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WEAK∗-TOPOLOGY AND ALAOGLU’S THEOREM ON
HYPERSPACE

FRANCESCO S. DE BLASI, THAKYIN HU, AND JUI-CHI HUANG

Abstract. Let X be a Banach space and X∗ its dual space. The classical
Alaoglu theorem states that closed balls B∗

r of X∗ are weak∗-compact. Sup-
pose now W ∗CC(X∗) is the collection of all non-empty weak∗-compact, convex
subsets of X∗. We shall define a certain weak∗-topology T ∗

w on the hyperspace
W ∗CC(X∗). If X is separable, we shall prove that closed balls B∗

r of W ∗CC(X∗)
are weak∗-compact (T ∗

w -compact).

1. Introduction

Let X be a Banach space and X∗ its topological dual. Let BCC(X); WCC(X);
CC(X) denote the collection of all non-empty bounded closed convex subsets;
weakly compact, convex subsets; and compact convex subsets of X respectively.
Sequentical weak convergence on BCC(X) has been introduced and studied by De-
Blasi and Myjak [3]. Other notions of weak convergence has also been studied ([1],
[8], [9], [10]). On the other hand, the concept of weak topology on CC(X) and
WCC(X) has been introduced and studied by Hu and company ([4], [5]). Suppose
now W ∗CC(X∗) is the collection of all non-empty weak∗-compact, convex subsets
of X∗. We shall define a certain weak∗-topology T ∗w on W ∗CC(X∗), and inves-
tigate which properties that the underlying space X∗ possesses can be extended
to the hyperspace W ∗CC(X∗). If X is separable, we shall prove that closed balls
B∗r = {A ∈ W ∗CC(X∗)|h(A, {0}) ≤ r} of the hyperspace W ∗CC(X∗) are weak∗-
compact (T ∗w -compact) where h is the Hausdorff metric on W ∗CC(X∗).

2. Notations and preliminaries

Let X be a Banach space, X∗ its topological dual and BCC(X) be the collection
of all non-empty bounded, closed, convex subsets of X. For A,B ∈ BCC(X),
define N(A, ε) = {x ∈ X : d(x, a) = ‖x − a‖ < ε for some a ∈ A} and
h(A,B) = inf{ε > 0 : A ⊂ N(B, ε) and B ⊂ N(A, ε)}, equivalently h(A,B) =
max{sup

x∈A
d(x,B), sup

x∈B
d(x,A)}. Then h is known as the Hausdorff metric of the

hyperspace (BCC(X), h). Now let CC(X) be the collection of all non-empty
weakly compact, convex subsets of X and WCC(X) be the collection of all non-
empty weakly compact, convex subsets of X. For general X, we have CC(X) &
WCC(X) & BCC(X). If dim(X) < ∞, we have CC(X) = WCC(X) = BCC(X).
Weak topologies on CC(X) and WCC(X) have been introduced and investigated
related to some fixed point theorems ([4], [5]). To continue our discussion, we let
C denote the complex plane, and CC(C) the collection of all non-empty compact,
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convex subsets of C. First, observe that for each x∗ ∈ X∗, it follows from the weak
continuity and linearity of x∗ that for each non-empty weakly compact, convex sub-
set A of C (i.e., A ∈ WCC(X)), we have x∗(A) ∈ CC(C) (i.e., x∗(A) is a compact,
convex subset of C). Thus each x∗ maps the space WCC(X) into CC(C).

Lemma 2.1.
(a) Suppose A,B ∈ WCC(X). Then h(x∗(A), x∗(B)) ≤ ‖x∗‖h(A,B) for each

x∗ ∈ X∗.
(b) Suppose A∗, B∗ ∈ W ∗CC(X∗). Then h(x(A∗), x(B∗)) ≤ ‖x‖h(A∗, B∗) for

each x ∈ X.

Proof. Let r > h(A,B). Then A ⊂ N(B; r) and B ⊂ N(A; r). Hence for each a ∈ A,
there exists b ∈ B such that ‖a−b‖ < r and consequently ‖x∗(a)−x∗(b)‖ ≤ ‖x∗(a−
b)‖ ≤ ‖x∗‖‖a− b‖ < ‖x∗‖ · r, which in turn implies that x∗(A) ⊂ N(x∗(B); ‖x∗‖r).
Similarly, x∗(B) ⊂ N(x∗(A); ‖x∗‖r). Hence h(x∗(A), x∗(B)) ≤ ‖x∗‖r, which implies
that h(x∗(A), x∗(B)) ≤ ‖x∗‖h(A,B) and the proof is complete. �

Now let W ∗CC(X∗) be the collection of all non-empty, weak∗-compact, convex
subset of X∗. And since (X, τw) and (X∗, τ∗w) are locally convex topological vec-
tor spaces, it follows immediately from Hahn-Banach Theorem that we have the
following

Lemma 2.2.
(a) A = B if and only if x∗(A) = x∗(B) for each x∗ ∈ X∗, where A,B ∈

WCC(X).
(b) A∗ = B∗ if and only if x(A∗) = x(B∗) for each x ∈ X, where A∗, B∗ ∈

W ∗CC(X∗).

Recall that the weak topology τw (or the X∗-topology) on X is defined to be the
weakest topology which makes each x∗ : (X, τw) → (C, | · |) continuous. It follows
from Lemma 2.1 that each x∗ : (WCC(X), h) → (CC(C), h) is continuous. Thus
we may define the weak topology Tw (or the X∗-topology) on WCC(X) to be the
weakest topology such that each x∗ : (WCC(X), Tw) → (CC(C), h) is continuous.
In general, for any F ⊂ X∗, we shall define the weak topology TF (or the F -topology)
on WCC(X) to be the weakest topology such that each f : (WCC(X), TF ) →
(CC(C), h) is continuous for each f ∈ F . Similarly, if F ⊂ X we define the F -
topology TF (X-topology T ∗w ) on W ∗CC(X∗) to be the weakest topology such that
each f : (W ∗CC(X∗), TF ) → (CC(C), h) (each x: W ∗CC(X∗), T ∗w ) → (CC(C), h))
is continuous for each f ∈ F . A typical weak neighborhood of A ∈ WCC(X)
is denoted by W(A;x∗1, . . . , x

∗
n; ε) = {B ∈ WCC(X) : h(x∗i (B), x∗i (A)) < ε for

i = 1, 2, . . . , n}, and a weak∗-neighborhood of A∗ ∈ W ∗CC(X∗) is denoted by
W∗(A∗;x1, x2, . . . , xn; ε) = {B∗ ∈ W ∗CC(X∗) : h(xi(B∗), xi(A∗)) < ε for i =
1, 2, . . . , n}. Let X = {x = {x} : x ∈ X}, (i.e., X is the hyperspace consisting
of singletons). Then (X,h) may be identified with (X, ‖ ‖); and (X, Tw) may be
identified with (X, τw) naturally. Thus theorems on hyperspaces are extensions of
their counterparts on original underlying spaces. We shall use small letters to denote
elements of X and X∗; capital letters to denote elements of WCC(X), W ∗CC(X∗)
as well as other subsets of X and X∗; script letters to denote subsets of WCC(X)
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and W ∗CC(X∗) respectively. Thus B[0, r] = {x ∈ X : ‖x‖ ≤ r} and B∗[0, r] are
closed balls of X and X∗; B[0, r] = {A ∈ WCC(X) : h(A, {0}) ≤ r} and B∗[0, r]
are closed balls of WCC(X) and W ∗CC(X∗) respectively. Observe that from the
way the weak topology Tw on WCC(X) and the weak∗-topology T ∗w on W ∗CC(X∗)
are defined, the range space is (CC(C), h) rather than (C, | · |), and consequently,
properties of the space (CC(C), h) will be essential in later discussions. These
properties are evidently special cases of the following more general Lemma 2.3.

Lemma 2.3.
(a) The hyperspace (BCC(X), h) is a complete metric space.
(b) If An, A ∈ BCC(X) and An converges to A, then A is the collection of

all subsequential limit points of {An} (i.e., A = {a ∈ X : a = limi→∞ ani,
where ani ∈ Ani}).

(c) If dim(X) < ∞, then every bounded sequence {An} ⊆ BCC(X) has a
subsequence {Ani} such that limi→∞Ani = A.

Suppose X is a complex Banach space. Then X is also a real Banach space. For
each A ∈ WCC(X) and each real linear functional u, let SA(u) = sup{u(a) : a ∈ A}
be the support functional of A. Note that each u is now a function that maps
WCC(X) into CC(R), where CC(R) is the collection of all non-empty compact
convex subsets of R (i.e., closed bounded intervals of R). And for [a1, a2], [b1, b2] ∈
CC(R), h([a1, a2], [b1, b2]) = max{|b2−a2|, |b1−a1|}. DeBlasi and Myjak [3] defined
that An converges weakly to A if and only if SAn(u) → SA(u) for each real linear
functional u. We shall establish that Tw-convergence is equivalent to the weak
convergence in the sense of DeBlasi and Myjak [3].

Lemma 2.4. Let X be a complex Banach space and A,An ∈ WCC(X). Then
x∗(An) → x∗(A) for each complex linear functional x∗ on X if and only if SAn(u) →
SA(u) for each real linear functional u on X.

Proof. Suppose x∗(An) → x∗(A) with x∗ = u + iv. Then u, v are real linear
functionals on X and u, v : WCC(X) → CC(R). Thus u(An) = [an, bn] converges
to u(A) = [a, b] in the range space (CC(R), h). Consequently h([an, bn], [a, b]) =
max(|bn − b|, |an − a|) → 0 as n →∞, which in turn implies SAn(u) = bn converges
to SA(u) = b.

On the other hand, suppose there exists some complex linear functional x∗ such
that x∗(An) 6→ x∗(A) with x∗ = u + iv. Then there exists ε > 0 and a subsequence
{Ank

} such that h(x∗(Ank
), x∗(A)) ≥ ε for i = 1, 2, . . ., which in turn implies that

either (a) x∗(A) 6⊂ N(x∗(Ank
), ε) or (b) x∗(Ank

) 6⊂ N(x∗(A), ε). It is elementary
(but tedious) to show that either SAn(u) 6→ SA(u) or SAn(v) 6→ SA(v). Either way,
we get a contradiction. Hence the lemma is proved. �

3. Main results

Suppose X is a Banach space, X∗ its topological dual, (WCC(X), Tw) and
(W ∗CC(X∗), T ∗w ) their corresponding hyperspaces. A subset K ⊂ WCC(X) is
bounded (or originally bounded) if and only if there exists M < ∞ such that
sup{h(A, {0}) : A ∈ K} ≤ M . K is weakly bounded (or Tw-bounded) if and only if for
each x∗ ∈ X∗, there exists Mx∗ < ∞ such that sup{h(x∗(A), {0}) : A ∈ K} ≤ Mx∗ .
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K is weakly sequentially complete if and only if every Tw-Cauchy sequence {An} of
K converges to some A ∈ K. K is weakly sequentially compact if and only if every
infinite sequence {An} ⊂ K has a subsequence {Ani} such that {Ani} Tw-converges
to some A ∈ K. A subset K∗ ⊂ W ∗CC(X∗) is weak∗-bounded, weak∗-sequentially
complete, and weak∗-compact are defined analogously. We shall now state and prove
the following analog of the Uniform Boundedness Principle on hyperspaces. Like
the Uniform Boundedness Principle, it is a very useful tool.

Theorem 3.1.
(a) A subset K ⊂ WCC(X) is weakly bounded if and only if K is bounded.
(b) A subset K∗ ⊂ W ∗CC(X∗) is weak∗-bounded if and only if K∗ is bounded.

Proof. We shall prove the non-trivial part of (b). Suppose K∗ is weak∗-bounded.
Then for each x ∈ X, sup{h(x(A∗), x({0})) : A∗ ∈ K∗} ≤ Mx < ∞.
Note that h(x(A∗), x({0})) = sup{‖x(a∗)‖ : a∗ ∈ A∗}. Thus if we set K∗ =⋃
A∗∈K∗

A∗ =
⋃

A∗∈K∗
{a∗ : a∗ ∈ A∗} ⊆ X∗, we have sup{h(x(A∗), x({0})) : A∗ ∈ K∗} =

sup
A∗∈K∗

[sup{‖x(a∗)‖ : a∗ ∈ A∗}] = sup{‖x(a∗)‖ : a∗ ∈ K∗} ≤ Mx < ∞. Thus

K∗ ⊂ X∗ is a collection of linear functionals that is pointwise bounded at each
x ∈ X. It follows now from the uniform boundedness principle that K∗ is a bounded
subset of X∗, i.e., sup{‖a∗‖ : a∗ ∈ K∗} ≤ N < ∞ for some N . Now, for each
A∗ ∈ K∗, we have h(A∗, {0}) = sup{‖a∗‖ : a∗ ∈ A∗} ≤ sup{‖a∗‖ : a∗ ∈ K∗} ≤ N
proving that K∗ is a bounded subset of (W ∗CC(X∗), h). �

Corollary 3.2.
(a) Suppose K∗ ⊂ W ∗CC(X∗) is T ∗w -compact. Then K∗ is T ∗w -closed and bounded.
(b) Suppose K ⊂ WCC(X) is Tw-compact. Then K is Tw-closed and bounded.

Proof. To prove (a), we letK∗ be a T ∗w -compact subset. Since x : (W ∗CC(X∗), T ∗w ) →
(CC(C), h) is continuous, we have x(K∗) is a compact subset of CC(C) and hence
bounded for each x ∈ X. Hence K∗ is weak∗-bounded which in turn implies that
K∗ is bounded. Similarly, we may prove (b). �

Corollary 3.3.
(a) Suppose {A∗n} is a T ∗w -Cauchy sequence of W ∗CC(X∗). Then {A∗n} is bounded.

Moreover, if A∗n is T ∗w -convergent to A∗, we have h(A∗,{0})≤ lim inf
n→∞

h(A∗n,{0}).
(b) Suppose {An} is a Tw-Cauchy sequence of WCC(X). Then {An} is bounded.

Moreover if An is Tw-convergent to A, we have h(A, {0})≤ lim inf
n→∞

h(An, {0}).

Proof. To prove (b), we let {An} be a Tw-Cauchy sequence. It follows that for each
x∗ ∈ X∗, {x∗(An)} is a Cauchy sequence of the metric space (CC(C), h), and hence
bounded. Thus {An} is weakly bounded and it follows from Theorem 3.1 that {An}
is bounded. Suppose now {An} is Tw-convergent to A, and if lim inf

n→∞
h(An, {0}) <

α < h(A, {0}). Then there exists some subsequence {Ank
} such that h(Ank

, {0}) <
α. On the other hand, h(A, {0}) = sup{‖a‖ : a ∈ A} > α implies the existence of
some a0 ∈ A such that ‖a0‖ > α. By Hahn-Banach Theorem, there exists some
x∗ ∈ X∗ with ‖x∗‖ = 1, and |x∗(a0)| = ‖a0‖ and consequently, h(x∗(A), {0}) =
sup{|x∗(a)| : a ∈ A} ≥ |x∗(a0)| = ‖a0‖ > α. But, it follows from Lemma 2.1 that
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h(x∗(Ank
), {0}) ≤ ‖x∗‖h(Ank

, {0}) ≤ h(Ank
, {0}) < α. Hence x∗(Ank

) does not
converge to x∗(A). That is a contradiction and the theorem is proved. Similar
arguments establishes part (a). �

Theorem 3.4. Suppose X is a separable Banach space. Then the closed ball B∗r =
{A∗ ∈ W ∗CC(X∗) : h(A∗, {0}) ≤ r} of the hyperspace (W ∗CC(X∗), h) is weak∗-
sequentially compact (i.e., T ∗w -sequentially compact).

Proof. First, we show that (W ∗CC(X∗), T ∗w ) is sequentially complete. For that
purpose, let {A∗n} ⊂ W ∗CC(X∗) be T ∗w -Cauchy. Then for each x ∈ X, {x(A∗n)}
is a Cauchy sequence in (CC(C), h) and it follows from Lemma 2.3 (known as
Blaschke’s Convergence Theorem) that there exists some Dx ∈ CC(C) such that
x(A∗n) converges to Dx. Also, it follows from Corollary 3.3 that {A∗n} is bounded.
Thus there exists some r > 0 such that h(A∗n, {0}) ≤ r for n = 1, 2, . . .. Con-
sequently A∗n ⊂ B∗[0, r] ⊂ X∗. Let A∗ = [

⋂
x∈X

(x−1)(Dx)] ∩ B∗[0, r]. Claim

that A∗ 6= ∅. For that purpose, we let a∗n ∈ A∗n ⊂ B∗[0, r]. X is separable
implies that B∗[0, r] is weak∗-sequentially compact and hence {a∗n} has a subse-
quence {a∗ni

} such that {a∗ni
} weak∗-converges to some a∗ ∈ B∗[0, r]. Thus for

each x ∈ X, we have x(a∗ni
) converges to x(a∗). It follows from Lemma 2.3 that

x(a∗) ∈ Dx or a∗ ∈ x−1(Dx) for each x ∈ X which in turn implies that a∗ ∈ A∗

showing that A∗ 6= ∅. Next Dx is closed, convex and x : X∗ → C is weak∗-
continuous imply that (x−1)(Dx) is weak∗-closed and convex. Consequently A∗ is
a bounded, weak∗-closed, convex set and hence weak∗-compact by Alaoglu’s The-
orem. Thus A∗ ∈ W ∗CC(X∗). Finally we shall show that A∗n weak∗-converges
to A∗, i.e., x(A∗n) converges to x(A∗) for each x ∈ X. Since x(A∗n) converges
to Dx, it suffices to show that x(A∗) = Dx for each x ∈ X. Fix x0 ∈ X, we
have x0(A∗) = x0{[

⋂
x∈X

(x−1)(Dx)] ∩ B∗[0, r]} ⊂ {
⋂

x∈X

x0[x−1(Dx)] ∩ x(B∗[0, r])} ⊂

x0[x−1
0 (Dx0)] = Dx0 . On the other hand, let d ∈ Dx0 = lim

n→∞
x0(A∗n). It follows then

from Lemma 2.3 that there exists a∗ni
∈ A∗ni

⊆ B∗[0, r] such that x0(a∗ni
) converges

to d. Again B∗[0, r] is weak∗-sequentially compact implies that {a∗ni
} has a subse-

quence {a∗ni
} (relabelling to simplify the notation) such that {a∗ni

} weak∗-converges
to some a∗ ∈ B∗[0, r]. That is lim

n→∞
x(a∗ni

) = x(a∗). By Lemma 2.3, x(a∗) ∈ Dx for

each x ∈ X which in turn implies that a∗ ∈ (x−1)(Dx) for each x ∈ X and hence
a∗ ∈ A∗. Now that we have lim

i→∞
x0(a∗ni

) = d as well as lim
i→∞

x0(a∗ni
) = x0(a∗), it

follows d = x0(a∗) ∈ x0(A∗) and hence Dx0 ⊂ x0(A∗). Thus x0(A∗) = Dx0 and
since x0 ∈ X is arbitrary, we have x(A∗) = Dx for each x ∈ X and consequently
(W ∗CC(X∗), T ∗w ) is sequentially complete.

Next, we let {xi} be a countable everywhere dense subset of X and A∗n ∈ B∗r .
Since h(A∗n, {0}) ≤ r, we have h(x1(A∗n), {0}) ≤ ‖x1‖h(A∗n, {0}) ≤ ‖x1‖r, it follows
from Blaschke’s theorem that {x1(A∗n)} has a convergent subsequence {x1(A∗1n)}
such that x1(A∗1n) converges to D1 ∈ CC(C). Inductively, we construct a subse-
quence {A∗(i+1)n} of {A∗in} such that xi+1(A∗(i+1)n) converges to Di+1 ∈ CC(C).
Consider the diagonal sequence {A∗nn}. Claim that {A∗nn} is T ∗w -Cauchy (i.e.,
x(A∗nn) is Cauchy in (CC(C), h) for each x ∈ X). Since {xi} is dense, for any
given ε > 0 and x ∈ X, there exists some xi such that ‖xi − x‖ < ε/(3r). Also
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{xi(A∗nn)} is Cauchy implies that there exists some N such that m,n ≥ N implies
h(xi(A∗mm), xi(A∗nn)) < ε/3. Hence h(x(A∗mm), x(A∗nn)) ≤ h(x(A∗mm), xi(A∗mm)) +
h(xi(A∗mm), xi(A∗nn)) + h(xi(A∗nn), x(A∗nn)) ≤ ‖x − xi‖h(A∗mm, {0}) + h(xi(A∗mm),
xi(A∗nn)) + ‖xi − x‖h(A∗nn, {0}) < (ε/3r) · r + ε/3 + (ε/3r) · r < ε and the claim is
proved. It follows now from the previous part of this proof that there exists some
A∗ ∈ W ∗CC(X∗) such that {A∗nn} T ∗w -converges to A∗. It follows from Corollary
3.3 that h(A∗, {0}) ≤ lim inf

n→∞
h(A∗nn, {0}) ≤ r. Hence A∗ ∈ B∗r and the theorem is

proved. �

We need the following lemmas to obtain our final results.

Lemma 3.5. Suppose X is a Banach space and F ⊂ G ⊂ X∗ such that F is a norm
dense subset of G. Then the restrictions of the F -topology TF and the G-topology
TG are equivalent when restricted to bounded subsets of the hyperspace WCC(X).

Proof. Since F ⊂ G, we have TF ⊂ TG. Hence, it suffices to show that if {Aα} ⊂
WCC(X) is a net such that sup

α
{h(Aα, {0}) ≤ r} and Aα converges to A in TF , then

Aα converges to A in TG. For that purpose, let g ∈ G and ε > 0 be given. Since F is
norm dense in G, we may choose f ∈ F sucht that ‖f−g‖ < ε

3r . Since Aα converges
to A in TF , we may choose α0 sucht that α ≥ α0 implies that h(f(Aα), f(A)) < ε/3.
We then have h(g(Aα), g(A)) ≤ h(g(Aα), f(Aα))+h(f(Aα), f(A))+h(f(A), g(A)) ≤
‖g−f‖h(Aα, {0})+h(f(Aα), f(A))+‖f−g‖h(A, {0}) < ε/3+ε/3+ε/3 = ε whenever
α ≥ α0. Thus g(Aα) converges to g(A) in (CC(C), h) for every g ∈ G. Consequently
Aα converges to A in TG and the proof is complete. �

Lemma 3.6. Suppose F = {f1, f2, . . . , fn, . . .} ⊂ X∗ is a countable family that
separates points of WCC(X) (i.e. for A,B ∈ WCC(X) with A 6= B, there exists
f ∈ F such that h(f(A), f(B)) > 0). Then the F -topology TF on WCC(X) is
metrizable.

Proof. d(A,B) =
∑∞

n=1
h(fn(A),fn(B))

2n[1+h(fn(A),fn(B))] . Suppose A,B ∈ WCC(X) with A 6= B.
Since F separates points, it follows that there exists some fn ∈ F such that
h(fn(A), fn(B)) > 0 which in turn implies that d(A,B) > 0. Consequently, d(A,B) =
0 if and only if A = B. The remaing properties to establish that d is a metric can be
routinely verified. Now, suppose Bd(A; ε) = {B ∈ WCC(X) | d(B,A) < ε} is given,
choose k large enough such that

∑∞
n=k+1

1
2n < ε

2 . Claim thatW(A; f1, f2, . . . , fk; ε
4) ⊆

Bd(A, ε). To preve the claim, we let B ∈ W(A) and we have h(fn(A), fn(B)) < ε
4

for n = 1, 2, . . . , k. Hence
∑k

n=1
1
2n · h(fn(A),fn(B))

[1+h(fn(A),fn(B))] ≤
∑k

n=1
1
2n · ε

4 = ε
4

∑k
n=1

1
2n <

ε
4 · 2 = ε

2 . Also
∑∞

n=k+1
1
2n · h(fn(A),fn(B))

[1+h(fn(A),fn(B))] ≤
∑∞

n=k+1
1
2n < ε

2 . Consequently

d(A,B) =
∑k

n=1
1
2n · h(fn(A),fn(B))

[1+h(fn(A),fn(B))] +
∑∞

n=k+1
1
2n · h(fn(A),fn(B))

[1+h(fn(A),fn(B))] < ε
2 + ε

2 = ε,
and the claim is proved. �

Conversely, suppose a TF -neighborhood W(A; fn1 , . . . , fnj ; ε) is given. Let k =
max(n1, . . . , nj), then W(A; f1, . . . , fk; ε) ⊂ W(A; fn1 , . . . , fnj ; ε). Claim that Bd(A;
ε/2k(1+ε)) ⊂ W(A; fn1 , . . . , fnj ; ε). Indeed, if d(A,B) =

∑∞
n=1

1
2n · h(fn(A),fn(B))

[1+h(fn(A),fn(B))] <

ε
2k(1+ε)

, then h(fn(A),fn(B))
1+h(fn(A),fn(B)) < ε

1+ε , which in turn implies that h(fn(A), fn(B) < ε
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for n = 1, 2, . . . , k. Thus B ∈ W(A; f1, . . ., fk; ε) ⊂ W(A; fn, . . . , fnj ; ε). Hence the
F -topology TF and the metric d on WCC(X) are equivalent.

Theorem 3.7. Suppose X is a separable Banach space. Then the weak∗-topology T ∗w
of W ∗CC(X∗) restricted to B∗1 = {A ∈ W ∗CC(X∗) : h(A, {0}) ≤ 1} is metrizable.

Proof. Suppose X is separable and F ⊂ X is a countable norm dense subset of
X. Since F ⊂ X ⊂ X∗∗, it follows from Lemma 3.6 that the F -topology TF on
W ∗CC(X∗) is metrizable. Also it follows from Lemma 3.5 that TF and T ∗w (i.e.,
the X-topology) when restricted to the bounded let B∗1 are equivalent. Hence the
theorem is proved. �

Finally, we have the following theorem which is an extension of the classical
Alaoglu theorem under the additional condition that X is separable.

Theorem 3.8. Suppose X is a separable Banach space. Then the closed ball B∗1 ⊂
W ∗CC(X∗) is weak∗-compact (i.e., T ∗w -compact).

Proof. By Theorem 3.7, (B∗1, T ∗w ) is metrizable. Also by Theorem 3.4, (B∗1, T ∗w ) is
sequentially compact. Thus (B∗1 , T ∗w ) is compact since compactness and sequentially
compact are equivalent on metric space and the proof is complete. �

Corollary 3.9. Suppose X is a reflexive separable Banach space. Then the closed
ball Br of WCC(X) is weakly compact as well as weakly sequentially compact.
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