + D1 = 0,

P1A12 + εP2A22 + εA
′
11P2 + εA

′
21P3 + εP1S1P2 + ε2P2S

′
2P2 + εP1S2P3

(3.20) +ε2P2S3(ε)P3 + εQ
′
3(0) = 0,

εP
′
2A12 + εA

′
12P2 + εP3A22 + εA

′
22P3 + ε2P

′
2S1P2 + ε2P3S

′
2P2 + ε2P

′
2S2P3

(3.21) +ε2P3S3(ε)P3 + D2 = 0,

dQ1(τ)/dτ = A
′
11Q1(τ) + εA

′
21Q3(τ) + P1S1Q1(τ) + εP2S

′
2Q1(τ)

(3.22) + εP1S2Q3(τ) + ε2P2S3(ε)Q3(τ) + P1G11(τ) + εP2G21(τ) + R1(0, τ),

εdQ3(τ)/dτ = A
′
12Q1(τ) + εA

′
22Q3(τ) + εP

′
2S1Q1(τ) + εP3S

′
2Q1(τ)

(3.23) +ε2P
′
2S2Q3(τ) + ε2P3S3(ε)Q3(τ) + εP

′
2G11(τ) + εP3G21(τ),

(∂/∂τ + ∂/∂ρ)R1(τ, ρ) = G
′
11(τ)Q1(ρ) + Q

′
1(τ)G11(ρ)

+εG
′
21(τ)Q3(ρ) + εQ

′
3(τ)G21(ρ) + Q

′
1(τ)S1Q1(ρ)

(3.24) +εQ
′
3(τ)S

′
2Q1(ρ) + εQ

′
1(τ)S2Q3(ρ) + ε2Q

′
3(τ)S3(ε)Q3(ρ),
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(3.25) Q1(−h) = P1H11 + εP2H21,

(3.26) Q3(−h) = P
′
2H11 + P3H21,

(3.27) R1(−h, τ) = H
′
11Q1(τ) + εH

′
21Q3(τ), R1(τ,−h) = Q

′
1(τ)H11 + εQ

′
3(τ)H21.

The system (3.19)-(3.27) represents a singularly perturbed boundary-value prob-
lem for a hybrid set of equations, which contains matrix algebraic, and ordinary
and partial differential equations of Riccati type. Moreover, the unknown matrices
Q1(τ), Q3(τ) and R1(τ, ρ) are with deviating arguments in this set. This problem
is considered in the domain D with a non-smooth boundary. In order to construct
the asymptotic solution of this problem, we adapt the idea of the boundary function
method [39].

3.2. Formal asymptotic solution of (3.19)-(3.27). We seek the zero-order as-
ymptotic solution of the problem (3.19)-(3.27) in the form

(3.28) {P̄j0, Ql0(τ, ε), R10(τ, ρ, ε)}, j = 1, 2, 3, l = 1, 3,

where the matrices P̄j0 are independent of ε, while the matrices Ql0(τ, ε) and
R10(τ, ρ, ε) have the form

(3.29) Ql0(τ, ε) = Q̄l0(τ) + Qτ
l0(η), l = 1, 3, η = (τ + h)/ε,

(3.30) R10(τ, ρ, ε) = R̄10(τ, ρ) + Rτ
10(η, ρ) + Rρ

10(τ, ζ) + Rτ,ρ
10 (η, ζ), ζ = (ρ + h)/ε.

Here the terms with the bar are so called outer solution, the terms with the su-
perscript ”τ” are the boundary layer correction in a neighborhood of the bound-
ary τ = −h, the term with the superscript ”ρ” is the boundary layer correc-
tion in a neighborhood of the boundary ρ = −h, and the term with the super-
script ”τ, ρ” is the boundary layer correction in a neighborhood of the corner point
(τ = −h, ρ = −h). Equations and conditions for the asymptotic solution are ob-
tained by substituting (3.28),(3.29) and (3.30) into (3.19)-(3.27) and equating coef-
ficients for the same power of ε on both sides of the resulting equations, separately
for the outer solution and for the boundary layer corrections of each type. The
boundary layer corrections are assumed (in accordance with the boundary func-
tion method [39]) to be considerable only in small neighborhoods of the respective
boundaries. Such an assumption on the behavior of each boundary layer correction,
yields an additional condition for its obtaining.

3.3. Obtaining Qτ10(η) and Rτ10(η, ρ), Rρ10(τ, ζ), Rτ,ρ10 (η, ζ). Due to the above
mentioned procedure of obtaining equations for the terms of the asymptotic solution,
we obtain the following equation for Qτ

10(η):

(3.31) dQτ
10(η)/dη = 0, η ≥ 0.

In order to obtain a single solution of this equation, we need an additional condition.
By such a condition, we use (due to the boundary function method [39]) a reasonable
requirement that the boundary layer correction is considerable only in some right-
hand neighborhood of η = 0, and it tends to zero while η → +∞, i.e.,

(3.32) lim
η→+∞

Qτ
10(η) = 0.
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Using this requirement, one directly has from (3.31)

(3.33) Qτ
10(η) = 0 ∀η ≥ 0.

For Rτ
10(η, ρ), Rρ

10(τ, ζ), Rτ,ρ
10 (η, ζ), the following equations are obtained:

(3.34) ∂Rτ
10(η, ρ)/∂η = 0, η ≥ 0,

(3.35) ∂Rρ
10(τ, ζ)/∂ζ = 0, ζ ≥ 0,

(3.36) (∂/∂η + ∂/∂ζ)Rτ,ρ
10 (η, ζ) = 0, η ≥ 0, ζ ≥ 0.

To obtain single solutions of these equations, we use (similarly to (3.32)) the addi-
tional conditions

(3.37) lim
η→+∞

Rτ
10(η, ρ) = 0, ρ ∈ [−h, 0],

(3.38) lim
ζ→+∞

Rρ
10(τ, ζ) = 0, τ ∈ [−h, 0],

(3.39) lim
η+ζ→+∞

Rτ,ρ
10 (η, ζ) = 0.

The equations (3.34)-(3.36) subject to the conditions (3.37)-(3.39) yield the unique
solutions

(3.40) Rτ
10(η, ρ) = 0 ∀(η, ρ) ∈ [0,+∞)× [−h, 0],

(3.41) Rρ
10(τ, ζ) = 0 ∀(τ, ζ) ∈ [−h, 0]× [0,+∞),

(3.42) Rτ,ρ
10 (η, ζ) = 0 ∀(η, ζ) ∈ [0,+∞)× [0,+∞).

3.4. Obtaining the outer solution.

3.4.1. Equations and conditions for the outer solution. By using (2.12), we have the
following equations and conditions for the outer solution in the domain D:

P̄10A11 + A
′
11P̄10 + γ−2P̄10F1F

′
1P̄10 − P̄20BB

′
P̄
′
20

(3.43) +Q̄10(0) + Q̄
′
10(0) + D1 = 0,

(3.44) P̄10A12 − P̄20BB
′
P̄30 = 0,

(3.45) −P̄30BB
′
P̄30 + D2 = 0,

dQ̄10(τ)/dτ = A
′
11Q̄10(τ) + γ−2P̄10F1F

′
1Q̄10(τ)− P̄20BB

′
Q̄30(τ)

(3.46) +P̄10G11(τ) + R̄10(0, τ),

(3.47) A
′
12Q̄10(τ)− P̄30BB

′
Q̄30(τ) = 0,

(∂/∂τ + ∂/∂ρ)R̄10(τ, ρ) = G
′
11(τ)Q̄10(ρ) + Q̄

′
10(τ)G11(ρ)

(3.48) +γ−2Q̄
′
10(τ)F1F

′
1Q̄10(ρ)− Q̄

′
30(τ)BB

′
Q̄30(ρ),

(3.49) Q̄10(−h) = P̄10H11,

(3.50) R̄10(−h, τ) = H
′
11Q̄10(τ), R̄10(τ,−h) = Q̄

′
10(τ)H11.
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Since the matrix B is invertible and the matrix D2 is positive definite, then, due
to [41], the equation (3.45) has the following unique symmetric positive definite
solution

(3.51) P̄30 = (BB
′
)−1/2

(
(BB

′
)1/2D2(BB

′
)1/2

)1/2
(BB

′
)−1/2,

where the superscript ”1/2” denotes the unique symmetric positive definite square
root of respective symmetric positive definite matrix, the one ”-1/2” denotes the
square root of respective inverse matrix.

The equations (3.44) and (3.47) yield, respectively,

(3.52) P̄20 = P̄10A12α
−1,

and

(3.53) Q̄30(τ) = (α
′
)−1A

′
12Q̄10(τ).

where

(3.54) α
4
= BB

′
P̄30 = (BB

′
)1/2

(
(BB

′
)1/2D2(BB

′
)1/2

)1/2
(BB

′
)−1/2.

Since D2 is positive definite, all eigenvalues of α are real positive.
Eliminating P̄20 and Q̄30(τ) from the equations (3.43),(3.46) and (3.48) by using

(3.51) and (3.52)-(3.53) yields the following set of equations

(3.55) P̄10A11 + A
′
11P̄10 + P̄10S̄P̄10 + Q̄10(0) + Q̄

′
10(0) + D1 = 0,

(3.56) dQ̄10(τ)/dτ = A
′
11Q̄10(τ) + P̄10S̄Q̄10(τ) + P̄10G11(τ) + R̄10(0, τ),

(3.57) (∂/∂τ + ∂/∂ρ)R̄10(τ, ρ) = G
′
1(τ)Q̄10(ρ) + Q̄

′
10(τ)G1(ρ) + Q̄

′
10(τ)S̄Q̄10(ρ),

where

(3.58) S̄ = γ−2F1F
′
1 −A12D

−1
2 A

′
12.

Thus, in order to obtain the outer solution, one has to solve the system (3.55)-
(3.57) with the boundary conditions (3.49)-(3.50).

3.4.2. Reduced H∞ Control Problem and Solution of the Problem (3.49)-(3.50),
(3.55)-(3.57). Setting formally ε = 0 in the OHICP, one obtains the following
problem, after a simple rearrangement and a redenoting x, y, w and J by x̄, ȳ, w̄
and J̄ , respectively,

dx̄(t)/dt = A11x̄(t) + H11x̄(t− h) +
∫ 0

−h
G11(τ)x̄(t + τ)dτ

(3.59) +A12ȳ(t) + F1w̄(t), t > 0,

(3.60) x̄(t) = 0, t ≤ 0.

(3.61) J̄
4
=

∫ +∞

0

[
x̄
′
(t)D1x̄(t) + ȳ

′
(t)D2ȳ(t)− γ2w̄

′
(t)w̄(t)

]
.

Since the variable ȳ(t) does not satisfy any equation for t ∈ [0,+∞), one can
choose it to satisfy a desirable property of the system (3.59). This means that the
variable ȳ(t) can be considered as a control variable in the system (3.59). Thus,
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the functional (3.61), calculated along trajectories of this system, depends on the
control variable ȳ(t) and the disturbance w̄(t) ∈ L2[0,+∞;Eq], i.e., J̄ = J̄(ȳ, w̄).
For the system (3.59), the H∞ control problem with a performance level γ can be
formulated. Namely, to find a controller ȳ∗[x(·)](t) that internally stabilizes this
system and ensures the inequality J̄(ȳ∗, w̄) ≤ 0 along trajectories of (3.59)-(3.60)
for all w̄(t) ∈ L2[0,+∞;Eq]. This H∞ control problem is called the reduced H∞
control problem (RHICP) associated with the OHICP.

Let the triplet S̄ 4
=

{
P̄10, Q̄10(τ), R̄10(τ, ρ)

}
be a solution of the problem (3.49)-

(3.50), (3.55)-(3.57) in the domain D.
Consider the linear systems

dx̄(t)/dt = (A11 −A12D
−1
2 A

′
12P̄10)x̄(t) + H11x̄(t− h)

(3.62) +
∫ 0

−h
[G11(τ)−A12D

−1
2 A

′
12Q̄10(τ)]x̄(t + τ)dτ, t > 0,

dx̄(t) = (A11 + S̄P̄10)x̄(t) + H11x̄(t− h)

(3.63) +
∫ 0

−h
[G11(τ) + S̄Q̄10(τ)]x̄(t + τ)dτ, t > 0.

In the sequel, we assume:
A1. The problem (3.49)-(3.50), (3.55)-(3.57) has a solution S̄ in the domain D such
that P̄

′
10 = P̄10, R̄

′
10(τ, ρ) = R̄10(ρ, τ), and:

(a) the system (3.62) is exponentially stable, i.e. (see [6], Theorem 5.3), all roots λ
of its characteristic equation

det
[
A11 −A12D

−1
2 A

′
12P̄10 + exp(−λh)H11

(3.64) +
∫ 0

−h
exp(λτ)[G11(τ)−A12D

−1
2 A

′
12Q̄10(τ)]dτ − λIn

]
= 0

lie inside the left-hand half-plane;
(b) the system (3.63) is exponentially stable, i.e., all roots λ of its characteristic
equation

det
[
A11 + S̄P̄10 + exp(−λh)H11

(3.65) +
∫ 0

−h
exp(λτ)[G11(τ) + S̄Q̄10(τ)]dτ − λIn

]
= 0

lie inside the left-hand half-plane.
Similarly to Lemma 2.2, one directly obtains the following lemma.

Lemma 3.1. Under the assumption A1 (item a), the controller

(3.66) ȳ∗[x̄(·)](t) = −D−1
2 A

′
12

[
P̄10x̄(t) +

∫ 0

−h
Q̄10(τ)x̄(t + τ)dτ

]
solves the RHICP.
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3.5. Obtaining Qτ
30(η). Using (3.33), (3.40)-(3.42) and (3.54), we obtain the fol-

lowing differential equation and initial condition for Qτ
30(η):

(3.67) dQτ
30(η)/dη = −α

′
Qτ

30(η), η ≥ 0.

(3.68) Qτ
30(0) = P̄

′
20H11 + P̄30H21 − Q̄30(−h).

Similarly to [18], by using the equations (3.49) and (3.52)-(3.53), one can trans-
form (3.68) as follows

(3.69) Qτ
30(0) = P̄30H21.

The initial-value problem (3.67),(3.69) has the unique solution

(3.70) Qτ
30(η) = exp(−α

′
η)P̄30H21, η ≥ 0.

Since all eigenvalues of the matrix α are real positive, this solution satisfies the
inequality

(3.71)
∥∥∥Qτ

30(η)
∥∥∥ ≤ a exp(−βη), η ≥ 0,

where a > 0 and β > 0 are some constants.
The inequality (3.71) means that the boundary layer correction Qτ

30(η) is con-
siderable only in some right-hand neighborhood of η = 0, and it is exponentially
decaying for η → +∞.

3.6. Justification of the Asymptotic Solution.

Theorem 3.2. Under the assumption A1 (item b), there exists a positive number
ε∗1 such that, for all ε ∈ (0, ε∗1], the problem (3.19)-(3.27) has a solution
{Pj(ε), Ql(τ, ε), R1(τ, ρ, ε), j = 1, 2, 3, l = 1, 3} in the domain D. For all (τ, ρ, ε) ∈
D × (0, ε∗1], this solution satisfies the symmetry properties

(3.72) P
′
1(ε) = P1(ε), P

′
3(ε) = P3(ε), R

′
1(τ, ρ, ε) = R1(ρ, τ, ε),

and the inequalities

(3.73)
∥∥∥Pj(ε)− P̄j0

∥∥∥ ≤ aε, j = 1, 2, 3,
∥∥∥R1(τ, ρ, ε)− R̄10(τ, ρ)

∥∥∥ ≤ aε,

(3.74)
∥∥∥Q1(τ, ε)− Q̄10(τ)

∥∥∥ ≤ aε,
∥∥∥Q3(τ, ε)−Q30(τ, ε)

∥∥∥ ≤ aε,

where a > 0 is some constant independent of ε.

Proof. The theorem is proved very similarly to [18] (Theorem 3.1). �

Theorem 3.2 directly yields the following corollary.

Corollary 3.3. Under the assumption A1 (item b), for all ε ∈ (0, ε∗1], the problem
(3.3)-(3.17) has a solution {Pj(ε), Qi(τ, ε), Rj(τ, ρ, ε), j = 1, 2, 3, i = 1, ..., 4}. The
components Qk(τ, ε), (k = 2, 4) and Rl(τ, ρ, ε), (l = 2, 3) of this solution satisfy
(3.18). The other components of this solution constitute the solution of the problem
(3.19)-(3.27) mentioned in Theorem 3.2.
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4. ε-free solvability conditions for the OHICP

Consider the controller (2.22) with P (ε) and Q(τ, ε) given by (3.1) where Pj(ε)
(j = 1, 2, 3) and Qi(τ, ε), (i = 1, ..., 4) are the respective components of the solution
to the problem (3.3)-(3.17) mentioned in Corollary 3.3.

By substituting the block form of B, P (ε) and Q(τ, ε) (see (2.11),(3.1)) into (2.22)
and using (3.18), one obtains after a simple algebra

(4.1) v∗[x(·), y(·)](t) = −B
′
[
P
′
2(ε)x(t) + P3(ε)y(t) +

∫ 0

−h
Q3(τ, ε)x(t + τ)dτ

]
.

Lemma 4.1. Let the assumption A1 (item a) be valid. Then, there exists a positive
constant ε∗2, (ε∗2 ≤ ε∗1) such that the system (2.17) is exponentially stable uniformly
with respect to ε ∈ (0, ε∗2].

Proof. Substituting the block form of B, P (ε) and Q(τ, ε) (see (2.11),(3.1)), as well
as z = col(x, y), into (2.17) and using (3.18) yield after some rearrangement

(4.2) dx(t)/dt = A11x(t)+A12y(t)+H11x(t−h)+
∫ 0

−h
G11(τ)x(t+ τ)dτ, t > 0,

εdy(t)/dt = [εA21 −BB
′
P
′
2(ε)]x(t) + [εA22 −BB

′
P3(ε)]y(t)

(4.3) +εH21x(t− h) +
∫ 0

−h
[εG21(τ)−BB

′
Q3(τ, ε)]x(t + τ)dτ, t > 0.

By virtue of Theorem 3.2, the matrices P2(ε), P3(ε) and Q3(τ, ε) can be repre-
sented in the following form, valid for all ε ∈ (0, ε∗1] and τ ∈ [−h, 0],

(4.4) P2(ε) = P̄20 + OP2(ε), P3(ε) = P̄30 + OP3(ε),

(4.5) Q3(τ, ε) = Q̄30(τ) + Qτ
30((τ + h)/ε) + OQ3(τ, ε),

where OP2(ε), OP3(ε) and OQ3(τ, ε) are known matrix-valued functions satisfying
the inequalities

(4.6) ‖OP2(ε)‖ ≤ aε, ‖OP3(ε)‖ ≤ aε, ‖OQ3(τ, ε)‖ ≤ aε, ε ∈ (0, ε∗1], τ ∈ [−h, 0].

Let ϕx(τ) ∈ L2[−h, 0;En], ϕ0x ∈ En and ϕ0y ∈ Em be any given. Now, by using
the equations (4.4)-(4.5), the inequalities (4.6), the positiveness of all eigenvalues of
the matrix α = BB

′
P̄30 and the assumption A1 (item a), one obtains (very similarly

to [18] (proof of Lemma 7.1)) the existence of a positive number ε∗2, (ε∗2 ≤ ε∗1), such
that the unique solution col(x(t, ε), y(t, ε)) of the system (4.2)-(4.3) with the initial
conditions

(4.7) x(τ) = ϕx(τ), τ ∈ [−h, 0); x(0) = ϕ0x, y(0) = ϕ0y

satisfies the following inequalities for all ε ∈ (0, ε∗2]:

(4.8) ‖x(t, ε)‖ ≤ a exp(−νt)
(
‖ϕ0x‖+ ‖ϕ0y‖+ ‖ϕx‖L2

)
, t ≥ 0,

(4.9) ‖y(t, ε)‖ ≤ a exp(−νt)
(
‖ϕ0x‖+ ‖ϕ0y‖+ ‖ϕx‖L2

)
, t ≥ 0,

where a > 0 and ν > 0 are some constants independent of ε.
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The inequalities (4.8)-(4.9) prove the exponential stability of the system (2.17)
uniformly with respect to ε ∈ (0, ε∗2], which completes the proof of the lemma. �

Lemmas 2.2, 4.1, Theorem 3.2 and Corollary 3.3 directly yield the following
theorem.

Theorem 4.2. Let the assumption A1 be satisfied. Then, there exists a number
ε0 > 0 such that:

(i) for all ε ∈ (0, ε0], the set of Riccati-type equations (2.13)-(2.16) has a solu-
tion {P (ε), Q(τ, ε), R(τ, ρ, ε)}, (τ, ρ) ∈ D of the form (3.1)-(3.2),(3.18);

(ii) this solution satisfies the symmetry properties P
′
(ε) = P (ε), R

′
(τ, ρ, ε) =

R(ρ, τ, ε) for all ε ∈ (0, ε0] and (τ, ρ) ∈ D;

(iii) this solution provides the system (2.17) to be exponentially stable uniformly
with respect to ε ∈ (0, ε0];

(iv) the controller (4.1) solves the OHICP for all ε ∈ (0, ε0].

5. Simplified controller for the OHICP

Consider the following (n + m)× (n + m) block matrices

(5.1) P̄0(ε) =
(

P̄10 εP̄20

εP̄
′
20 εP̄30

)
, Q̄0(τ, ε) =

(
Q̄10(τ) 0
εQ̄30(τ) 0

)
,

where the matrices P̄j0, (j = 1, 2, 3), and Q̄l0(τ), (l = 1, 3) have been obtained in
Section 3.

Consider the following controller for the OHICP
(5.2)

v̄0[x(·), y(·)](t) = −ε−1B′
[
P̄0(ε)z(t) +

∫ 0

−h
Q̄0(τ, ε)z(t + τ)dτ

]
, z = col(x, y).

This controller is obtained from the OHICP controller (2.22) by replacing there
the matrices P (ε) and Q(τ, ε) by the ones P̄0(ε) and Q̄0(τ, ε), respectively.

Substituting the block form of the state variable z and of the matrices B, P̄0(ε)
and Q̄0(τ, ε) (see (2.11) and (5.1)) into (5.2) yields after a simple rearrangement

(5.3) v̄0[x(·), y(·)](t) = −B
′
(

P̄
′
20x(t) + P̄30y(t) +

∫ 0

−h
Q̄30(τ)x(t + τ)dτ

)
.

It is seen that the controller v̄0[x(·), y(·)](t) is independent of ε.
Substituting v = v̄0[x(·), y(·)](t) into the system (2.5)-(2.6) and the cost func-

tional (2.8), one obtains

dx(t)/dt = A11x(t) + A12y(t) + H11x(t− h)

(5.4) +
∫ 0

−h
G11(τ)x(t + τ)dτ + F1w(t), t > 0,

εdy(t)/dt = [εA21 −BB
′
P̄
′
20]x(t) + [εA22 −BB

′
P̄30]y(t) + εH21x(t− h)
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(5.5) +
∫ 0

−h
[εG21(τ)−BB

′
Q̄30(τ)]x(t + τ)dτ + εF2w(t), t > 0,

J(v̄0, w)
4
= J̄0(w) =

∫ +∞

0

[
x
′
(t)D1x(t) + y

′
(t)D2y(t)

+v̄
′
0[x(·), y(·)](t)v̄0[x(·), y(·)](t)− γ2w

′
(t)w(t)

]
dt

=
∫ +∞

0

[
x
′
(t)D̄P1x(t) + 2x

′
(t)D̄P2x(t) + y

′
(t)D̄P3y(t)

+2x
′
(t)

∫ 0

−h
D̄Q1(τ)x(t + τ)dτ + 2y

′
(t)

∫ 0

−h
D̄Q2(τ)x(t + τ)dτ

(5.6) +
∫ 0

−h

∫ 0

−h
x
′
(t + τ)D̄R1(τ, ρ)x(t + ρ)dτdρ− γ2w

′
(t)w(t)

]
dt,

where

(5.7) D̄P1 = D1 + P̄20BB
′
P̄
′
20, D̄P2 = P̄20BB

′
P̄30, D̄P3 = D2 + P̄30BB

′
P̄30,

(5.8) D̄Q1(τ) = P̄20BB
′
Q̄30(τ), D̄Q2(τ) = P̄30BB

′
Q̄30(τ),

(5.9) D̄R1(τ, ρ) = Q̄
′
30(τ)BB

′
Q̄30(ρ).

Remark 5.1. Since, for any x(t) ∈ En, y(t) ∈ Em and v(t) ∈ Em,

(5.10) x
′
(t)D1x(t) + y

′
(t)D2y(t) + v

′
(t)v(t) ≥ 0,

then, for any x(t) ∈ En, y(t) ∈ Em and x(t + τ) ∈ L2[−h, 0;En],

(5.11) x
′
(t)D1x(t) + y

′
(t)D2y(t) + v

′
0[x(·), y(·)](t)v0[x(·), y(·)](t) ≥ 0,

i.e.,
x
′
(t)D̄P1x(t) + 2x

′
(t)D̄P2x(t) + y

′
(t)D̄P3y(t)

+2x
′
(t)

∫ 0

−h
D̄Q1(τ)x(t + τ)dτ + 2y

′
(t)

∫ 0

−h
D̄Q2(τ)x(t + τ)dτ

(5.12) +
∫ 0

−h

∫ 0

−h
x
′
(t + τ)D̄R1(τ, ρ)x(t + ρ)dτdρ ≥ 0.

Lemma 5.2. Under the assumption A1 (item a), there exists a positive constant
ε̄1, such that the system (5.4)-(5.5) is internally exponentially stable uniformly with
respect to ε ∈ (0, ε̄1].

Proof. In order to prove the lemma, one has to show that the system, obtained
from (5.4)-(5.5) by setting there w(t) ≡ 0, is exponentially stable uniformly with
respect to ε ∈ (0, ε̄1] with some positive ε̄1. The latter is proved similarly to Lemma
4.1. �
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Consider the following (n + m)× (n + m) block matrices

(5.13) Ā(ε) =
(

A11 A12

A21 − ε−1BB
′
P̄
′
20 A22 − ε−1BB

′
P̄30

)
,

(5.14) Ḡ(τ, ε) =
(

G11(τ) 0
G21(τ)− ε−1BB

′
Q̄30(τ) 0

)
,

(5.15) D̄P =
(

D̄P1 D̄P2

D̄
′
P2 D̄P3

)
, D̄Q(τ) =

(
D̄Q1(τ) 0
D̄Q2(τ) 0

)
,

(5.16) D̄R(τ, ρ) =
(

D̄R1(τ, ρ) 0
0 0

)
, S̄F = γ−2FF ′

.

Consider the following hybrid system of algebraic, ordinary differential and partial
differential equations of Riccati type with respect to (n+m)× (n+m)-matrices P̂ ,
Q̂(τ) and R̂(τ, ρ) in the domain D:

(5.17) P̂ Ā(ε) + Ā
′
(ε)P̂ + P̂ S̄F P̂ + Q̂(0) + Q̂

′
(0) + D̄P = 0,

(5.18) dQ̂(τ)/dτ =
(
Ā(ε) + S̄F P̂

)′
Q̂(τ) + P̂ Ḡ(τ, ε) + R̂(0, τ) + D̄Q(τ),

(∂/∂τ + ∂/∂ρ)R̂(τ, ρ) = Ḡ
′
(τ, ε)Q̂(ρ) + Q̂

′
(τ)Ḡ(ρ, ε)

(5.19) +Q̂
′
(τ)S̄F Q̂(ρ) + D̄R(τ, ρ),

The system (5.17)-(5.19) is considered subject to the boundary conditions

(5.20) Q̂(−h) = P̂H, R̂(−h, τ) = H
′
Q̂(τ), R̂(τ,−h) = Q̂

′
(τ)H,

where the matrix H is given in (2.9).
Let the triple {P̂ (ε), Q̂(τ, ε), R̂(τ, ρ, ε)} be a solution of the problem (5.17)-(5.20)

for some ε ∈ (0, ε̄1], where the positive constant ε̄1 has been introduced in Lemma
5.2.

Lemma 5.3. Let the assumption A1 (item a) be satisfied. Let, for some ε ∈ (0, ε̄1],
the problem (5.17)-(5.20) has a solution {P̂ (ε), Q̂(τ, ε), R̂(τ, ρ, ε)} such that

(5.21) P̂
′
(ε) = P̂ (ε), R̂

′
(τ, ρ, ε) = R̂(ρ, τ, ε), (τ, ρ) ∈ D.

Then, for this ε, the following inequality is satisfied along trajectories of the system
(5.4)-(5.5) with the initial conditions (2.7):

(5.22) J̄0(w) ≤ 0 ∀w(t) ∈ L2[−h, 0;Eq].

The proof of the lemma is presented in Section 6.

Lemma 5.4. Let the assumption A1 (item b) be satisfied. Then, there exists a
positive number ε̄2 such that for all ε ∈ (0, ε̄2]:
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(a) the problem (5.17)-(5.20) has a solution {P̂ (ε), Q̂(τ, ε), R̂(τ, ρ, ε)}, (τ, ρ) ∈
D of the block form

(5.23) P̂ (ε) =
(

P̂1(ε) εP̂2(ε)
εP̂

′
2(ε) εP̂3(ε)

)
, Q̂(τ, ε) =

(
Q̂1(τ, ε) 0
εQ̂3(τ, ε) 0

)
,

(5.24) R̂(τ, ρ, ε) =
(

R̂1(τ, ρ, ε) 0
0 0

)
,

where P̂j(ε), (j = 1, 2, 3) are matrices of the dimensions n×n, n×m, m×m,
respectively; Q̂l(τ, ε), (l = 1, 3) are matrices of the dimensions n×n, m×n,
respectively; R̂1(τ, ρ, ε) is a matrix of the dimension n× n;

(b) the matrices P̂l(ε), (l = 1, 3) and R̂1(τ, ρ, ε) satisfy the symmetry properties

(5.25) P̂
′
l (ε) = P̂l(ε), l = 1, 3; R̂

′
1(τ, ρ, ε) = R̂1(ρ, τ, ε), (τ, ρ) ∈ D;

(c) the matrices P̂j(ε), (j = 1, 2, 3), Q̂l(τ, ε), (l = 1, 3) and R̂1(τ, ρ, ε) satisfy
the inequalities

(5.26)
∥∥∥P̂j(ε)− P̄j0

∥∥∥ ≤ aε, j = 1, 2, 3,

(5.27)
∥∥∥Q̂1(τ, ε)− Q̄10(τ)

∥∥∥ ≤ aε,
∥∥∥Q̂3(τ, ε)−Q30(τ, ε)

∥∥∥ ≤ aε, τ ∈ [−h, 0],

(5.28)
∥∥∥R̂1(τ, ρ, ε)− R̄10(τ, ρ)

∥∥∥ ≤ aε, (τ, ρ) ∈ D,

where the matrices P̄j0, (j = 1, 2, 3), Q̄10(τ), Q30(τ, ε) and R̄10(τ, ρ) are the
same as in Theorem 3.2; a > 0 is some constant independent of ε.

Proof. The statements of the lemma are obtained similarly to Theorem 3.2 and
Corollary 3.3. �

Lemmas 5.2-5.4 directly yield the following theorem.

Theorem 5.5. Let the assumption A1 be satisfied. Then, the controller (5.3) solves
the OHICP for all ε ∈ (0, ε̄0], where ε̄0 = min(ε̄1, ε̄2).

6. Proof of Lemma 5.3

Consider the following functional, depending on a parameter t ≥ 0, on a vector
ϕ0 ∈ En+m and on a function ϕz(θ) ∈ L2[t− h, t;En+m]:

V [t, ϕ0, ϕz(θ)]
4
= ϕ

′
0P̂ (ε)ϕ0 + 2ϕ

′
0

∫ t

t−h
Q̂(θ − t, ε)ϕz(θ)dθ

(6.1) +
∫ t

t−h

∫ t

t−h
ϕ
′
z(θ)R̂(θ − t, σ − t, ε)ϕz(σ)dθdσ.

By using the block vector z = col(x, y), one can rewrite the system (5.4)-(5.5)
and the cost functional (5.6) in the form

(6.2) dz(t)/dt = Ā(ε)z(t) + Hz(t− h) +
∫ 9

−h
Ḡ(τ, ε)z(t + τ)dτ + Fw(t), t > 0,
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J̄0(w) =
∫ +∞

0

[
z
′
(t)D̄P z(t) + 2z

′
(t)

∫ 0

−h
D̄Q(τ)z(t + τ)dτ

(6.3) +
∫ 0

−h

∫ 0

−h
z
′
(t + τ)D̄R(τ, ρ)z(t + ρ)dτdρ− γ2w

′
(t)w(t)

]
dt.

Let, for any given w(t) ∈ L2[0,+∞;Eq], the vector valued function
z0(t;w(·), ϕz(·), ϕ0) be the solution of the system (6.2) subject to the initial condi-
tions (2.18). Let

(6.4) V0(t;w(·), ϕz(·), ϕ0)
4
= V [t, z0(t;w(·), ϕz(·), ϕ0), z0(θ;w(·), ϕz(·), ϕ0)],

where t ≥ 0 and θ ∈ [t− h, t).
Calculating the derivative of V0(t;w(·), ϕz(·), ϕ0) with respect to t and using the

equations (5.17)-(5.20) and (6.2) yield after some rearrangement

dV0(t;w(·), ϕz(·), ϕ0)/dt = −z
′
0(t;w(·), ϕz(·), ϕ0)D̄P z0(t;w(·), ϕz(·), ϕ0)

−2z
′
0(t;w(·), ϕz(·), ϕ0)

∫ t

t−h
D̄Q(θ − t)z0(θ;w(·), ϕz(·), ϕ0)dθ

−
∫ t

t−h

∫ t

t−h
z
′
0(θ;w(·), ϕz(·), ϕ0)D̄R(θ − t, σ − t)z0(σ;w(·), ϕz(·), ϕ0)dθdσ

(6.5) +γ2w
′
(t)w(t)− γ2[w(t)−w0(t;w(·), ϕz(·), ϕ0)]

′
[w(t)−w0(t;w(·), ϕz(·), ϕ0)],

where
w0(t;w(·), ϕz(·), ϕ0) = γ−2F ′

[
P̂ (ε)z0(t;w(·), ϕz(·), ϕ0)

(6.6) +
∫ t

t−h
Q̂(θ − t, ε)z0(θ;w(·), ϕz(·), ϕ0)dθ

]
.

By changing the integration variables θ− t = τ and σ− t = ρ, the equation (6.5)
becomes

dV0(t;w(·), ϕz(·), ϕ0)/dt = −Z0(t;w(·), ϕz(·), ϕ0) + γ2w
′
(t)w(t)

(6.7) −γ2[w(t)− w0(t;w(·), ϕz(·), ϕ0)]
′
[w(t)− w0(t;w(·), ϕz(·), ϕ0)],

where

Z0(t;w(·), ϕz(·), ϕ0) = z
′
0(t;w(·), ϕz(·), ϕ0)D̄P z0(t;w(·), ϕz(·), ϕ0)

+2z
′
0(t;w(·), ϕz(·), ϕ0)

∫ 0

−h
D̄Q(τ)z0(t + τ ;w(·), ϕz(·), ϕ0)dτ

(6.8) +
∫ 0

−h

∫ 0

−h
z
′
0(t + τ ;w(·), ϕz(·), ϕ0)D̄R(τ, ρ)z0(t + ρ;w(·), ϕz(·), ϕ0)dτdρ.

By virtue of Remark 5.1, one has the inequality

(6.9) Z0(t;w(·), ϕz(·), ϕ0) ≥ 0

∀t ≥ 0, w(·) ∈ L2[0,+∞;Eq], ϕz(·) ∈ L2[−h, 0;En+m], ϕ0 ∈ En+m.
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Setting in (6.7) w(·) = 0 and using (6.9) yield

(6.10) dV0(t; 0, ϕz(·), ϕ0)/dt ≤ 0 ∀t ≥ 0, ϕz(·) ∈ L2[−h, 0;En+m], ϕ0 ∈ En+m.

Due to Lemma 5.2,

(6.11) lim
t→+∞

z0(t; 0, ϕz(·), ϕ0) = 0 ∀ϕz(·) ∈ L2[−h, 0;En+m], ϕ0 ∈ En+m.

Integrating the inequality (6.10) from 0 to +∞ and using (6.1), (6.4) and (6.11),
we obtain the inequality

(6.12) V0(0; 0, ϕz(·), ϕ0) ≥ 0 ∀ϕz(·) ∈ L2[−h, 0;En+m], ϕ0 ∈ En+m,

or

ϕ
′
0P̂ (ε)ϕ0 + 2ϕ

′
0

∫ 0

−h
Q̂(τ, ε)ϕz(τ)dτ

(6.13) +
∫ 0

−h

∫ 0

−h
ϕ
′
z(τ)R̂(τ, ρ, ε)ϕz(ρ)dτdρ ≥ 0

∀ϕz(·) ∈ L2[−h, 0;En+m], ϕ0 ∈ En+m.

The equation (6.7) yields the inequality

(6.14) dV0(t;w(·), ϕz(·), ϕ0)/dt + Z0(t;w(·), ϕz(·), ϕ0) ≤ γ2w
′
(t)w(t), t ≥ 0.

Setting in (6.14) ϕz(·) = 0, ϕ0 = 0, integrating the resulting inequality from 0 to
any fixed T > 0 and using (6.1), (6.4) yield

(6.15) V0(T ;w(·), 0, 0) +
∫ T

0
Z0(t;w(·), 0, 0)dt ≤

∫ T

0
γ2w

′
(t)w(t)dt.

By changing in (6.1) the integration variables θ− t = τ and σ− t = ρ, and using
(6.4), the value V0(T ;w(·), 0, 0) can be expressed as follows:

V0(T ;w(·), 0, 0) = z
′
0(T ;w(·), 0, 0)P̂ (ε)z0(T ;w(·), 0, 0)

+2z
′
0(T ;w(·), 0, 0)

∫ 0

−h
Q̂(τ, ε)z0(T + τ ;w(·), 0, 0)dτ

(6.16) +
∫ 0

−h

∫ 0

−h
z
′
0(T + τ ;w(·), 0, 0)R̂(τ, ρ, ε)z0(T + ρ;w(·), 0, 0)dτdρ.

By virtue of (6.13), the equation (6.16) yields

(6.17) V0(T ;w(·), 0, 0) ≥ 0 ∀T > 0, w(·) ∈ L2[0,+∞;Eq].

The latter, along with (6.15), implies

(6.18)
∫ T

0
Z0(t;w(·), 0, 0)dt ≤

∫ T

0
γ2w

′
(t)w(t)dt ∀T > 0, w(·) ∈ L2[0,+∞;Eq].

By using the inequalities (6.9) and 6.18), we directly obtain that the integral∫ +∞

0
Z0(t;w(·), 0, 0)dt
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converges, and

(6.19)
∫ +∞

0
Z0(t;w(·), 0, 0)dt ≤

∫ +∞

0
γ2w

′
(t)w(t)dt ∀w(·) ∈ L2[0,+∞;Eq].

The latter, along with (6.3) and (6.8), yields the inequality (5.22), which completes
the proof of the lemma.

7. Direct method of constructing a simplified controller for the
OHICP

In this section, we propose another method of constructing a simplified controller
for the OHICP. This method is not based on the asymptotic solution of the set of
Riccati-type matrix equations arising in the solvability conditions for the OHICP,
but it is based on an asymptotic decomposition of the OHICP into two much simpler
ε-free subproblems, the slow and fast ones.

7.1. Slow Subproblem. The slow subproblem is obtained from the OHICP by
setting there formally ε = 0 and redenoting x, y, v and J by xs, ys, vs and Js,
respectively. Thus, one obtains

dxs(t)/dt = A11xs(t) + A12ys(t) + H11xs(t− h)

(7.1) +
∫ 0

−h
G11(τ)xs(t + τ)dτ + F1ws(t), t > 0,

(7.2) Bvs(t) = 0, t ∈ [0,+∞),

(7.3) xs(t) = 0, t ≤ 0,

(7.4) Js =
∫ +∞

0

[
x
′
s(t)D1xs(t) + y

′
s(t)D2ys(t) + v

′
s(t)vs(t)− γ2w

′
s(t)ws(t)

]
dt.

Since the matrix B is invertible, the equation (7.2) implies

(7.5) vs(t) = 0, t ∈ [0,+∞).

Substituting (7.5) into (7.4) yields

(7.6) Js =
∫ +∞

0

[
x
′
s(t)D1xs(t) + y

′
s(t)D2ys(t)− γ2w

′
s(t)ws(t)

]
dt.

Note, that in the system (7.1) (similarly to the system (3.59)), the variable ys(t)
can be considered as a control. The latter means that the functional (7.6), calculated
along trajectories of (7.1), (7.3), depends on the control function ys(t) and the
disturbance ws(t) ∈ L2[0,+∞;Eq], i.e., Js = Js(ys, ws). Thus, for the system (7.1),
initial condition (7.3) and the cost functional (7.6), the H∞ control problem with a
performance level γ can be formulated. Comparing this problem with the RHICP
introduced in Section 3.4.2, one can conclude that these problems coincide with
each other. Thus, by Lemma 3.1, the controller, solving the H∞ control problem
(7.1),(7.3),(7.6), has the form

(7.7) y∗s [xs(·)](t) = −D−1
2 A

′
12

[
P̄10xs(t) +

∫ 0

−h
Q̄10(τ)xs(t + τ)dτ

]
,
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where the matrices P̄10 and Q̄10(τ) are the respective components of the solution S̄
to the problem (3.49)-(3.50),(3.55)-(3.57), satisfying the assumption A1 (item a).

7.2. Fast Subproblem. The fast subproblem is obtained in the following three
stages. First, the slow variable x(·) is removed from the equation (2.6) and the cost
functional (2.8) of the OHICP. Second, the following transformation of variables is
made in the resulting problem:

t = εξ, y(εξ) = yf (ξ), v(εξ) = vf (ξ),

(7.8) w(εξ) = wf (ξ), J(v(εξ), w(εξ)) = εJf (vf (ξ), wf (ξ)),

where ξ, yf , vf , wf and Jf are new independent variable, state, control, disturbance
and cost functional, respectively. Thus, we obtain the system and the cost functional

(7.9) dyf (ξ)/dξ = εA22yf (ξ) + Bvf (ξ) + εF2wf (ξ), ξ > 0,

(7.10) Jf (vf , wf ) =
∫ +∞

0

[
y
′
f (ξ)D2yf (ξ) + v

′
f (ξ)vf (ξ)− γ2w

′
f (ξ)wf (ξ)

]
dξ.

Finally, neglecting formally the terms with the multiplier ε in (7.9) yields the
system

(7.11) dyf (ξ)/dξ = Bvf (ξ), ξ > 0.

For this system, the H∞ control problem with a performance level γ can be
formulated as follows. To find a controller v∗f [yf (ξ)] that stabilizes (7.11) and ensures
the inequality Jf (v∗f , wf ) ≤ 0 along its trajectories for all wf (ξ) ∈ L2[0,+∞;Eq] and
for yf (0) = 0. This H∞ control problem is called the fast H∞ control subproblem
associated with the OHICP.

Let K be any m × m-matrix such that BK is a Hurwitz matrix. Then, the
controller

(7.12) v∗f [yf (ξ)] = Kyf (ξ)

solves the fast H∞ control subproblem.
Since the system (7.11) and the cost functional (7.10) are particular cases of

the ones (2.5)-(2.6) and (2.8), respectively, we choose the matrix K in accordance
with Lemma 2.2. Due to this lemma, the controller, solving the corresponding H∞
problem, is designed by using a solution of the problem (2.13)-(2.16). For the fast
H∞ control subproblem, (2.13)-(2.16) is reduced to the algebraic matrix Riccati
equation with respect to Pf

(7.13) −PfBB
′
Pf + D2 = 0.

Comparing this equation with the one (3.45), we can conclude that these equa-
tions coincide with each other. Therefore, (7.13) has the unique symmetric positive
definite solution

(7.14) Pf = P̄30,

where P̄30 is given by (3.51). Based on this solution of (7.13), we choose the gain
matrix K in (7.12) as K = −B

′
Pf . Thus, the matrix BK = −BB

′
Pf = −α, where
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the matrix α is given by (3.54). Since all eigenvalues of α are real positive, then the
matrix BK is a Hurwitz one. Hence, the controller

(7.15) v∗f [yf (ξ)] = −B
′
Pfyf (ξ)

solves the fast H∞ control subproblem.

7.3. Composite Controller for the OHICP. In this subsection, based on the
control vs(t), given by (7.5), the controller y∗s [xs(·)](t), solving the H∞ control
problem (7.1),(7.3),(7.6), and the controller v∗f [yf (ξ)], solving the fast H∞ control
subproblem, we construct a composite controller for the OHICP. Then, we show
that this controller solves the OHICP for all sufficiently small ε > 0.

The composite controller is obtained in the form

(7.16) vc[x(·), y(·)](t) = vs(t) + v∗f [ỹ(t/ε)],

where ỹ(t/ε) is defined as follows

(7.17) ỹ(t/ε)
4
= y(t)− y∗s [x(·)](t).

Substituting (7.5) and (7.15) into (7.16), and using (7.7), (7.14) and (7.17) yield
after some rearrangement

vc[x(·), y(·)](t) = −B′P̄30

{
y(t)

(7.18) +D−1
2 A

′
12

[
P̄10x(t) +

∫ 0

−h
Q̄10(τ)x(t + τ)dτ

]}
.

By virtue of the equations (3.45),(3.52) and (3.53), the expression (7.18) can be
transformed equivalently as follows

(7.19) vc[x(·), y(·)](t) = −B
′
(

P̄
′
20x(t) + P̄30y(t) +

∫ 0

−h
Q̄30(τ)x(t + τ)dτ

)
.

Comparing the expression (7.19) for the composite controller with the expression
(5.3) for the ε-free controller, solving the OHICP, one can conclude that these
controllers coincide with each other. Thus, the statement of Theorem 5.5 also is
valid for the composite controller vc[x(·), y(·)](t), meaning that this controller solves
the OHICP for all sufficiently small ε > 0.

8. Conclusions

In this paper, a linear time-invariant controlled system with point-wise and dis-
tributed state delays and a square-integrable disturbance was considered. It is
assumed that this system consists of two modes. One of them is controlled directly,
while the other is controlled through the first one. Moreover, the case where the
state variable of the mode, controlled directly, has no delays is treated. For this
system, the infinite horizon H∞ control problem with a given performance level was
studied. The control cost in the cost functional of this problem is assumed to be
small with respect to the state and disturbance costs, i.e., the considered problem
is the H∞ cheap control problem. By using a simple control transformation, this
problem was converted to the H∞ control problem for a system with a small mul-
tiplier ε > 0 for a part of the derivatives, i.e., to a singularly perturbed system. In



H∞ CHEAP CONTROL FOR A CLASS OF LINEAR SYSTEMS WITH STATE DELAYS 257

this singularly perturbed system, the slow state variable has delays, while the fast
state variable has not. For this new H∞ control problem, considered in the sequel as
an original one, two methods of solution were proposed. The first method is based
on the asymptotic solution of the set of Riccati-type matrix equations arising in the
H∞ control problem solvability conditions. This method yields the ε-free solvabil-
ity conditions for the original H∞ control problem, as well as the ε-free controller,
solving this problem for all sufficiently small values ε > 0.

The second method is based on an asymptotic decomposition of the original
H∞ control problem into two much simpler ε-free subproblems, the slow and fast
ones. For each of these subproblems the resolving controller was obtained. Then,
by using these controllers, the composite controller, solving the original problem,
was designed. It was shown that this composite controller coincides with the ε-free
controller obtained by the first method.
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