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ON DERIVATIVES OF SET-VALUED MAPS AND OPTIMALITY
CONDITIONS FOR SET OPTIMIZATION

DAISHI KUROIWA

Abstract. We consider a set-valued optimization problem, which is an opti-
mization problem with a set-valued objective map. We know that there are two
types of criteria for solutions of the problem, one is the criterion of vector op-
timization and the other is the criterion of set optimization. In this paper, we
consider a set optimization problem and investigate first order optimality con-
ditions by using directional derivatives based on an embedding idea. Also we
observe optimality conditions when the object set-valued map satisfies certain
convexity assumptions.

1. Introduction

Throughout the paper, let E be a locally convex topological vector space over
R, let K be a closed convex cone in E, and assume K is solid and pointed, that is,
intK 6= ∅ and K ∩ (−K) = {θ} where θ is the null vector of E. We define an order
relation ≤ on E by

x, y ∈ E, x ≤ y if y − x ∈ K.

For a given set-valued map F from a set X to E, we consider the following
set-valued optimization problem:

(P) Minimize F (x) subject to x ∈ X.
There are two types different criteria of solutions for the problem (P), one is the
criterion of vector optimization (VP), and the other is the criterion of set optimiza-
tion (SP). The criterion of (VP) is based on comparisons of all elements of all values
of F , with respect to ≤, and an element x0 ∈ X is said to be an efficient solution
of (VP) if there exists y0 ∈ F (x0) such that (y0 − K) ∩

⋃
x∈X F (x) = {y0}, or

equivalently,
x ∈ X, y ∈ F (x), y ≤ y0 =⇒ y0 ≤ y.

The problem (VP) has been researched and developed by many authors, for exam-
ple, see [2].

On the other hand, the criterion of (SP) is based on comparisons of all values
of F with respect to a binary relation � on 2E , which is called a set relation. For
example, the following are set relations: for given nonempty subsets A, B of E,
A � B means,

(1) ∀x ∈ A, ∀y ∈ B, x ≤ y;
(2) ∃x ∈ A such that ∀y ∈ B, x ≤ y;
(3) ∀y ∈ B, ∃x ∈ A such that x ≤ y;
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(4) ∃y ∈ B such that ∀x ∈ A, x ≤ y;
(5) ∀x ∈ A, ∃y ∈ B such that x ≤ y;
(6) ∃x ∈ A, ∃y ∈ B such that x ≤ y.

An element x0 ∈ X is said to be a solution of set optimization (SP) with respect to
set relation � if

x ∈ X, F (x) � F (x0) =⇒ F (x0) � F (x).

The problem (SP) is introduced by the author, and has been developed now, see
[3, 4]. Though there are various types of set relations on 2E , we define the following
set relation ≤l

K : for A, B ∈ 2E ,

A ≤l
K B if cl(A + K) ⊃ B, cf. (3)

and we observe the following notions of solutions in this paper.

Definition 1.1. An element x0 ∈ X is said to be a minimal solution of (SP) with
respect to ≤l

K if

x ∈ X, F (x) ≤l
K F (x0) =⇒ F (x0) ≤l

K F (x).

The aim of the paper is to define directional derivatives of set-valued maps, and
to consider first order optimality conditions for the set-valued optimization prob-
lem (SP). At first, we introduce an embedding space into which our minimization
problem (SP) is embedded in Section 2; results of the section are studied in [5], and
based on the embedding idea, we define directional derivatives of set-valued maps in
Section 3. We give results about necessary and sufficient optimality conditions by
using the directional derivatives in Section 4, and finally we observe optimality con-
ditions under convexity or pseudoconvexity assumptions of the set-valued objective
map in Section 5.

2. Introduction and preliminaries: an embedding idea

In this section, we introduce an ordered vector space V in which a certain subfam-
ily G of 2E is embedded; all results of this section are studied in [5]. By using these
results, we define directional derivatives of set-valued maps in the next section.

A subset A of E is said to be K-convex if A + K is convex, and A is said to be
K+-bounded if 〈y∗, A〉 is bounded from below for any y∗ ∈ K+, where K+ be the
positive polar cone of K, that is

K+ = {y∗ ∈ E∗ | 〈y∗, k〉 ≥ 0,∀k ∈ K}.

Let G be the family of all nonempty K-convex and K+-bounded subsets of E. Then
the following lemmas hold:

Lemma 2.1. For any A, B ∈ G,
cl(A + K) ⊃ B if and only if inf 〈y∗, A〉 ≤ inf 〈y∗, B〉 for all y∗ ∈ K+.

Lemma 2.2 (cancellation law). For any A, B, C ∈ G,
cl(A + C + K) = cl(B + C + K) if and only if cl(A + K) = cl(B + K).
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Define a binary relation ≡ on G2: for each (A,B), (C,D) ∈ G2,

(A,B) ≡ (C,D) if cl(A + D + K) = cl(B + C + K).

We can check ≡ is an equivalence relation on G2 by using the cancellation low.
Denote the quotient space G2/≡ by V, that is

V = {[A,B] | (A,B) ∈ G2},

where [A,B] = {(C,D) ∈ G2 | (A,B) ≡ (C,D)}, and define addition and scalar
multiplication on V as follows:

[A,B] + [C,D] = [A + C,B + D],

λ · [A,B] =
{

[λA, λB] if λ ≥ 0
[(−λ)B, (−λ)A] if λ < 0,

then (V,+, · ) is a vector space over R. Define

µ(K) =
{

[A,B] ∈ V
∣∣∣ B ≤l

K A
}

,

then it is a pointed convex cone in V, and order relation �µ(K) on V is defined as
follows:

[A,B] �µ(K) [C,D] if [C,D]− [A,B] ∈ µ(K).

Note that set optimization problem (SP) can be regarded as a vector optimization
problem by an embedding idea. Assume that F is a map from X to G. Then x0 ∈ E
is a minimal solution of (SP) with respect to ≤l

K if and only if

ϕ◦F (X) ∩ (ϕ◦F (x0)− µ(K)) = {ϕ◦F (x0)},

where ϕ is a function from G to V defined by ϕ(A) = [A, {θ}] for all A ∈ G.
Finally, we introduce a norm | · | in a subspace of V. Let W be a base of K+,

that is R+W = K, and θ∗ 6∈ W . From Lemma 2.1,

|[A,B]| = sup
y∗∈W

|inf 〈y∗, A〉 − inf 〈y∗, B〉|

is well-defined for any [A,B] ∈ V, and it is a norm in

V(W ) = {[A,B] ∈ V | |[A,B]| < ∞}.

Also µ(K) is closed in the normed space (V(W ), | · |).

3. Directional derivatives of set-valued maps for set optimization

Based on results in previous section, we define directional derivatives of set-valued
maps for set optimization. In the rest of the paper, additionally assume that X is a
convex set of a normed space (Z, ‖ · ‖) over R, F is a map from X to G, and W is a
w∗-closed convex base of K+ satisfying V = V(W ), that is, |[A,B]| < ∞ whenever
[A,B] ∈ V.

Now we define directional derivatives CF (x, d) and DF (x, d), and give examples
of these derivatives:
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Definition 3.1. Let x ∈ X and d ∈ Z. Then

CF (x, d) =
{

[A,B] ∈ V
∣∣∣∣ ∃{λk} ↓ 0 s.t.

1
λk

[F (x + λkd), F (x)] → [A,B]
}

is said to be V-directional derivative clusters of F at x in the direction d. If CF (x, d)
is a singleton, then the element is written by DF (x, d) and called V-directional
derivative of F at x in the direction d, and F is said to be V-directional differentiable
at x in the direction d.

Example 3.2. Let F : R → 2R
2

be a set-valued map defined by

F (x) = co {(|x|,−|x|+ 1), (−|x|+ 1, |x|)} , ∀x ∈ R,

and let K = R2
+ = {(x1, x2) | x1, x2 ≥ 0}. Then F is V-directional differentiable at

all points in all directions. When x0 = 0,

DF (x0, d) = [{(0, 0)}, |d| co{(1,−1), (−1, 1)}], ∀d ∈ R,

when 0 < x0 < 1
2 ,

DF (x0, d) =
{

[{(0, 0)}, |d| co{(1,−1), (−1, 1)}], if d ≥ 0,
[|d| co{(1,−1), (−1, 1)}, {(0, 0)}], if d < 0,

and when x0 = 1
2 ,

DF (x0, d) = [|d| co{(1,−1), (−1, 1)}, {(0, 0)}], ∀d ∈ R.

Note that the left part of DF (x0, d) shows the rate of increase of value of F at x0

in the direction d, and the right part shows the rate of decrease.

Example 3.3. A set-valued map F : X → 2E defined by

F (x) = g(x) +
∑
i∈I

ri(x)Ai, x ∈ X,

where g is a function from X to E which is directional differentiable at x0 ∈ X in
the direction d ∈ Z, I is a nonempty finite set, and for each i ∈ I, ri is a function
from X to (0,∞) which is directional differentiable at x0 in the direction d, and
Ai ∈ G. Then F is V-directional differentiable at x0 in the direction d, and

DF (x0, d) = [g′(x0, d), {θ}] +
∑
i∈I

r′i(x0, d)[Ai, {θ}]

=

g′(x0, d) +
∑

i∈I+(d)

r′i(x0, d)Ai, −
∑

i∈I−(d)

r′i(x0, d)Ai


where I+(d) = {i ∈ I | r′i(x0, d) > 0} and I−(d) = {i ∈ I | r′i(x0, d) < 0}.

4. Optimality conditions of a set optimization problem

The purpose of this section is to observe optimality conditions for minimal and
weak minimal solutions of (SP) by using the directional derivatives defined in the
previous section. At first, we define a binary relation on G: for A, B ∈ G,

A <l
K B if ∃V ⊂ E : a neighborhood of θ s.t. A + K ⊃ B + V.

Then we have the following lemma:
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Lemma 4.1. For any A, B ∈ G, [A,B] ∈ Intµ(K) implies B <l
K A, where Intµ(K)

is the set of all interior points with respect to (V, | · |). The converse implication
holds when topological vector space E is normable.

Proof. If [A,B] ∈ Intµ(K), then there exists ε > 0 such that [A,B] + εU ⊂ µ(K),
where

U = {[C,D] ∈ V | |[C,D]| ≤ 1}.
Since intK 6= ∅, we can find p ∈ K and a convex neighborhood V of θ in E such that
p+V ⊂ K. Let V0 = ε

|[V,{θ}]|V , then we obtain B +K ⊃ A+V0 since [V0, {θ}] ∈ εU .
Hence we have B <l

K A.
Conversely, if B <l

K A, then there exists a neighborhood of V of θ such that
B+K ⊃ A+V . Since W is a w∗-closed convex base of K+, then M := infy∗∈W ‖y∗‖
is positive by using separation theorem. Choose a positive number ε satisfying
ε
M U ⊂ V , where U is the unit ball of E, then B +K ⊃ A+ ε

M U . Now we can verify
that [A,B] + εU ⊂ µ(K). Indeed, for all [C,D] ∈ εU , by using Lemma 2.1,

inf 〈y∗, B + D〉 = inf 〈y∗, B〉+ inf 〈y∗, D〉
≤ inf 〈y∗, A〉+ inf

〈
y∗, ε

M U
〉

+ inf 〈y∗, C〉+ ε

= inf 〈y∗, A + C〉,
for any y∗ ∈ W . Since W is a base of K+, by using Lemma 2.1 again, we have

cl(B + D + K) ⊃ A + C,

and consequently, [A,B] + εU ⊂ µ(K). This completes the proof. �

Definition 4.2. An element x0 ∈ X is said to be a weak minimal solution of (SP)
if

6 ∃x ∈ X s.t. F (x) <l
K F (x0).

Moreover, we define local solutions of (SP).

Definition 4.3. An element x0 ∈ X is said to be, a local minimal solution of (SP)
if there exists N a neighborhood of x0 such that

x ∈ N ∩X, F (x) ≤l
K F (x0) =⇒ F (x0) ≤l

K F (x),

and a local weak minimal solution of (SP) if there exists N a neighborhood of x0

such that
6 ∃x ∈ N ∩X s.t. F (x) <l

K F (x0).

Now we have a result of a necessary condition of local weak optimality of (SP).

Theorem 4.4. If x0 be a local weak minimal solution of (SP), then we have

CF (x0, x− x0) ∩ (−Intµ(K)) = ∅, ∀x ∈ X.

Moreover, if F satisfying the following condition: for any x ∈ Z and any open set
V of E satisfying F (x) + K ⊃ V , there exists a neighborhood Y of x such that

F (y) + K ⊃ V, ∀y ∈ Y,

then we have

CF (x0, d) ∩ (−Intµ(K)) = ∅, ∀d ∈ TX(x0) = cl
⋃
λ>0

X − x0

λ
.



46 DAISHI KUROIWA

Proof. Assume that x0 is a local weak minimal solution of (SP) and there exists
x1 ∈ X \ {x0} such that

CF (x0, x1 − x0) ∩ (−Intµ(K)) 6= ∅.

Let [A,B] be an element of CF (x0, x1 − x0) ∩ (−Intµ(K)). By definition of V-
directional derivative clusters, there exists {λk} ⊂ (0,∞), which converges to 0,
such that

1
λk

[F (x0 + λk(x1 − x0)), F (x0)] → [A,B], k →∞,

then we have F (x0 +λk(x1−x0)) <l
K F (x0) and x0 +λk(x1−x0) ∈ X for sufficient

large k. This is a contradiction.
Next we show the latter part of the theorem. Assume that there exists a nonzero

vector d0 ∈ TX(x0) such that

CF (x0, d0) ∩ (−Intµ(K)) 6= ∅,

then we can choose λ0 > 0 such that F (x0 + λ0d0) <l
K F (x0) in the similar way,

that is
F (x0 + λ0d0) + K ⊃ F (x0) + V

for some open set V of E. By using the assumption, there exists a neighborhood Y
of x0 + λ0d0 satisfying

F (y) + K ⊃ F (x0) + V, ∀y ∈ Y.

Now we can find d ∈
⋃

λ>0
X−x0

λ such that x0 + λ0d ∈ Y , hence

F (x0 + λ0d) + K ⊃ F (x0) + V,

that is, F (x0 + λ0d) <l
K F (x0). This is a contradiction. �

Also we have a result of a sufficient condition of local optimality of (SP).

Theorem 4.5. Assume that Z is a finite dimensional space, and F is V-directional
derivative at x0 ∈ X in each direction. Moreover, we assume that

DF (x0, d) = lim
t↓0

1
λ

[F (x0 + λd), F (x0)]

converges uniformly and continuous with respect to d on the unit ball. If

DF (x0, d) 6∈ −µ(K), ∀d ∈ TX(x0) \ {θ},

then x0 is a local minimal solution of (SP).

Proof. If x0 is not local minimal solution of (SP), then there exists a sequence
{xn} ⊂ X converges to x0 such that F (xn) ≤l

K F (x0) and F (x0) 6≤l
K F (xn). For

all n ∈ N, since xn 6= x0, let dn = (xn − x0)/‖xn − x0‖. Then we can choose a
subsequence {dn′} of {dn} and d0 ∈ Rn such that ‖d0‖ = 1 and dn′ → d0. Now we
show

1
‖xn′ − x0‖

[F (xn′), F (x0)] → DF (x0, d0).
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Indeed, for any ε > 0, there exists λ0 > 0 such that for any λ ∈ (0, λ0) and for any
d ∈ Rn with ‖d‖ = 1,∣∣∣∣ 1λ [F (x0 + λd), F (x0)]−DF (x0, d)

∣∣∣∣ <
ε

2
.

Also there exists k ∈ N such that, for any n′ ≥ k,

|DF (x, dn′)−DF (x, d0)| <
ε

2
and |xn′ − x0| < λ0,

therefore, for any n′ ≥ k,∣∣∣∣ 1
‖xn′ − x0‖

[F (xn′), F (x0)]−DF (x0, d0)
∣∣∣∣ < ε.

Since
1

‖xn′ − x0‖
[F (xn′), F (x0)] ∈ −µ(K),

and µ(K) is closed, then we have DF (x0, d0) ∈ −µ(K). However this is a contra-
diction, because d0 ∈ TX(x0) \ {θ}. This completes the proof. �

Example 4.6. We discuss Example 3.2, in the standpoint of the above optimality
conditions. At first, we can check easily that no (global) minimal, and no (global)
weak minimal solution of (SP), 0 is the only local minimal solution of (SP), and for
each x ∈ R, x is a local weak minimal solution of (SP).

When x0 = 0, DF (x0, d) ∈ −µ(K) holds if and only if

R2
+ ⊃ |d| co{(1,−1), (−1, 1)},

but it does not hold when d 6= 0. From Theorem 4.5, we have x0 is a local minimal
solution of (SP). Also when 0 < x0 < 1

2 , DF (x0, d) ∈ −µ(K) holds if and only if{
R2

+ ⊃ |d| co{(1,−1), (−1, 1)}, if d ≥ 0,
R2

+ + |d| co{(1,−1), (−1, 1)} 3 (0, 0), if d < 0.

and R2
+ + |d| co{(1,−1), (−1, 1)} 3 (0, 0) is always true when d < 0. This is

consistent with Theorem 4.5, since x0 is not local minimal solution. Moreover,
DF (x0, d) ∈ −Intµ(K) holds if and only if{

(0,∞)2 ⊃ |d| co{(1,−1), (−1, 1)}, if d ≥ 0
(0,∞)2 + |d| co{(1,−1), (−1, 1)} 3 (0, 0), if d < 0

does not hold for each d ∈ R. This is also consistent with Theorem 4.4, since x0 is
a local weak minimal solution of (SP).

5. Convexity and pseudoconvexity of set-valued maps and globality
of solutions

In this section, we observe local and and global minimal solutions when the
objective map is convex or pseudoconvex. At first, we introduce the convexity of
set-valued maps for set optimization.

Definition 5.1. A set valued map F from X to G is V-convex if, for any x, y ∈ X,
λ ∈ (0, 1),

cl(F ((1− λ)x + λy) + K) ⊃ (1− λ)F (x) + λF (y).
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Clearly the inequality is equivalent to

ϕ◦F ((1− λ)x + λy) �µ(K) (1− λ) · ϕ◦F (x) + λ · ϕ◦F (y),

that is, V-convexity is strongly connected with the cone convexity, see [2]. The
convexity of set-valued maps assures local minimal solutions are also global ones.

Proposition 5.2. Assume that F is V-convex. If x0 ∈ X is a local minimal solution
of (SP), then it is also minimal solution of (SP), and moreover if x0 ∈ X is a local
weak minimal solution of (SP), then it is also weak minimal solution of (SP).

Proof. If x0 ∈ X is a local minimal solution of (SP), and there exists x1 ∈ X such
that

F (x1) ≤l
K F (x0) and F (x0) 6≤l

K F (x1),
then, for each λ ∈ (0, 1), we have

F ((1− λ)x0 + λx1) ≤l
K (1− λ)F (x0) + λF (x1) ≤l

K F (x0),

and also,
F (x0) 6≤l

K F ((1− λ)x0 + λx1)
for all λ ∈ (0, 1). When we choose λ sufficiently small, the above formula contradicts
with x0 ∈ X is a local minimal solution of (SP). If x0 ∈ X is a local weak minimal
solution of (SP), and there exists x1 ∈ X such that F (x1) <l

K F (x0), we can choose
a neighborhood V of θ satisfying

F (x1) + K ⊃ F (x0) + V.

From the convexity, for each λ ∈ (0, 1), we have

cl(F ((1− λ)x0 + λx1) + K) ⊃ (1− λ)F (x0) + λF (x1) ⊃ F (x0) + λV.

This contradicts with x0 ∈ X is a local weak minimal solution of (SP). �

Then we have a corollary concerned with a sufficient condition of optimality.

Corollary 5.3. Under the same conditions in Theorem 4.5, if F is V-convex, then
x0 is a global minimal solution of (SP).

When F is V-convex, if x ∈ X and x + td ∈ X for some t > 0,

λ 7→ 1
λ

[F (x + λd), F (x)]

is increasing on (0, t] with respect to �µ(K). Therefore if CF (x, d) 6= ∅, then F is
V-directional differentiable at x in the direction d and

[F (x + d), F (x)] �µ(K) CF (x, d),

see [5]. By using the property, we have a result concerned with a sufficient condition
of weak optimality.

Theorem 5.4. Assume that topological vector space E is normable, and F is V-
convex and V-directional differentiable at x0 in the direction x− x0 for any x ∈ X.
If the condition

DF (x0, x− x0) 6∈ −Intµ(K), ∀x ∈ X

holds, then x0 is a global weak minimal solution of (SP).
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Proof. If x0 is not, then there exists x ∈ X satisfying F (x) <l
K F (x0), and then

[F (x), F (x0)] ∈ −Intµ(K)

from Lemma 4.1. Since F is V-convex, we have

[F (x), F (x0)] �µ(K) DF (x0, x− x0),

and hence DF (x0, x − x0) ∈ −Intµ(K). This is a contradiction to the assumption
of this theorem. �

Next, we define the pseudoconvexity of set-valued maps for set optimization.

Definition 5.5. F is said to be V-pseudoconvex if, for any x, y ∈ X, CF (x, y−x) 6=
∅ and

CF (x, y − x) ∩ (−Intµ(K)) = ∅ =⇒ [F (y), F (x)] 6∈ −Intµ(K).

It is clear that F is V-pseudoconvex when F is V-convex and V-directional dif-
ferentiable. If F is a real-valued differentiable function, since CF (x, y − x) =
〈∇F (x), y − x〉 and −Intµ(K) = (−∞, 0), the implication is equivalent to

〈∇F (x), y − x〉 ≥ 0 =⇒ F (y) ≥ F (x),

this is the condition of the usual pseudoconvexity. Next we have a perfect charac-
terization between V-pseudoconvexity and local weak minimality of (SP).

Theorem 5.6. Assume that topological vector space E is normable and F is V-
pseudoconvex. Then x0 is a local weak minimal solution of (SP) if and only if the
following condition holds:

CF (x0, x− x0) ∩ (−Intµ(K)) = ∅, ∀x ∈ X.

Proof. It is clear that if x0 is a local weak minimal solution of (SP) then the condition
CF (x0, x−x0)∩(−Intµ(K)) = ∅ holds for all x ∈ X from Theorem 4.4. Conversely,
assume that the condition CF (x0, x − x0) ∩ (−Intµ(K)) = ∅ holds for all x ∈ X,
then from the definition of V-pseudoconvexity, we have [F (y), F (x)] 6∈ −Intµ(K)
for any x ∈ X. If x0 is not local weak minimal solution of (SP), there exists x1 ∈ X
such that F (x1) <l

K F (x0), then [F (x1), F (x0)] ∈ −Intµ(K) from Lemma 4.1. This
is a contradiction. �

Example 5.7. Let g : (0, 1) → R2, r : (0, 1) → R defined by

g(x) = (x, 1− x), r(x) = min{x, 1− x}, ∀x ∈ (0, 1),

let F : (0, 1) → 2R
2

defined by

F (x) = g(x) + r(x)U, ∀x ∈ (0, 1),

where U is the unit ball in R2, let K = R2
+ = {(x1, x2) | x1, x2 ≥ 0}, and choose W

be a closed convex base of K+. Then we can check that the map F is V-convex,
and 1

2 is the unique minimal solution and every points of (0, 1) are weak minimal
solutions of the set optimization problem.

Also we can calculate directional derivatives:

DF (x, d) =


[{(d,−d)}, |d|U ] if (x, d) ∈ (0, 1

2 ]× (−∞, 0) ∪ [12 , 1)× [0,∞),

[{(d,−d)}+ |d|U, {(0, 0)}]
if (x, d) ∈ (0, 1

2)× [0,∞) ∪ (1
2 , 1)× (−∞, 0),
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and we have
(i) [{(d,−d)}, |d|U ] ∈ −µ(K) if and only if (d,−d) + K ⊃ |d|U ,
(ii) [{(d,−d)}, |d|U ] ∈ −Intµ(K) if and only if (d,−d) + intK ⊃ |d|U ,
(iii) [{(d,−d)}+ |d|U, {(0, 0)}] ∈ −µ(K) if and only if (d,−d)+ |d|U +K 3 (0, 0),
(iv) [{(d,−d)}+ |d|U, {(0, 0)}] ∈ −Intµ(K) if and only if (d,−d)+ |d|U +intK 3

(0, 0),
from Lemma 4.1. It is easy to show that conditions (i), (ii), and (iv) do not hold
when d 6= 0, but condition (iii) always holds. These results show us, 1

2 is the unique
minimal solution from Theorem 4.5 and Corollary 5.3, and every points of (0, 1) are
weak minimal solutions from Theorem 5.4 or Theorem 5.6.
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