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GLOBAL ATTRACTORS FOR DISCRETE DISPERSE
DYNAMICAL SYSTEMS

ZARI DZALILOV AND ALEXANDER J. ZASLAVSKI

Abstract. In this paper we discuss the asymptotic behavior of trajectories of
discrete disperse dynamical systems generated by set-valued mappings

1. Discrete disperse dynamical systems

Dynamical systems theory has been a rapidly growing area of research which
has various applications to physics, engineering, biology and economics. In this
theory one of the goals is to study the asymptotic behavior of the trajectories of
a dynamical system. A discrete-time dynamical system is described by a space of
states and a transition operator which can be set-valued. Usually in the dynamical
systems theory a transition operator is single-valued. In the present paper we
consider a class of dynamical systems introduced in [3] and studied in [4, 5, 7, 8]
with a compact metric space of states and a set-valued transition operator. Such
dynamical systems describe economical models [1, 2, 6].

Let (X, ρ) be a compact metric space and let a : X → 2X \ {∅} be a set-valued
mapping whose graph

graph(a) = {(x, y) ∈ X ×X : y ∈ a(x)}

is a closed subset of X ×X. For each nonempty subset E ⊂ X set

a(E) = ∪{a(x) : x ∈ E} and a0(E) = E.

By induction we define an(E) for any natural number n and any nonempty subset
E ⊂ X as follows:

an(E) = a(an−1(E)).

In this paper we discuss convergence of trajectories of the dynamical system
generated by the set-valued mapping a. Following [3, 4] this system is called a
discrete disperse dynamical system.

First we define a trajectory of this system.
A sequence {xt}∞t=0 ⊂ X is called a trajectory of a (or just a trajectory if the

mapping a is understood) if xt+1 ∈ a(xt) for all integers t ≥ 0.
Put

Ω(a) = {z ∈ X : for each ε > 0 there is a trajectory {xt}∞t=0

such that lim inf
t→∞

ρ(z, xt) ≤ ε}. (1.1)
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Clearly, Ω(a) is closed subset of (X, ρ). In the present paper the set Ω(a) will be
called a global attractor of a. Note that in [3-5] Ω(a) was called a turnpike set of
a. This terminology was motivated by mathematical economics [1, 2, 6].

For each x ∈ X and each nonempty closed subset E ⊂ X put

ρ(x,E) = inf{ρ(x, y) : y ∈ E}.

It is clear that for each trajectory {xt}∞t=0 we have limt→∞ ρ(xt,Ω(a)) = 0.
It is not difficult to see that if for a nonempty closed set B ⊂ X

lim
t→∞

ρ(xt, B) = 0

for each trajectory {xt}∞t=0, then Ω(a) ⊂ B.
In this section we discuss uniform convergence of trajectories to the global at-

tractor Ω(a).
The following useful result was obtained in [7].

Proposition 1.1. Let ε > 0. Then there exists a natural number T (ε) such that
for each trajectory {xt}∞t=0

min{ρ(xt,Ω(a)) : t = 0, . . . , T (ε)} ≤ ε.

The following theorem established in [7] provides necessary and sufficient condi-
tions for uniform convergence of trajectories to the global attractor.

Theorem 1.2. The following properties are equivalent:
(1) For each ε > 0 there exists a natural number T (ε) such that for each trajectory

{xt}∞t=0 and each integer t ≥ T (ε) we have ρ(xt,Ω(a)) ≤ ε.
(2) If a sequence {xt}∞t=−∞ ⊂ X satisfies xt+1 ∈ a(xt) for all integers t, then

{xt}∞t=−∞ ⊂ Ω(a).
(3) For each ε > 0 there exists δ > 0 such that for each trajectory {xt}∞t=0

satisfying ρ(x0,Ω(a)) ≤ δ the inequality ρ(xt,Ω(a)) ≤ ε holds for all integers t ≥ 0.

The following two theorems established in [7] show that convergence of trajecto-
ries to the global attractor holds even in the presence of computational errors.

Theorem 1.3. Let ε > 0. Then there exist δ > 0 and a natural number T (ε)
such that for each sequence {xt}∞t=0 ⊂ X satisfying ρ(xt+1, a(xt)) ≤ δ and for each
integer t ≥ 0 the following inequality holds:

min{ρ(xt,Ω(a)) : t = 0, . . . , T (ε)} ≤ ε.

Theorem 1.4. Assume that property (2) from Theorem 1.2 holds. Then for each
ε > 0 there exist δ > 0 and a natural number T (ε) such that for each sequence
{xt}∞t=0 ⊂ X satisfying

ρ(xt+1, a(xt)) ≤ δ for all integers t ≥ 0

the inequality ρ(xt,Ω(a)) ≤ ε holds for each integer t ≥ T (ε).
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2. Examples

Denote by Π(X) the set of all nonempty closed subsets of (X, ρ). For each
A,B ∈ Π(X) set

H(A,B) = max{sup
x∈A

ρ(x,B), sup
y∈B

ρ(y, A)}. (2.1)

It is known that the space (Π(X),H) is a complete metric space.
Example 1. Let a : X → X satisfy ρ(a(x), a(y)) ≤ ρ(x, y) for each x, y ∈ X.

Since the mapping a is single-valued it is not difficult to see that a(Ω(a)) ⊂ Ω(a)
and property (3) from Theorem 1.2 holds.

Example 2. Let a : X → X satisfy the following condition:
(C1) for each ε > 0 there exists δ ∈ (0, ε) such that for each pair x, y ∈ X

satisfying ρ(x, y) ≤ δ we have ρ(anx, any) ≤ ε for all natural numbers n.
It was shown in [7] that the property (3) from Theorem 1.2 holds.
Example 3. Let a : X → 2X \ ∅ have a closed graph. Assume that

H(a(x), a(y)) ≤ cρ(x, y) for all x, y ∈ X

with a constant c ∈ (0, 1). It was shown in [7] that the property (3) from Theorem
1.2 holds.

3. Spaces of set-valued mappings

In this section we consider classes of discrete disperse dynamical systems whose
global attractors are a singleton.

Denote by A the set of all mappings a : X → Π(X) with closed graphs. For each
a1, a2 ∈ A set

dA(a1, a2) = sup{H(a1(x), a2(x)) : x ∈ X}.
It is clear that the metric space (A, dA) is complete.

Denote by Ac the set of all continuous mappings a : X → Π(X) which belong to
A, by Af the set of all a ∈ A such that a(x) is a singleton for each x ∈ X and set
Afc = Af ∩ Ac. Clearly Af , Ac and Afc are closed subsets of (A, dA).

Let M be one of the following spaces: A; Ac; Af ; Afc. The space M is equipped
with the metric dA.

Denote by Mreg the set of all a ∈ M such that Ω(a) is a singleton and that
properties (1-3) from Theorem 1.2 hold.

Denote by M̄reg the closure of Mreg in (M, dA). The following result established
in [7] shows that most elements of M̄reg (in the sense of Baire category) belong to
Mreg.

Theorem 3.1. The set Mreg contains a countable intersection of open everywhere
dense subsets of (M̄reg, dA).

4. Stable points and Lyapunov functions

Let (X, ρ) be a compact metric space and let Π(X) be the collection of all closed
nonempty subsets of (X, ρ) equipped with the Hausdorff metric H defined by (2.1).
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We consider a continuous mapping a : X → Π(X). Denote by La the set of all
continuous functions s : X → R1 such that

s(x) ≥ 0 for al x ∈ X,

s(y) ≤ s(x) for all x ∈ X and all y ∈ a(x).

A function s ∈ La is a Lyupunov function for the dynamical system generated
by the mapping a.

For each s ∈ La set

(s ◦ a)(x) = max{s(y) : y ∈ a(x)}, x ∈ X

and

Ws = {x ∈ X : s(x) = (s ◦ a)(x)}.

The following result was established in [4, Proposition 16.1].

Proposition 4.1. For any s ∈ La the set Ws is nonempty and closed.
Set

Wa = ∩s∈LaWs.

The following two theorems were established in [4, Theorems 16.1 and 16.2].

Theorem 4.2. The set W is a collection of all x ∈ X for which there exists a
trajectory {xt}∞t=0 ⊂ X of a such that x0 = x and for all s ∈ La,

s(x0) = s(xi), i = 1, 2, . . .

Theorem 4.3. For each trajectory {xt}∞t=0 of a,

lim
t→∞

ρ(xt,W ) = 0.

A point x ∈ X is called stable if for any ε > 0 there exists a trajectory {xn}∞n=0 ⊂
X such that x0 = x and lim infn→∞ ρ(xn, x) ≤ ε.

Denote by Πa the set of all stable points and consider the set Ω(a) introduced in
Section 1.

It is not difficult to see that

Πa ⊂ Ω(a) ⊂ Wa.

The following theorem is the main result of [5].

Theorem 4.4. Assume that a : X → Π(X) satisfies

H(a(x), a(y)) ≤ ρ(x, y)

for all x, y ∈ X. Then Πa = Wa.
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5. Generalizations of Theorems 1.2-1.4

In this section we discuss a class of dynamical systems described by a set-valued
transition operator a : K → 2X \ {∅}, where K is a closed subset of a compact
metric space X. In the previous sections we considered the case with K = X.

Let (X, ρ) be a compact metric space, K be a nonempty closed subset of (X, ρ)
and let a : K → 2X \ {∅} be a set-valued mapping whose graph

graph(a) = {(x, y) ∈ K ×X : y ∈ a(x)}
is a closed subset of X ×X.

For each x ∈ X and each nonempty closed set E ⊂ X put

ρ(x,E) = inf{ρ(x, y) : y ∈ E}.
A sequence {xt}∞t=0 ⊂ X is called a trajectory of a (or just a trajectory if the

mapping a is understood) if {xi}∞t=0 ⊂ K and if xt+1 ∈ a(xt) for all integers t ≥ 0.
A sequence {xt}T

t=0 ⊂ X, where T is a natural number, is called a trajectory
of a (or just a trajectory if the mapping a is understood) if {xt}T−1

t=0 ⊂ K and if
xt+1 ∈ a(xt) for all integers t ∈ [0, T − 1].

In this section we use the following assumption introduced in [8]:
(A) For each integer n ≥ 1 there exists a sequence {xt}n

t=0 ⊂ X such that for each
integer t satisfying 0 ≤ t ≤ n−1 there is (yt, zt) ∈ graph(a) such that ρ(xt, yt) ≤ 1/n
and ρ(xt+1, zt) ≤ 1/n.

The following result was established in [8].

Proposition 5.1. Assume that (A) holds. Then there exists a trajectory {xt}∞t=0

of a.

In this section we assume that (A) holds.
Put

Ω(a) = {z ∈ X : for each ε > 0 there is a trajectory {xt}∞t=0

such that lim inf
t→∞

ρ(z, xt) ≤ ε}.

Clearly, Ω(a) is a nonempty closed subset of K. It is clear that for each trajectory
{xt}∞t=0 we have

lim
t→∞

ρ(xt,Ω(a)) = 0.

It is not difficult to see that if for a nonempty closed set B ⊂ X

lim
t→∞

ρ(xt, B) = 0

for each trajectory {xt}∞t=0, then Ω(a) = B.
In this section we discuss uniform convergence of trajectories to the global at-

tractor Ω(a).
The following results were established in [8].

Theorem 5.2. Let ε > 0. Then there exist δ > 0 and a natural number T such
that if {xt}T

t=0 ⊂ X and if {(yt, zt)}T−1
t=0 ⊂ graph(a) satisfy

ρ(xt, yt) ≤ δ, ρ(xt+1, zt) ≤ δ

for all t = 0, . . . , T − 1, then

min{ρ(xt,Ω(a)) : t = 0, . . . , T} ≤ ε.
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Theorem 5.3. The following properties are equivalent:
(1) If a sequence {xt}∞t=−∞ ⊂ K satisfies xt+1 ∈ a(xt) for all integers t, then

{xt}∞t=−∞ ⊂ Ω(a).
(2) For each ε > 0 there is a natural number L such that for each trajectory

{xt}∞t=0,
ρ(xt,Ω(a)) ≤ ε for all integers t ≥ L.

(3) Let ε > 0. Then there exist δ > 0 and a natural number L such that for each
integer T > 2L and each sequence {xt}T

t=0 ⊂ X which satisfies for all t = 0, . . . , T−1

inf{ρ(xt, y) + ρ(xt+1, z) : (y, z) ∈ graph(a)} ≤ δ

the inequality ρ(xt,Ω(a)) ≤ ε holds for all integers t = L, . . . , T − L.

Theorem 5.4. Assume that the property (1) from Theorem 5.3 holds and let ε > 0.
Then there exist δ > 0 and a natural number L such that for each integer T > L
and each sequence {xt}T

t=0 ⊂ X which satisfies

ρ(x0,Ω(a)) < δ

and
inf{ρ(xt, y) + ρ(xt+1, z) : (y, z) ∈ graph(a)} ≤ δ

for t = 0, . . . , T − 1, the following inequality holds:

ρ(xt,Ω(a)) ≤ ε, t = 0, . . . , T − L.

6. Extensions of Theorem 3.1

In this section we consider classes of discrete disperse dynamical systems whose
global attractors are a singleton.

Let (Y, ρ) be a compact metric space. Denote by Π(Y ) the set of all nonempty
closed subsets of Y .

For each x ∈ Y and each A ∈ Π(Y ) put

ρ(x,A) = inf{ρ(x, y) : y ∈ A}.
For each A,B ∈ Π(Y ) set

HY (A,B) = max{sup
x∈A

ρ(x,B), sup
y∈B

ρ(y, A)}.

It is known that the space (Π(Y ),HY ) is a complete metric space.
Let (X, ρ) be a compact metric space. For each (x1, x2), (y1, y2) ∈ X ×X set

ρ1((x1, x2), (y1, y2)) = ρ(x1, y1) + ρ(x2, y2).

Then (X×X, ρ1) is a compact metric space. We consider the complete metric space
(Π(X ×X),HX×X).

It is clear that any set-valued mapping defined on a subset of X with values in
Π(X) is identified with its graph.

For each S ∈ Π(X ×X) set

KS = {x ∈ X : there is y ∈ X such that (x, y) ∈ S},
aS(x) = {y ∈ X : (x, y) ∈ S}, x ∈ KS .

Denote by M the set of all S ∈ Π(X × X) such that aS possesses a trajectory
{xt}∞t=0. Denote by M̄ the closure of M in the space (Π(X ×X),HX×X).
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Let K be a nonempty closed subset of X. Denote by ΠK(X × X) the set of
all S ∈ Π(X × X) such that KS = K. Clearly ΠK(X × X) is a closed subset of
(Π(X ×X),HX×X). Set

MK = M∩ΠK(X ×X).

Denote by M̄K the closure of MK in (Π(X ×X),HX×X).
We equip the spaces M̄ and M̄K with the metric HX×X .
In [8] it was established the following result which shows that most elements of

M̄ (respectively M̄K) (in the sense of Baire category) belong to M (respectively,
MK).

Theorem 6.1. The set M (respectively, MK) contains a countable intersection of
open everywhere dense subsets of M̄ (respectively, M̄K).

Denote by Mr the set of all S ∈ Π(X ×X) such that aS possesses a trajectory
{xt}∞t=0, Ω(aS) is a singleton and the property (1) from Theorem 5.3 holds with
a = aS .

Set
Mr,K = Mr ∩ΠK(X ×X).

Denote by M̄r (respectively, M̄r,K) the closure of Mr (respectively, Mr,K) in
the metric space (Π(X ×X),HX×X).

We equip the spaces M̄r and M̄r,K with the metric HX×X .
In [8] it was established the following result which shows that most elements of

M̄r (respectively M̄r,K) (in the sense of Baire category) belong toMr (respectively,
Mr,K).

Theorem 6.2. The set Mr (respectively, Mr,K) contains a countable intersection
of open everywhere dense subsets of M̄r (respectively, M̄r,K).
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