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OPTIMAL COMPATIBILITY PROBLEM AND ITS
APPLICATIONS

ELENA ROVENSKAYA

Abstract. In this paper we consider the problem of finding the minimum value
of a scalar parameter at which depending on this parameter an equation has a
solution in a given set which also depends on that parameter. A space of argu-
ments is infinite. We call this problem as optimal compatibility problem. Under
considered assumptions the optimization problem is not convex. We suggest an
iteration method to solving the optimal compatibility problem based on the idea
of the method of extremal shifting by N.N.Krasovskiy known in the game theory.
We provide an application of the method to solving two classes of optimal control
problems.

1. Introduction

In this paper we consider a problem of finding the minimum value of a scalar
parameter p at which depending on this parameter an equation F (p, x) = b(p) has
a solution in a given set X(p); the solution itself is to be found too. A space of
agruments x is supposed to be infinite. We call this problem as optimal compati-
bility problem. Such problems appear in various applied problems (e.g., problems
of optimization of networks of insurance companies [8], problems of optimization
of portfolios of innovation projects [9]), and in the study of parametric families of
operator equations [10]. Besides a standard optimization problem, i.e., the problem
of finding the minimum value of a function subject to constraints of equality and
inequality types, can be written as an optimal compatibility problem.

The work is devoted to constructing an iteration method for solving described
above optimal compatibility problem formulated as an optimization problem.

Under considered in this paper assumptions the latter is not convex, that is why
standard optimization methods, e.g., those of gradient type [12] may be not appli-
cable for it. Existing approaches for solving non-convex problems, e.g., methods
of fine and barrair functions [4], homotopic methods [20], are rather general but
are hardly constructively realized. A type of convex problem usually leads to spe-
cific difficulties on a way of verification of constructive algorithms for its solving.
In a view of that specified approaches devoted to particular classes of non-convex
optimization problems are being developed and this work represent one of them.

We suggest an iteration method for solving the optimal compatibility problem
based on the idea of the method of extremal shifting by N. Krasovskiy [6] known in
the game theory. In earlier works [9] – [11], [17] the optimal compatibility problem
was considered for the case of linear function F (p, ·). In this work we expand the
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approach on non-linear case but conquered to a number of assumptions. The most
important of them is an assumption on the convexity of sets F (p,X(p)). By means
of appropriate randomization of an argument (see [7]) it allows to formulate an
expanded problem in a sense equivalent to the optimal compatibility problem. For
that expanded problem we suggest an iteration algorithm which generalizes the
method built in [10] for the optimal compatibility problem in the linear case.

It turns out that some optimal control problems can be written as optimal com-
patibility problems. The basic tool for solving optimal control problems is Pontrya-
gin maximum principle [13]. In many cases it allows to get a solution of an optimal
control problem or reveal its analytic structure. However a significant number of
optimal control problems lie outside the sphere of its effective application. First of
all, these are optimal control problems with phase (as well as mixed) constraints:
the maximum principle for them has a complicated form and can hardly be effec-
tively applied in concrete cases [1, 2]. Another rather universal approach to solving
optimal control problems, including those with phase constraints, is provided by the
method of dynamic programming [3] whose numerical realization however usually
leads to a great amount of calculations.

In this work we provide an effective application of the iteration algorithm for the
optimal compatibility problem for solving two classes of optimal control problems:
a time minimum problem with phase constraint and a problem of optimization of
mixed constraints both for controllable systems affine with respect to a control.

Results presented in this paper are detaily represented in author’s works [14] –
[16]. The regularization algorithm for the optimal compatibility problem is given
in [18].

2. Problem formulation

Let X be a normalized space with a norm | · |X , in which we will consider a
non-empty set X0. Let Y be a Hilbert space with a scalar product 〈·, ·〉Y and a
norm | · |Y , standardly based on that scalar product; p0, p0 be such real numbers
that p0 ≥ p0 (we admit p0 = ∞; in that case by [p, p0] we mean an interval [p,∞));
F (·, ·) be a function acting from [p0, p

0] × X0 to Y, b(·) be a function acting from
[p0, p

0] to Y and X(p) (p ∈ [p0, p
0]) be a one-parametric family of sub-sets of a set

X0. We consider the following optimization problem

(2.1)

p → min,
F (p, x) = b(p),

x ∈ X(p),
p ∈ [p0, p

0],

which implies finding the minimum value of a parameter p ∈ [p0, p
0], such that the

system F (p, x) = b(p) is compatible in X(p).
In what follows we believe that there exists an admissible element for problem

(2.1). We will denote the optimal value of problem (2.1) by p∗, and a set of all its
solutions (p∗, x∗) – by {p∗} ×X∗.

In accordance to [7], we will call a function G : [p0, p
0]×X0 7→ Y by a compact-

ificator if for any sequence (pk, xk) from [p0, p
0] × X0 such that |G(pk, xk)|Y → 0

and pk → p̄, a sequence (xk) is compact in X.
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We will consider problem (2.1) under the following assumptions:
(A1) multi-valued function p 7→ X(p) is continuous, i.e., if xk ∈ X(pk) (k =

0, 1, . . .) pk → p̄ and xk → x̄, then x̄ ∈ X(p̄);
(A2) functions p 7→ b(p) and (p, x) 7→ F (p, x) are continuous;
(A3) a function (p, x) 7→ F (p, x)− b(p) is a compactificator.

Lemma 2.1. Let assumptions (A1) – (A3) be satisfied. Then for any sequence
(pk, xk) from [p0, p

0]×X0 such that pk → p̄, |F (pk, xk)−b(pk)|Y → 0 and xk ∈ X(pk)
(k = 0, 1, . . .), a sequence (xk) is compact in X and dist(xk, X(p̄)) → 0.∗

Obviously from Lemma 2.1 it follows

Corollary 2.2. Let assumptions (A1) – (A3) be satisfied. Then
1) for any p̄ ∈ [p0, p

0] a set E = {(p, x) ∈ [p0, p̄] × X(p) : F (p, x) = b(p)} is a
compact in R1 ×X0;

2) problem (2.1) has a solution;
3) a set X∗ is non-empty compact in X0.

In further analysis the following assumption plays an important role:
(A4) for each p ∈ [p0, p∗] a set F (p,X(p)) = {F (p, x) : x ∈ X(p)} is convex.

3. Expanded problem

By means of randomization of an argument [7] Assumption (A4) allows to formu-
late a problem with a linearized equality constraint in a sense equivalent to problem
(2.1). Namely, let Σ be a set of all sub-sets of a space X. By Dirak measure con-
centrated in a point x ∈ X0, as usual (see, e.g., [19]) we mean such a function
δx : Σ 7→ [0, 1] that δx(S) = 1, if x ∈ S, and δx(S) = 1, if x 6∈ S (S ∈ Σ). We
will consider probabilistic measures µ on Σ, which are finite convex combinations
of Dirak measures:

(3.1) µ =
m∑

i=1

αiδxi , αi ≥ 0,

m∑

i=1

αi = 1, x1, . . . , xm ∈ X0.

By M we denote a set of all measures µ on Σ of a form (3.1). For all p ∈ [p0, p
0]

and all µ ∈ M of a form (3.1) we set

F (p, µ) =
∫

F (p, x)µ(dx) =
m∑

i=1

αi

∫
F (p, x)δxi(dx) =

m∑

i=1

αiF (p, xi).

Note that F (p, δx) = F (p, x) (p ∈ [p0, p
0], x ∈ X0) and thus, identifying δx with

x (x ∈ X0), a function F (·, ·) receive arguments lying in [p0, p
0] × M instead of

[p0, p
0]×X0 as it was the initial case.

Lemma 3.1. Let Assumption (A4) be satisfied. Then for all p ∈ [p0, p
0] a function

µ 7→ F (p, µ) is linear on M in a sense that for any µ1, µ2 ∈ M and any λ ∈ [0, 1]

F (p, λµ1 + (1− λ)µ2) = λF (p, µ1) + (1− λ)F (p, µ2).

∗We don’t provide proofs for all theorems and lemmas in this paper. A reader can find them in
author’s works [14] – [18].
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For any p ∈ [p0, p
0] we set

M(p) = {µ ∈ M : µ(X(p)) = 1}
and consider the following expanded optimization problem:

p → min,
F (p, µ) = b(p),

µ ∈ M(p),
p ∈ [p0, p

0].

Each admissible element (p, x) of problem (2.1) gives rise to an admissible element
(p, δx) of problem (3).

That is why a set of all admissible elements of problem (3) is not empty. We
denote the optimal value of problem (3) by p̂∗.

Theorem 3.2. Let assumptions (A1) – (A4) be satisfied. Then p∗ = p̂∗ and if
(p∗, x∗) is a solution of problem (2.1), then (p∗, δx∗) is a solution of problem (3).

Now we aim at constructing an iteration algorithm for solving problem (2.1). We
introduce the following additional assumptions:

(A5) a multi-valued function p 7→ X(p) increases monotonically on [p0, p∗], i.e.,
X(p1) ⊂ X(p2) for any p1 ∈ [p0, p∗], p2 ∈ [p1, p∗];

(A6) for any p ∈ [p0, p∗] a set F (p,X(p)) is closed in Y ;
(A7) for any ε > 0 there exists δ > 0 such that for all p1 ∈ [p0, p∗], p2 ∈ [p1, p∗] :

p2 − p1 < δ and any x ∈ X(p1) it holds that |F (p1, x)− F (p2, x)|Y < ε;
(A8) a set

⋃
p∈[p0,p∗] F (p,X(p)) is bounded in Y ;

(A9) for any l ∈ Y a function p 7→ c(l|F (p,X(p))) is continuous on [p0, p∗].
Here and in what follows c(·|W ) is a support function of a non-empty set W ⊂ Y :

c(l|W ) = sup
y∈W

〈l, y〉 (l ∈ Y ).

For any p ∈ [p0, p
0] and any measure µ ∈ M(p) we set

R(p, µ) = {x ∈ X(p) : F (p, x) = F (p, µ)}.
Let us note that assumption (A4) implies R(p, µ) 6= ∅ for all p ∈ [p0, p∗] and
µ ∈ M(p).

4. Algorithm

An iteration algorithm solving problem (2.1) which we suggest below is recalcu-
lating a triple (pk, µk, xk), where (pk, xk) is a current approximation of a solution
of problem (2.1) and µk ∈ M is a subsidiary element related to expanded problem
(3).

Let us consider the following iteration algorithm. At zero step we chose

(4.1) µ0 ∈ M(p0), x0 ∈ R(p0, µ0)

and a triple (p0, µ0, x0) is accepted as a initial element of the algorithm sequence. At
a step k+1 by means of an element (pk, µk, xk) ∈ [p0, p

0]×M×X0 we set an element
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(pk+1, µk+1, xk+1) ∈ [p0, p
0] ×M × X0. Namely, we find a solution (pk+1, νk+1) of

the following optimization problem:

(4.2)

p → min,
p ∈ [pk, p

0],
〈F (pk, µk) − b(pk), F (p, ν)− b(p)〉Y ≤ 0,

ν ∈ M(p);

we define

(4.3) τk+1 = arg min
τ∈[0,1]

|F (pk+1, (1− τ)µk + τνk+1)− b(pk+1)|2Y
and set

(4.4) µk+1 = (1− τk+1)µk + τk+1νk+1,

(4.5) xk+1 ∈ R(pk+1, µk+1) if R(pk+1, µk+1) 6= ∅,
xk+1 ∈ X(pk+1) if R(pk+1, µk+1) = ∅.

Note that one can find τk+1 (4.3) explicitly. Namely,

(4.6) τk+1 =





0, τ∗k+1 < 0,
τ∗k+1, τ∗k+1 ∈ [0, 1],

1, τ∗k+1 > 1,
τ∗k+1 =

〈qk+1, b(pk+1)− F (pk+1, µk)〉Y
|qk+1|2Y

(qk+1 = F (pk+1, νk+1)− F (pk+1, µk) 6= 0),

(4.7) τk+1 ∈ [0, 1] (qk+1 = 0).

Lemma 4.1. Let assumptions (A1) – (A6) and (A9) hold. Then a sequence
(pk, µk, xk) is defined by (4.1) – (4.7) correctly, i.e., for all k = 0, 1, . . . problem
(4.2) has a solution (pk+1, νk+1) and the element τk+1 (4.3) exists. Moreover for
all k = 0, 1, . . .

(4.8) p0 ≤ . . . ≤ pk ≤ . . . ≤ p∗,

(4.9) µk ∈ M(pk), xk ∈ R(pk, µk).

By dist(z, X∗) we will denote a distance in X between an element z and a set
X∗ : dist(z,X∗) = infx∈X∗ |z − x|X .

The main result of this work is comprised in

Theorem 4.2. Let assumptions (A1) – (A9) be satisfied and a sequence (pk, µk, xk)
be defined by algorithm (4.1) – (4.7). Then pk → p∗ and dist(xk, X∗) → 0.

For proving Theorem 4.2 we need two Lemmas.

Lemma 4.3. Let α > 0, βk ≥ 0, γk ≥ 0, γk+1 ≤ (1 − αγk)γk + βk (k = 0, 1, . . .)
and βk → 0. Then γk → 0.†

The following Lemma plays a key role:

†One can find the proof of this Lemma in [7].
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Lemma 4.4. Let conditions of Theorem 4.2 be satisfied. Then

(4.10) pk → p̄ ∈ [p0, p∗],

(4.11) lim
k→∞

|F (pk, µk)− b(pk)|Y = 0.

Proof. From (4.8) it follows that (4.10). Let us prove (4.11). We set

(4.12) H(p, µ) = F (p, µ)− b(p), µk(τ) = µk + τ(νk+1 − µk).

For all natural k and any τ ∈ [0, 1] we have

|H(pk+1, µk(τ))|2Y = |H(pk+1, µk + τ(νk+1 − µk))|2Y
= |(1− τ)H(pk+1, µk + τH(pk+1, νk+1))|2Y
≤ (1− 2τ)|H(pk+1, µk)|2Y
+ 2τ(1− τ)〈H(pk+1, µk),H(pk+1, νk+1)〉Y
+ τ2{|H(pk+1, µk)|2Y + |H(pk+1, νk+1)|2Y }.(4.13)

Since µk ∈ M(pk) and νk+1 ∈ M(pk+1), from Assumption (A4) we get F (pk, µk) ∈
F (pk, X(pk)) and F (pk+1, νk+1) ∈ F (pk+1, X(pk+1)). According to Lemma 4.1
pk, pk+1 ∈ [p0, p∗], hence

F (pk, µk), F (pk+1, νk+1) ∈ E =
⋃

p∈[p0,p∗]

F (p,X(p)).

Thanks to Assumption (A8) a set E is bounded in Y. From this fact and Assumption
(A2) we conclude that

(4.14) |H(pk, µk)|Y ≤ L, |H(pk+1, νk+1)|Y ≤ L,

where L ≥ 0 is such that L ≥ |y|Y + |b(p)|Y for all y ∈ E and p ∈ [p0, p∗]. Using
estimates in the right-hand side of (4.14), substituting (pk+1, µk) by (pk, µk), and
adding the corresponding difference, we continue (4.13) as follows:

|H(pk+1, µk(τ))|2Y ≤ (1− 2τ)|H(pk, µk)|2Y + αk(τ) + βk(τ) + 2L2τ2;

where

αk(τ) = 2τ(1− τ)〈H(pk, µk),H(pk+1, νk+1)〉Y ,

βk(τ) = (1− 2τ)
(|H(pk+1, µk)|2Y − |H(pk, µk)|2Y

)

+ 2τ(1− τ)〈H(pk+1, µk)−H(pk, µk),H(pk+1, νk+1)〉Y ≤ βk,

βk =
(|H(pk+1, µk)|2Y − |H(pk, µk)|2Y

)

+ 2〈H(pk+1, µk)−H(pk+1, µk),H(pk+1, νk+1)〉Y .(4.15)

Since (pk+1, νk+1) is an admissible element in problem (4.2) αk(τ) ≤ 0. Therefore

|H(pk+1, µk(τ))|2Y ≤ (1− 2τ)|H(pk, µk)|2Y + βk + 2L2τ2.

According to (4.3) τk+1 = arg minτ∈[0,1] |H(pk+1, µk(τ)|2Y , hence

|H(pk+1, µk+1)|2Y = |H(pk+1, µk(τk+1))|2Y
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≤ min
τ∈[0,1]

{(1− 2τ)|H(pk, µk)|2Y + βk + 2L2τ2}.

The minimum value of a quadratic function of an argument τ, appearing in a right-
hand side, is approached at a point τk+1 = |H(pk, νk)|2Y /2L2. And

min
τ∈[0,1]

{
(1− 2τ)|H(pk, µk)|2Y + 2L2τ2

}
=

(
1− |H(pk, µk)|2Y

2L2

)
|H(pk, µk)|2Y + βk.

Finally,

(4.16) |H(pk+1, µk+1)|2Y ≤
(

1− |H(pk, µk)|2Y
2L2

)
|H(µk)|2Y + βk.

Let us show that βk → 0. To do so it is sufficient to check that

(4.17) |F (pk+1, µk)− F (pk, µk)|Y → 0,

(4.18) |b(pk+1)− b(pk)|Y → 0

(which follows from formula for βk (4.15), notations (4.12) and estimates (4.14)).
The convergence (4.18) follows from continuity of the function b(·) and convergence
pk → p̄ (see (4.10)). Let us prove (4.17). In accordance to Lemma 4.1 µk ∈
M(pk), hence µk =

∑mk
i=1 α

(k)
i δ

x
(k)
i

, where α
(k)
1 , . . . , α

(k)
mk ∈ [0, 1],

∑mk
i=1 α

(k)
i = 1,

x
(k)
1 , . . . , x

(k)
mk ∈ X(pk). Then

|F (pk+1, µk)− F (pk, µk)|Y =

∣∣∣∣∣
mk∑

i=1

α
(k)
i F (pk+1, x

(k)
i )−

mk∑

i=1

α
(k)
i F (pk, x

(k)
i )

∣∣∣∣∣
Y

≤
mk∑

i=1

α
(k)
i

∣∣∣F (pk+1, x
(k)
i )− F (pk, x

(k)
i )

∣∣∣
Y

.

Because of convergence pk → p̄ and Assumption (A7)

max
i=1,...,mk

|F (pk+1, x
(k)
i )− F (pk, x

(k)
i )|Y → 0.

From the last fact we get convergence (4.17). Thus we proved that βk → 0.
Now let us set |H(pk, µk)|2Y = γk and rewrite (4.16) as follows

γk+1 ≤
(
1− γk

2L2

)
γk + βk.

According to Lemma 4.3 γk → 0 as k →∞ which finalize the proof. ¤

Proof of Theorem 4.2. According to Lemma 4.4 we have (4.10) and (4.11); and
besides owing to (4.8) pk ≤ p̄ ≤ p∗ (k = 0, 1, . . .). By Lemma 4.1 µk ∈ M(pk) and
xk ∈ R(pk, µk), i.e., (see (3)) xk ∈ X(pk) and F (pk, µk) = F (pk, xk). From (4.10) it
follows that

(4.19) |F (pk, xk)− b(pk)|2Y → 0.

Thus a sequence (pk, xk) satisfies to conditions of Lemma 2.1. By this Lemma a
sequence (xk) is compact in X and

(4.20) dist(xk, X(p̄)) → 0.
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Let x̄ is an arbitrary limit of the sequence (xk), i.e., a limit in X of some sub-
sequence (xkj

) From (4.20) and closeness of X(p̄) (a consequence of Assumption
(A1)) it follows that x̄ ∈ X(p̄). From (4.19), Assumption (A1) and continuity of
functions F (·, ·) and b(·) (Assumption (A2)) it follows that F (p̄, x̄) = b(p̄). Thus x̄
is an admissible element of problem (2.1). Hence p̄ ≥ p∗. As it was stated above
p̄ ≤ p∗, which leads to p̄ = p∗. Therefore (p∗, x̄) is a solution of problem (2.1). Since
x̄ is an arbitrary limit of the sequence (xk), then dist(xk, X∗) → 0. which finalize
proving the Theorem.

5. Algorithm concretization

In this section we are aimed at rewriting the algorithm (4.1) – (4.7) in constructive
terms. Namely, we rewrite problem (4.2) in a simplified form, i.e., as a scalar
optimization problem with subsequent calculation of an extreme element in the
space X. Consider the following iteration algorithm, which recalculates elements
(pk, µk, xk) ∈ [p0, p

0]×M ×X0. At zero step we chose

(5.1) x0 ∈ X(p0), µ0 = δx0 .

A triple (p0, µ0, x0) is chosen as an initial element of algorithm’s sequence. At
step k + 1 by means of an element (pk, µk, xk) ∈ [p0, p

0] × M × X0 an element
(pk+1, µk+1, xk+1) ∈ [p0, p

0]×M ×X0 is calculated. Namely, we set

(5.2) lk = b(pk)− F (pk, µk),

(5.3) ϕk(p) = c(lk|F (p,X(p)))− 〈lk, b(p)〉Y (p ∈ [pk, p
0]),

and find a number

(5.4) pk+1 = min{p ∈ [pk, p
0] : ϕk(p) ≥ 0}

and an element

(5.5) vk+1 ∈ X(pk+1)

such that

(5.6) 〈lk, F (pk+1, vk+1)〉Y = c(lk|F (pk+1, X(pk+1))).

We set

(5.7) νk+1 = δvk+1
,

The value τk+1 is defined by (4.6) – (4.7) and calculated by

(5.8) µk+1 = (1− τk+1)µk + τk+1νk+1,

(5.9) xk+1 ∈ R(pk+1, µk+1) if R(pk+1, µk+1) 6= ∅,
xk+1 ∈ X(pk+1) if R(pk+1, µk+1) = ∅.

Let us note that

µk =
k∑

i=0

α
(k)
i δvi ,
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where

(5.10) v0 = x0, α
(0)
0 = 1,

(5.11) α
(k+1)
i = (1− τk+1)α

(k)
i (i = 0, . . . , k), α

(k+1)
k+1 = τk+1.

That is why one can rewrite the algorithm (5.1) – (5.11) in the following equivalent
form. At zero step we set

(5.12) α
(0)
0 = 1, x0 ∈ X(p0), v0 = x0,

and we chose a set (p0, α
(0)
0 , v0, x0) as an initial element of algorithm’s sequence. At

step k + 1 by means of a set (pk, α
(k)
0 , . . . , α

(k)
k , v0, . . . , vk, xk), where

pk ∈ [p0, p
0], α

(k)
0 , . . . , α

(k)
k ∈ [0, 1], v0, . . . , vk, xk ∈ X0,

we calculate a set (pk+1, α
(k+1)
0 , . . . , α

(k+1)
k+1 , v0, . . . , vk+1, xk+1), where

pk+1 ∈ [p0, p
0], α

(k+1)
0 , . . . , α

(k+1)
k+1 ∈ [0, 1], v0, . . . , vk+1, xk+1 ∈ X0.

Namely, we set

(5.13) lk = b(pk)−
k∑

i=1

α
(k)
i F (pk, vi),

(5.14) ϕk(p) = c(lk|F (p,X(p)))− 〈lk, b(p)〉Y (p ∈ [pk, p
0])

and find a number

(5.15) pk+1 = min{p ∈ [pk, p
0] : ϕk(p) ≥ 0}

and an element

(5.16) vk+1 ∈ X(pk+1)

such that

(5.17) 〈lk, F (pk+1, vk+1)〉Y = c(lk|F (pk+1, X(pk+1))).

The value τk+1 is defined by

(5.18) τk+1 =





0, τ∗k+1 < 0,
τ∗k+1, τ∗k+1 ∈ [0, 1],

1, τ∗k+1 > 1,
τ∗k+1 =

〈qk+1, b(pk+1)− F (pk+1, µk)〉Y
|qk+1|2Y

(qk+1 = F (pk+1, vk+1)−
k∑

i=0

α
(k)
i F (pk+1, vi) 6= 0),

(5.19) τk+1 ∈ [0, 1] (qk+1 = 0).

We set

(5.20) α
(k+1)
i = (1− τk+1)α

(k)
i (i = 0, . . . , k), α

(k+1)
k+1 = τk+1.
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An element xk+1 is found from

(5.21) xk+1 ∈ F−1(pk+1, wk+1) if F−1(pk+1, wk+1) 6= ∅,
xk+1 ∈ X(pk+1) if F−1(pk+1, wk+1) = ∅,

where

(5.22) wk+1 =
k+1∑

i=0

α
(k)
i F (pk+1, vi),

(5.23) F−1(p, w) = {x ∈ X(p) : F (p, x) = w}.
Remark 5.1. The main operation at step k +1 of this algorithm comprises solving
one-dimensional minimization problem (5.15) and subsequent finding an extreme
element (5.16) – (5.17). The operation (5.22), (5.23) on finding an approximation
xk+1 of a solution’s component (lying in X∗) may by difficult. One can ignore it if
only an approximation of optimal value p∗ of problem (2.1) is to be found.

The following Lemma states the equivalence of the algorithm (5.12) – (5.23) to
the basic algorithm (4.1) – (4.7).

Lemma 5.2. Let assumptions (A1) – (A9) be satisfied. Then a sequence
(pk, α

(k)
0 , . . . , α

(k)
k , v0, . . . , vk, xk) is defined by (5.12) – (5.23) correctly and a se-

quence (pk, µk, xk), defined by (5.12) – (5.23), is satisfied to (4.1) – (4.7) of the
basic algorithm and for all k = 0, 1, . . . it holds (see (5.22)) F (pk+1, xk+1) = wk+1,
where wk+1 is defined by (5.23).

Lemma 5.2 and Theorem 4.2 on convergence of the basic algorithm imply the
convergence of the algorithm (5.12) – (5.23).

Theorem 5.3. Let assumptions (A1) – (A9) be satisfied and a sequence (pk, α
(k)
0 , . . . ,

α
(k)
k , v0, . . . , vk, xk) is defined by the algorithm (5.12) – (5.23). Then pk → p∗ and

dist(xk, X∗) → 0.

6. Application to optimal control problems

Let us consider a n-dimensional controllable system

(6.1) ż(t) = f(z(t), t) + g(z(t), t)u(t),

functioning on the time interval [0, T ] (T > 0). Here (z, t) 7→ f(z, t) is a vector-
function defined on Rn × [0, T ] whose values lie in Rn, (z, t) 7→ g(z, t) is a matrix-
function of dimension m× n defined on Rn × [0, T ]; Q(·) is a multi-valued function
acting from the interval [0, T ] into a class of all non-empty sub-sets of Rn×Rm. By
a control we mean, as usual, any measurable bounded function u(·) : [0, T ] 7→ Rm.
We suppose the initial condition to hold:

(6.2) z(0) = z0,

where z0 ∈ Rn.

In this section we consider two classes of optimal control problems settled for
system (6.1), (6.2): time minimum problem and problem of optimization of mixed
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constraint. We show that these problems can be reformulated as optimal compat-
ibility problems and provide a scheme of applying the algorithm (5.12) – (5.23) to
find their solutions.

6.1. Time minimum problem. Let us consider a problem of finding a minimum
time which it takes to system (6.1) to pass from the given initial state (6.2) to the
given final state z1 ∈ Rn whereas a mixed constraint (z(t), u(t)) ∈ Q(t) (t ∈ [0, T ])
on a state variable z(t) and a control variable u(t) holds:

p → min,

ż(t) = f(z(t), t) + g(z(t), t)u(t),(6.3)
z(0) = z0, z(p) = z1,

(z(t), u(t)) ∈ Q(t),
(t ∈ [0, T ]).

Let us believe that for problem (6.3) there exists an admissible controllable pro-
cess.

We denote the optimal value of problem (6.3) – minimum time – via p∗, and a
set of its solutions – via {p∗} ×Π∗, where Π∗ ⊂ Π.

In further analysis we will consider problem (6.3) under the following assumptions
(B1) (z, t) 7→ f(z, t) and (z, t) 7→ g(z, t) are continuous functions on Rn × [0, T ];
(B2) Q(t) is a convex, closed and bounded subset of Rn ×Rm for all t ∈ [0, T ];
(B3) a multi-valued function t 7→ Q(t) is measurable (see [19]);
(B4) a set

⋃
t∈[0,T ] Q(t) is bounded.

Theorem 6.1. Let Assumptions (B1) – (B4) be satisfied. Then there exists a
solution of problem (6.3).

The fact that at the time moment p ∈ [0, T ] a trajectory z(·) of system (6.1)
under a control u(·) comes to the given final state z1, can be written in a form of
integral equations:

z(t)−
∫ t

0
(f(z(τ), τ) + g(z(τ), τ)u(τ))dτ = z0 (t ∈ [0, T ]),

z(t) +
∫ p

t
(f(z(τ), τ) + g(z(τ), τ)u(τ))dτ = z1 (t ∈ [0, p]),

z(t)−
∫ t

p
(f(z(τ), τ) + g(z(τ), τ)u(τ))dτ = z1 (t ∈ [p, T ]).

On the other hand, if a measurable function z(·) : [0, T ] 7→ Rn and a control u(·)
satisfy to these equations for a.a. t ∈ [0, T ], then z(·) a.a. coincides with a trajectory
under a control u(·), coming to the state z1 at the time moment p. This observations
allows to reformulate problem (6.3) as a optimal compatibility problem (2.1) in a
space of measurable expansions of controllable processes.

Namely, let us introduce a Hilbert space

(6.4) Y = L2([0, T ], Rn ×Rn)
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and a normalized space

(6.5) X = L2([0, T ], Rn)× L2
w([0, T ], Rm),

where L2
w([0, T ], Rm) is a space L2([0, T ], Rm), accompanied with a weak norm (see

[19]). We extract a bounded set X0 in L2([0, T ], Rn)× L2([0, T ], Rm) such that all
admissible controllable processes x = (z(·), u(·)) lie in X0 (the existence of such a
set is guaranteed by Assumption (B4)).

For all p ∈ [0, T ] we set

(6.6) F1(p, x)(t) = z(t)−
∫ t

0
(f(z(τ), τ) + g(z(τ), τ)u(τ))dτ (t ∈ [0, T ]),

F2(p, x)(t) =
{

z(t) +
∫ p
t (f(z(τ), τ) + g(z(τ), τ)u(τ))dτ (t ∈ [0, p])

z(t)− ∫ t
p (f(z(τ), τ) + g(z(τ), τ)u(τ))dτ (t ∈ [p, T ])(6.7)

(x = (z(·), u(·)))
and introduce a function (p, x) 7→ F (p, x) : [0, T ]×X0 7→ Y, setting

(6.8) F (p, x) = F (p, x)(·) = (F1(p, x)(·), F2(p, x)(·)).
We put b = (b1(·), b2(·)) ∈ Y as

(6.9) b1(t) = z0, b2(t) = z1 (t ∈ [0, T ]).

And, finally, we introduce a set

(6.10) G = {x = (z(·), u(·)) ∈ X0 : (z(t), u(t)) ∈ Q(t) (t ∈ [0, T ])}.
Let us notice that x = (z(·), u(·)) ∈ X0 almost always coincides with an admissible
controllable process if and only if F (p, x) = b and x ∈ G. Therefore, the following
holds:

Theorem 6.2. Problem (6.3) and problem (2.1), where X(p) = G, b(p) = b, are
equivalent in the following sense:

(i) optimal values of problems (6.3) and (2.1) coincide;
(ii) a couple (p∗, x) ∈ [0, T ] × X0, where x = (z(·), u(·)), solves problem (2.1)

if and only if there exists an optimal controllable process (z∗(·), u∗(·)) such that
(z(t), u(t)) = (z∗(t), u∗(t)) for a.a. t ∈ [0, T ].

In further analysis we will consider problem (6.3) under the following subsidiary
assumption

(B5) for each p ∈ [0, p∗] a set F (p,G) = {F (p, x) : x ∈ G} is convex.

Remark 6.3. Let us notice that there exists a class of problems for which Assump-
tions (B1) – (B5) are satisfied – time minimum problems for bilinear controllable
systems with static state constraint:

p → min,

ż(i)(t) =
m∑

j=1

[aij(t)z(j)(t) + bij(t)u(j)(t)z(j)(t)] (i = 1, . . . , n),

z(0) = z0, z(p) = z1,

u(t) = (u(1)(t), ..., u(m)(t)) ∈ U,(6.11)
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z(t) = (z(1)(t), ..., z(n)(t)) ∈ Z,

where z(t) = (z(1)(t), . . . , z(n)(t)) ∈ Rn is a state vector, u(t) = (u(1)(t), . . . , u(m)(t)) ∈
U ⊂ Rm is a control vector, z0, z1 ∈ Rn are the given initial and final states of the
system, geometric constraint on a control is a m-dimensional parallelogram:

U =
m∏

j=1

[u(j)
− , u

(j)
+ ],

where u
(j)
− ≤ u

(j)
+ (j = 1, . . . , m). We believe that t 7→ aij(t) and t 7→ bij(t) (i =

1, . . . , n, j = 1, . . . , m) are continuous scalar functions on [0, T ] and the set Z
defining a state constraint is convex, closed and bounded in Rn and, besides, Z ⊂
Rn

+, where
Rn

+ = {z = (z1, . . . , zn) ∈ Rn : zi > 0, i = 1, . . . , n}.
It is clear that problem (6.11) has a form of considered in this section problem (6.3).
Corresponding to the approach described above we introduce functional spaces X
and Y by (6.5), (6.4). We introduce a function F (·, ·) like (6.6) – (6.8), we put a
vector b ∈ Y like (6.9), and according to (6.10) we set

G = {x = (z(·), u(·)) ∈ X0 : z(t) ∈ Z, u(t) ∈ U (t ∈ [0, T ])}.
One can check that for the problem (6.3) of a form (6.11) Assumptions (B1) – (B5)
holds.

Let us come back to time minimum problem (6.3) and optimization problem (2.1)
equivalent to it (see Theorem 6.1) where functional spaces X and Y are defined by
(6.5), (6.4), X(p) = G is determined by (6.10), b(p) = b is set by (6.9), a function
F (·, ·) has a form (6.6) – (6.8).

We aim at applying the algorithm (5.12) – (5.23) of solving a problem (2.1)
for solving time minimum problem (6.3). For that it is sufficient to prove that
Assumptions (B1) – (B5) formulated for problem (6.3) lead to Assumptions (A1) –
(A9) satisfied for equivalent problem (2.1).

Lemma 6.4. Let assumptions (B1) – (B5) (6.3) be satisfied. Then for equivalent
problem (2.1) assumptions (A1) – (A9) hold.

Proof. 1. In order to prove (A1) one should prove the closedness of a set G. Let
xk = xk(·) = (zk(·), u(·)) ∈ G, xk → x̄ = x̄(·) = (z̄(·), ū(·)), i.e., zk(·) → z̄(·) in
L2([0, T ], Rn), uk(·) → ū(·) in L2

w([0, T ], Rm), (zk(t), uk(t)) ∈ Q(t) (t ∈ [0, T ]), from
what it follows that

(z̄(t), ū(t)) ∈ Q(t) (t ∈ [0, T ]).
2. Let us prove continuity of a function (p, x) 7→ F (p, x) (assumption (A2)). Let

pk → p̄ and xk → x̄ in X (see (6.5)), i.e., zk(·) → z̄(·) in L2([0, T ], Rn) uk(·) → ū(·)
in L2

w([0, T ], Rm). Let us prove that F (pk, xk) → F (p̄, x̄). Using a formula for F1(·, ·)
(6.6) and continuity of functions f(·, ·), g(·, ·) (assumption (B1)) we see that

(6.12) |F1(pk, xk)− F1(p̄, x̄)|L2([0,T ],Rn) → 0.

Let is show that F2(pk, xk) → F2(p̄, x̄). We have

(6.13) |F2(pk, xk)− F2(p̄, x̄)| ≤ |F2(pk, xk)− F2(p̄, xk)|+ |F2(p̄, xk)− F2(p̄, x̄)|.
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Owing to the convergence xk → x̄ and continuity of functions f(·, ·) and g(·, ·) we
get F2(p̄, xk) → F2(p̄, x̄) (see (6.7)). Let us consider the first term in (6.13). Suppose
that pk ≤ p̄. Then

|F2(pk, xk)− F2(p̄, xk)|2L2([0,T ],Rn) ≤
∫ T

0
|F2(pk, xk)(t)− F2(p̄, xk)(t)|2Rndt

≤
∫ pk

0

∣∣∣∣
∫ p̄

pk

(f(zk(τ), τ) + g(zk(τ), τ)uk(τ))dτ

∣∣∣∣
2

Rn

dt +

∫ p̄

pk

∣∣∣∣
∫ p̄

pk

(f(zk(τ), τ) + g(zk(τ), τ)uk(τ))dτ

∣∣∣∣
2

Rn

dt +

∫ T

p̄

∣∣∣∣
∫ p̄

pk

(f(zk(τ), τ) + g(zk(τ), τ)uk(τ))dτ

∣∣∣∣
2

Rn

dt

=
∫ T

0

∣∣∣∣
∫ p̄

pk

(f(zk(τ), τ) + g(zk(τ), τ)uk(τ))dτ

∣∣∣∣
2

Rn

dt

≤ C|pk − p̄|2,
where C is a constant. The latter inequality holds thanks to the boundedness
of a sequence (zk(·), uk(·)). Supposing that pk > p̄, analogously we get the same
estimate. Thus |F2(pk, xk)−F2(p̄, xk)| → 0. Since (6.13) we have (6.12). Continuity
of a function F (·, ·) (see (6.8)) is proved.

3. Let us prove that a function (p, x) 7→ F (p, x) − b is a compactificator (As-
sumption (A3)). Let |F (pk, xk)− b| → 0 and pk → p̄. Let us show that a sequence
(xk) = ((zk(·), uk(·))) is compact in X. Taking into account a formula (6.6) – (6.8)
for a function F (·, ·), we have |F1(pk, xk)− b1|L2([0,T ],Rn) → 0 or

(6.14)
∫ T

0

∣∣∣∣zk(t)−
∫ t

0
(f(zk(τ), τ) + g(zk(τ), τ)uk(τ)dτ − z0

∣∣∣∣
2

Rn

dt → 0.

We rewrite (6.14) in a following form

(6.15) |zk(·)− dk(·)|L2([0,T ],Rn) → 0,

where

dk(t) =
∫ t

0
(f(zk(τ), τ) + (zk(τ), τ)uk(τ))dτ + z0 (t ∈ [0, T ]).

A family of functions (dk(·)) (k = 1, 2, . . .) if uniformly bounded and equipotention-
ally continuous. According to Arzela Theorem [5] a sequence (dk(·)) is compact in
C([0, T ], Rn), and, hence, it is compact in L2([0, T ], Rn). Therefore there exists a
subsequence (dkj

(·)), converging in L2([0, T ], Rn) to an element d̄(·). According to
(6.15) zkj

(·) → d̄(·) in L2([0, T ], Rn), and hence (zk(·)) is compact in L2([0, T ], Rn).
A sequence (uk(·)) is bounded thanks to Assumption (B4), i.e., it is compact in
L2

w([0, T ], Rm). Thus a sequence (xk) = (zk(·), uk(·)) is compact in X (see (6.5)).
4. The convexity of the set F (p,G) for each p ∈ [0, T ] (Assumption (A4)) holds

owing to Assumption (B5).
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5. Boundedness of the set F (p,G) for all p ∈ [0, T ] (Assumption (A5)) is a
consequence of closedness, convexity and boundedness of values of multi-valued
function t 7→ Q(t) (Assumptions (B2), (B4)).

6. Let us prove that Assumption (A6) holds, i.e., for any ε > 0 there exists such
δ > 0 that for all p1, p2 ∈ [0, T ] such that |p2− p1| < δ, and any x = (z(·), u(·)) ∈ G

(6.16) |F (p1, x)− F (p2, x)|Y < ε

holds. Let us notice that F1(p1, x) = F1(p2, x) (see (6.6)). Let us suppose for
distinctness that p1 < p2. Then

|F2(p1, x)− F2(p2, x)|2L2([0,T ],Rn) ≤
∫ T

0
|F2(p1, x)(t)− F2(p̄, x)(t)|2Rndt

≤
∫ p1

0

∣∣∣∣
∫ p2

p1

(f(z(τ), τ) + g(z(τ), τ)u(τ))dτ

∣∣∣∣
2

Rn

dt

+
∫ p2

p1

∣∣∣∣
∫ p2

p1

(f(z(τ), τ) + g(z(τ), τ)u(τ))dτ

∣∣∣∣
2

Rn

dt

+
∫ T

p2

∣∣∣∣
∫ p2

p1

(f(z(τ), τ) + g(z(τ), τ)u(τ))dτ

∣∣∣∣
2

Rn

dt

=
∫ T

0

∣∣∣∣
∫ p2

p1

(f(z(τ), τ) + g(z(τ), τ)u(τ))dτ

∣∣∣∣
2

Rn

dt

≤ C|p1 − p2|2,
where C is a constant. Supposing that p1 > p2 analogously we get that same
estimate. Then putting δ = ε1/2/C1/2 we get that |p1 − p2| < δ holds (6.16).

7. The structure (6.6) – (6.8) of the function F (·, ·) and the boundedness of the
multi-valued function t 7→ Q(t) (Assumption (B4)) lead to the boundedness of the
set

⋃
p∈[0,T ] F (p,G) (Assumption (A7)).

8. Continuity of the support function p 7→ c(l|F (p,G)) (Assumption (A9)) for all
y ∈ Y is followed from the continuity of the function p 7→ F (p, ·) (6.6) – (6.8). ¤

Lemma 6.4 and Theorem 6.2 allow to apply the algorithm (5.12) – (5.23) for
solving problem (6.3). Concretizing this algorithm for the considered here particular
problem (2.1) equivalent to time-minimum problem (6.3) we get the following. At
zero step we put

(6.17) p0 = 0, α
(0)
0 = 1, (z0(·), u0(·)) ∈ G, vz

0(·) = z0(·), vu
0 (·) = u0(·)

and we chose a set (p0, α
(0)
0 , vz

0(·), vu
0 (·), z0(·), u0(·)) as an initial element of algo-

rithm’s sequence. At step k + 1 by means of a set

(pk, α
(k)
0 , . . . , α

(k)
k , vz

0(·), vu
0 (·), . . . , vz

k(·), vu
k (·), zk(·), uk(·)),

where
pk ∈ [0, T ], α

(k)
0 , . . . , α

(k)
k ∈ [0, 1],

(vz
0(·), vu

0 (·)), . . . , (vz
k(·), vu

k (·)), (zk(·), uk(·)) ∈ X0,
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we find a set

(pk+1, α
(k+1)
0 , . . . , α

(k+1)
k+1 , vz

0(·), vu
0 (·), . . . , vz

k+1(·), vu
k+1(·), zk+1(·), uk+1(·)),

where
pk+1 ∈ [0, T ], α

(k+1)
0 , . . . , α

(k+1)
k+1 ∈ [0, 1],

(vz
0(·), vu

0 (·)), . . . , (vz
k+1(·), vu

k+1(·)), (zk+1(·), uk+1(·)) ∈ X0.

Namely, we put

(6.18) lk(t) = z̄ −
k∑

i=1

α
(k)
i F (pk, vi)(t), (z̄ = (z0, z1), t ∈ [0, T ]).

In series as p ∈ [pk, T ], t ∈ [0, T ] we calculate values

m(p, t) = (l1(t) + l2(t), r1(p, t) + r2(p, t)),(6.19)

r1(p, t) = −
∫ T

t
l1(τ)dτ, r2(p, t) =

{ ∫ t
0 l2(τ)dτ, t ∈ [0, p],

− ∫ T
t l2(τ)dτ, t ∈ [p, T ],

(6.20)

and a set

(6.21) W (t) = {w(t, z, u) ∈ R2n : w(t, z, u) = (z, f(z, t) + g(z, t)u), (z, u) ∈ Q(t)},
by means of which we define a function ϕk(·) of a form

(6.22) ϕk(p) =
∫ T

0
[c(mk(p, t)|W (t))− 〈lk(t), z̄〉R2n ]dt (pk ≤ p ≤ T ).

We find a number

(6.23) pk+1 = min{p ∈ [pk, T ] : ϕk(p) ≥ 0}
and an extreme functional couple vk+1 = (vz

k+1(·), vu
k+1(·)) ∈ G such that

(6.24) 〈mk(pk+1, t), w(t, vz
k+1(t), v

u
k+1(t))〉R2n = c(mk(pk+1, t)|W (t)) (t ∈ [0, T ]),

where w(t, z, u) = (z, f(z, t) + g(z, t)u) (z ∈ Rn, u ∈ Rm, t ∈ [0, T ]). The value τk+1

is defined by

(6.25) τk+1 =





0, τ∗k+1 < 0,
τ∗k+1, τ∗k+1 ∈ [0, 1],

1, τ∗k+1 > 1,

(6.26) τ∗k+1 =

∫ T
0 〈qk+1(t), z̄ − qk+1(t) + F (pk+1, vk+1)(t)〉R2ndt∫ T

0 |qk+1(t)|2R2ndt

(
qk+1(t) = F (pk+1, vk+1)(t)−

k∑

i=0

α
(k)
i F (pk+1, vi)(t) 6≡ 0

)
,

(6.27) τk+1 ∈ [0, 1] (qk+1(t) ≡ 0).

We set

(6.28) α
(k+1)
i = (1− τk+1)α

(k)
i (i = 0, . . . , k), α

(k+1)
k+1 = τk+1.
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Functions zk+1(·), uk+1(·) are found as a solution of the system of integral equations

zk+1(t)−
∫ t

0
(f(zk+1(τ), τ) + g(zk+1(τ), τ)uk+1(τ))dτ =

k+1∑

i=0

α
(k+1)
i F1(pk+1, vi)(t)

(t ∈ [0, T ]),(6.29)

(6.30)





zk+1(t) +
∫ pk+1

t (f(zk+1(τ), τ) + g(zk+1(τ), τ)uk+1(τ))dτ

=
∑k+1

i=0 α
(k+1)
i F2(pk+1, vi)(t) (t ∈ [0, pk+1]),

zk+1(t)−
∫ t
pk+1

(f(zk+1(τ), τ) + g(zk+1(τ), τ)uk+1(τ))dτ

=
∑k+1

i=0 α
(k+1)
i F2(pk+1, vi)(t) (t ∈ [pk+1, T ])

under the constraint (zk+1(t), uk+1(t)) ∈ Q(t) (t ∈ [0, T ]).

Theorem 6.2 on equivalence of problems (6.3) and (2.1), and Theorem 5.3 on
convergence based on Lemma 6.4 imply convergence of algorithm (6.17) – (6.30) to
the solution of time minimum problem (6.3).

Theorem 6.5. Let (i) Assumption (B1) – (B5) are satisfied;
(ii) spaces X and Y are determined by (6.5), (6.4), a set G is given by (6.10),

an element b(p) = b is set by (6.9), and function F (·, ·) has a form (6.6) – (6.8);
(iii) a sequence (pk, xk) xk = (zk(·), uk(·)) is defined by algorithm (6.17) – (6.30).

Then pk → p∗ and distX(xk, D∗) → 0.

6.2. Problem of mixed constraint optimization. Let us consider again the
controllable system (6.1) functioning on the rime interval [0, T ] from the initial
state (6.2). Now we believe that a state vector z(t) and a control vector u(t) are
satisfied to a mixed constraint (x(t), u(t)) ∈ Q(p, t) (t ∈ [0, T ]), depending on a
scalar parameter p ∈ [p0, p

0]. Here Q(·, ·) is a multi-valued function acting from
[0, T ] × [p0, p

0] into a class of all non-empty sub-sets of Rn × Rm, p0, p
0 are given

numbers. We consider a problem of finding the minimum value of a parameter
p ∈ [p0, p

0] at which there exists a trajectory z(·) of system (6.1) under a control
u(·), such that for all t ∈ [0, T ] (x(t), u(t)) ∈ Q(p, t) holds; the trajectory is to be
detected too:

p → min,

ż(t) = f(z(t), t) + g(z(t), t)u(t),
z(0) = z0,(6.31)

(z(t), u(t)) ∈ Q(p, t),
(t ∈ [0, T ]).

We denote a set of all admissible controllable processes corresponding to a value p
via Π(p). We believe that for at least one value p ∈ [p0, p

0] a set Π(p) is not empty.
We denote the optimal value of the problem (6.31) via p∗, a set of all its solutions

– via {p∗} ×Π∗, where Π∗ = Π(p∗).

In further analysis we will consider problem (6.31) under the following assump-
tions:

(C1) functions (z, t) 7→ f(z, t) and (z, t) 7→ g(z, t) are continuous on Rn × [0, T ];
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(C2) Q(p, t) is a convex, bounded and closed subset of Rn×Rm for all p ∈ [p0, p
0]

and t ∈ [0, T ];
(C3) a multi-valued function t 7→ Q(p, t) is measurable for all p ∈ [p0, p

0]; a multi-
valued function p 7→ Q(p, t) is continuous for all t ∈ [0, T ], i.e., if (zk, uk) ∈ Q(pk, t)
(k = 1, 2, . . .) and pk → p̄, zk → z̄, uk → ū, then (z̄, ū) ∈ Q(p̄, t);

(C4) a set
⋃

(p,t)∈[p0,∞)×[0,T ] Q(p, t) is bounded;
(C5) for any t ∈ [0, T ] a multi-valued function p 7→ Q(p, t) increases monotoni-

cally, i.e., Q(p1, t) ⊂ Q(p2, t) for all p1 ≥ p0, p2 ≥ p1.

Theorem 6.6. Let Assumptions (C1) – (C3), (C5) be satisfied. Then there exists
a solution of problem (6.31).

Similar to the approach described for time minimum problem (6.3) we aim at
reformulating problem of mixed constraint optimization (6.31) as an optimization
problem of a form (2.1) in a space of measurable expansions of controllable pro-
cesses. We fix the normalized space X (6.5) and a bounded set X0 ⊂ X, containing
all admissible controllable processes (X0 exists thanks to Assumption (C4)). We
introduce a Hilbert space

(6.32) Y = L2([0, T ], Rn);

and define a function x 7→ F (p, x) = F (p, x)(·) : X 7→ Y, setting
(6.33)

F (p, x)(t) = z(t)−
∫ t

0
(f(z(τ), τ) + g(z(τ), τ)u(τ))dτ (t ∈ [0, T ], x = (z(·), u(·)));

note that in (6.33) we write F (p, x) subjunctively to keep initial notations since in
fact F does not depend on p in this case). We put b = b(·) ∈ Y as

(6.34) b(t) = z0 (t ∈ [0, T ]);

and finally for all p ≥ p0 we introduce a set

(6.35) X(p) = {x = (z(·), u(·)) ∈ X0 : (z(t), u(t)) ∈ Q(p, t) (t ∈ [0, T ])}.
Let us notice that x = (z(·), u(·)) ∈ X0 almost always coincides with a admissible
controllable process corresponding to a parameter p ∈ [p0, p

0] if and only if F (x) = b
and x ∈ X(p). Thus we have

Theorem 6.7. Problems (6.31) and (2.1) are equivalent in the following sense
(i) optimal values of problems (6.31) and (2.1) coincide;
(ii) a functional couple (p∗, x) ∈ [p0, p

0] × X0, x = (z(·), u(·)), solves problem
(2.1) if and only if there exists an optimal controllable process (z∗(·), u∗(·)) such
that (z(t), u(t)) = (z∗(t), u∗(t)) for a.a. t ∈ [0, T ].

In further analysis we will consider problem (6.31) under the following subsidiary
assumption:

(C6) for any p ∈ [p0, p∗] a set F (X(p)) = {F (x) : x ∈ X(p)} is convex.

Remark 6.8. Let us notice that analogously to the case of the time minimum
problem (see Remark 6.8) Assumptions (B1) – (B5) are satisfied for the problem of
mixed constraint optimization for a class of bilinear controllable systems:

p → min,
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ż(i)(t) =
m∑

j=1

[aij(t)z(j)(t) + bij(t)u(j)(t)z(j)(t)] (i = 1, . . . , n),

z(0) = z0,

u(t) = (u(1)(t), ..., u(m)(t)) ∈ U,(6.36)

z(t) = (z(1)(t), ..., z(n)(t)) ∈ Z(p, t),

where z(t) = (z(1)(t), . . . , z(n)(t)) ∈ Rn is a state vector, u(t) = (u(1)(t), . . . , u(m)(t)) ∈
U ⊂ Rm is a control vector, z0 ∈ Rn are the given initial state of the system, geo-
metric constraint on a control is a m-dimensional parallelogram (6.3); functions
t 7→ aij(t) and t 7→ bij(t) (i = 1, . . . , n, j = 1, . . . , m) are continuous scalar func-
tions on [0, T ]. The set Z(p, t) characterizing a state constraint in the problem (6.36)
satisfies to

(D1) for all p ∈ [p0, p
0], t ∈ [0, T ] sets Z(p, t) are convex, closed and bounded and

lying in a positive ortant Rn
+ (6.3);

(D2) for any t ∈ [0, T ] a multi-valued function p 7→ Z(p, t) is continuous and
increases monotonically;

(D3) a set
⋃

(p,t)∈[p0,p0]×[0,T ] Z(p, t) is bounded. Rewriting problem (6.36) as (6.31)
like in Remark 6.8 one can prove that Assumptions (D1) – (D3) guarantee (C1) –
(C6).

Let us come back to problem (6.31). Analogously to Lemma 7 we have

Lemma 6.9. Let for problem (6.31) Assumptions (C1) – (C6) be satisfied. Then
for the equivalent problem (2.1) Assumptions (A1) – (A9) hold.

Lemma 6.9 and Theorem 6.6 allow to apply algorithm (5.12) – (5.23) for solv-
ing problem (6.31). Concretizing this algorithm for the considered here particular
problem (2.1) equivalent to problem of mixed constraint optimization (6.31) we get
the following. At zero step we put

(6.37) x0 = (z0(·), u0(·)) ∈ X(p0), w0(·) = F (x0)(·)
and we chose a set (p0, w0(·), x0(·)) as an initial element of algorithm’s
sequence. At step k + 1 by means of (pk, wk(·), xk(·)) ∈ [p0, p

0] × L2([0, T ], Rn) ×
L2([0, T ], Rn × Rm), xk(·) = (zk(·), uk(·)), we find a set (pk+1, wk+1(·), xk+1(·)) ∈
[p0, p

0] × L2([0, T ], Rn) × L2([0, T ], Rn × Rm), xk+1(·) = (zk+1(·), uk+1(·)). Namely
we put

(6.38) lk(t) = z0 − wk(t) (t ∈ [0, T ]).

In series for all p ∈ [pk, T ], t ∈ [0, T ] we calculate

(6.39) m(t) = (l(t), r(t)) r(t) = −
∫ T

t
l(τ)dτ,

and a set

W (p, t) = {w(t, z, u) ∈ R2n : w(t, z, u) = (z, f(z, t) + g(z, t)u), (z, u) ∈ Q(p, t)}
(p ∈ [p0, p

0], t ∈ [0, T ])(6.40)
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by means of which we define a function ϕk(·) of a form

(6.41) ϕk(p) =
∫ T

0
[c(mk(t)|W (p, t))− 〈lk(t), z̄〉R2n ]dt (p ∈ [pk, p

0]).

We find a number

(6.42) pk+1 = min{p ∈ [pk, p
0] : ϕk(p) ≥ 0}

and a couple of measurable functions vk+1 = (vz
k+1(·), vu

k+1(·)) on [0, T ] such that
(vz

k+1(t), v
u
k+1(t)) ∈ Q(pk+1, t) and

(6.43) 〈mk(t), w(t, vz
k+1(t), v

u
k+1(t))〉Rn = c(mk(t)|W (pk, t)) (t ∈ [0, T ]).

The value τk+1 is defined by

(6.44) τk+1 =





0, τ∗k+1 < 0,
τ∗k+1, τ∗k+1 ∈ [0, 1],

1, τ∗k+1 > 1,

τ∗k+1 =

∫ T
0 〈qk+1(t), z0 − wk(t)〉dt∫ T

0 |qk+1(t)|2dt

(∫ T

0
|qk+1(t)|2dt 6≡ 0

)
,

(
qk+1(t) = vz

k+1(t)−
∫ t

0
(f(vz

k+1(τ), τ) + g(vz
k+1(τ), τ)vu

k+1(τ))dτ − wk(t)
)

(6.45) τk+1 ∈ [0, 1]
(∫ T

0
|qk+1(t)|2dt ≡ 0

)
.

We set

wk+1(t) = (1− τk+1)wk(t) +

τk+1

(
vz
k+1(t)−

∫ t

0
(f(vz

k+1(τ), τ) + g(vz
k+1(τ), τ)vu

k+1(τ))dτ

)
,

(6.46)
zk+1(t) = (1− τk+1)zk(t) + τk+1v

z
k+1(t) (t ∈ [0, T ]);(6.47)

a control uk+1(·) is found as a solution of the integral equation

(6.48) zk+1(t)−
∫ t

0
(f(zk+1(τ), τ)+g(zk+1(τ), τ)uk+1(τ))dτ = wk+1(t) (t ∈ [0, T ])

under constraint (zk+1(t), uk+1(t)) ∈ Q(pk+1, t) (t ∈ [0, T ]).

Theorem 6.10. Let (i) Assumptions (C1) – (C6) be satisfied;
(ii) functional spaces X and Y are defined by (6.5), (6.32), a set X(p) is deter-

mined by (6.35), an element b(p) = b is set by (6.34), a function F (·) has a form
(6.33);

(iii) a sequence (pk, wk(·), xk(·)) from [p0, p
0] × Y × X0, xk(·) = (zk(·), uk(·))

(k = 0, 1, . . .), is defined by algorithm (6.37) – (6.48).
Then pk → p∗ and distX(xk, D∗) → 0.
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