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FIXED POINT THEOREMS FOR NONLINEAR MAPPINGS OF
NONEXPANSIVE TYPE IN BANACH SPACES

TAKANORI IBARAKI AND WATARU TAKAHASHI

Abstract. In this paper, we introduce two nonlinear mappings of nonexpansive
type which are connected with resolvents of maximal monotone operators in a
Banach space. We first study some properties of these mappings. Next, we prove
fixed point theorems and convergence theorems for these mappings.

1. Introduction

Let E be a smooth Banach space and let E∗ be the dual of E. The function
V : E × E → R is defined by

V (x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for each x, y ∈ E, where J is the normalized duality mapping from E into E∗. Let
C be a nonempty closed convex subset of E and let T be a mapping from C into
itself. We denote by F (T ) the set of fixed points of T . A point p in C is said to be
an asymptotic fixed point of T [21] if C contains a sequence {xn} which converges
weakly to p and limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic fixed points of T

is denoted by F̂ (T ). A mapping T : C → C is called relatively nonexpansive [3,19]
if F̂ (T ) = F (T ) 6= ∅ and

V (p, Tx) ≤ V (p, x)
for each x ∈ C and p ∈ F (T ). A mapping T : C → C is called generalized
nonexpansive [8, 9] if F (T ) 6= ∅ and

V (Tx, p) ≤ V (x, p)

for each x ∈ C and p ∈ F (T ). Many researcher have studied the asymptotic behav-
ior of these mappings; see [3–5,8–13,15,16,18,19,21] and the references mentioned
there.

Recently, Kohsaka and Takahashi [17] introduced the following mapping: A map-
ping T : C → C is of firmly nonexpansive type if

V (Tx, x) + V (Ty, y) + V (Tx, Ty) + V (Ty, Tx) ≤ V (Ty, x) + V (Tx, y)

for each x, y ∈ C. The class of firmly nonexpansive type mappings contains the
class of firmly nonexpansive mappings in Hilbert spaces and the class of relative
resolvents of maximal monotone operators in Banach spaces. Further, they studied
the existence of a fixed point for a firmly nonexpansive type mapping in a smooth
Banach space.
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In this paper, motivated by Kohsaka and Takahashi [17], we introduce two nonlin-
ear mappings of nonexpansive type which are connected with resolvents of maximal
monotone operators in a smooth Banach space. We first study some properties of
these mappings and show an important example of these mappings. Next, we prove
fixed point theorems and convergence theorems for these mappings.

2. Preliminaries

Let E be a real Banach space with its dual E∗. We denote the strong convergence
and the weak convergence of a sequence {xn} to x in E by xn → x and xn ⇀ x,
respectively. We also denote the weak∗ convergence of a sequence {x∗n} to x∗ in E∗

by x∗n
∗
⇀ x∗. A Banach space E is said to be strictly convex if

‖x‖ = ‖y‖ = 1, x 6= y ⇒
∥∥∥∥x + y

2

∥∥∥∥ < 1.

Also, E is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such
that

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε ⇒
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1− δ.

A Banach space E is said to be smooth if

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ {z ∈ E : ‖z‖ = 1}(=: S(E)). In this case, the norm of E is
said to be Gâteaux differentiable. The space E is said to have a uniformly Gâteaux
differentiable norm if for each y ∈ S(E), the limit (2.1) is attained uniformly for
x ∈ S(E). The norm of E is said to be Fréchet differentiable if for each x ∈ S(E),
the limit (2.1) is attained uniformly for y ∈ S(E). The norm of E is said to be
uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit
(2.1) is attained uniformly for x, y ∈ S(E).

An operator A ⊂ E × E∗ with domain D(A) = {x ∈ E : Ax 6= ∅} and range
R(A) = ∪{Ax : x ∈ D(A)} is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0 for any
(x, x∗), (y, y∗) ∈ A. An operator A is said to be strictly monotone if 〈x − y, x∗ −
y∗〉 > 0 for any (x, x∗), (y, y∗) ∈ A (x 6= y). A monotone operator A is said to be
maximal if its graph G(A) = {(x, x∗) : x∗ ∈ Ax} is not properly contained in the
graph of any other monotone operator. If A is maximal monotone, then the set
A−10 = {u ∈ E : 0 ∈ Au} is closed and convex (see [6, 24] for more details).

The normalized duality mapping J from E into E∗ is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for each x ∈ E. We also know the following properties (see [6, 23,24] for details):

(1) J is monotone and Jx 6= ∅ for each x ∈ E.
(2) If E is reflexive, then J is surjective.
(3) If E is strictly convex, then J is one to one and strictly monotone.
(4) If E is smooth, then J is single valued and norm to weak∗ continuous.
(5) If E is smooth, strictly convex and reflexive, then the duality mapping J∗

from E∗ into E is the inverse of J , that is, J∗ = J−1.
(6) If E has a Fréchet differentiable norm, then J is norm to norm continuous.
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(7) If E has a uniformly Gâteaux differentiable norm, then J is norm to weak∗

uniformly continuous on each bounded subset of E.
(8) If E is uniformly smooth, then the duality mapping J is norm to norm

uniformly continuous on each bounded set of E.
(9) If E is uniformly convex, then E is reflexive and strictly convex.

(10) E is uniformly convex if and only if E∗ is uniformly smooth.
Let E be a smooth Banach space and consider the following function studied in

Alber [1] and Kamimura and Takahashi [14]:

V (x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for each x, y ∈ E. It is obvious from the definition of V that

(2.2) (‖x‖ − ‖y‖)2 ≤ V (x, y) ≤ (‖x‖+ ‖y‖)2

for each x, y ∈ E. We also know that

(2.3) V (x, y) = V (x, z) + V (z, y) + 2〈x− z, Jz − Jy〉
for each x, y, z ∈ E (see [14]). It is also easy to see that if E is additionally assumed
to be strictly convex, then

V (x, y) = 0 ⇔ x = y.

See [19] for more details. The following lemmas are well-known.

Lemma 2.1 ( [14]). Let E be a smooth and uniformly convex Banach space and
let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn→∞ V (xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.2 ( [14]). Let E be a smooth and uniformly convex Banach space and
let r > 0. Then, there exists a continuous, strictly increasing, and convex function
g : [0,∞) → [0,∞) such that g(0) = 0 and

g(‖x− y‖) ≤ V (x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ‖z‖ ≤ r}.

Let C be a nonempty closed convex subset of a smooth Banach space E and
let T be a mapping from C into itself. A point p in C is said to be a generalized
asymptotic fixed point [12] of T if C contains a sequence {xn} such that Jxn

∗
⇀ Jp

and ‖Jxn − JTxn‖ → 0. The set of all generalized asymptotic fixed points of T is
denoted by F̌ (T ). A mapping T : C → C is called firmly generalized nonexpansive
[13] if F (T ) 6= ∅ and

V (x, Tx) + V (Tx, p) ≤ V (x, p)
for each x ∈ C and p ∈ F (T ). It is clear that a firmly generalized nonexpansive
mapping is generalized nonexpansive in a smooth Banach space (see [13] for more
details). Let D be a nonempty subset of E. A mapping R : E → D is said to be
sunny if

R(Rx + t(x−Rx)) = Rx

for each x ∈ E and t ≥ 0. A mapping R : E → D is said to be a retraction if
Rx = x for each x ∈ D. If E is smooth and strictly convex, then a sunny generalized
nonexpansive retraction of E onto D is uniquely decided (see [8, 9]). Then, such
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a sunny generalized nonexpansive retraction of E onto D is denoted by RD. A
nonempty subset D of E is said to be a sunny generalized nonexpansive retract
(resp. a generalized nonexpansive retract) of E if there exists a sunny generalized
nonexpansive retraction (resp. a generalized nonexpansive retraction) of E onto D
(see [8, 9] for more details). The set of all fixed points of such a sunny generalized
nonexpansive retraction of E onto D is, of course, D.

We know the following results for sunny generalized nonexpansive retractions and
sunny generalized nonexpansive retracts in Banach spaces.

Lemma 2.3 ( [8, 9]). Let D be a nonempty subset of a smooth and strictly con-
vex Banach space E. Let R be a retraction of E onto D. Then R is sunny and
generalized nonexpansive if and only if

〈x−Rx, JRx− Jy〉 ≥ 0

for each x ∈ E and y ∈ D.

Lemma 2.4 ( [9, 11]). Let D be a nonempty subset of a reflexive, strictly convex
and smooth Banach space E. If R is the sunny generalized nonexpansive retraction
of E onto D, then R is firmly generalized nonexpansive.

Lemma 2.5 ( [12]). Let D be a nonempty subset of a reflexive, strictly convex and
smooth Banach space E and let R be a sunny generalized nonexpansive retraction
of E onto D. Then F̌ (R) = F (R).

Theorem 2.6 ( [16]). Let E be a reflexive, strictly convex and smooth Banach
space and let D be a nonempty subset of E. Then, the following conditions are
equivalent.

(1) D is a sunny generalized nonexpansive retract of E,
(2) D is a generalized nonexpansive retract of E,
(3) JD is closed and convex.

In this case, D is closed.

Theorem 2.7 ( [12]). Let E be a reflexive, strictly convex and smooth Banach
space and let T be a generalized nonexpansive mapping from E into itself. Then
F (T ) is a sunny generalized nonexpansive retract of E.

3. Two nonlinear mappings of nonexpansive type

In this section, we introduce two nonlinear mappings of nonexpansive type in a
smooth Banach space. Let E be a smooth Banach space and let C be a nonempty
closed convex subset of E. A mapping T : C → C is of generalized nonexpansive
type if

(3.1) V (Tx, Ty) + V (Ty, Tx) ≤ V (x, Ty) + V (y, Tx)

for all x, y ∈ C. A mapping T : C → C is of firmly generalized nonexpansive type
if

(3.2) V (x, Tx) + V (y, Ty) + V (Tx, Ty) + V (Ty, Tx) ≤ V (x, Ty) + V (y, Tx)

for all x, y ∈ C. We obtain the following four results concerning these mappings.
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Lemma 3.1. Let E be a smooth Banach space, let C be a nonempty closed convex
subset of E and let T be a firmly generalized nonexpansive type mapping from C
into C. Then T is of generalized nonexpansive type.

Proof. From the definition of T and properties of V , we have that for each x, y ∈ C,

V (x, Ty) + V (y, Tx) ≥ V (x, Tx) + V (y, Ty) + V (Tx, Ty) + V (Ty, Tx)
≥ V (Tx, Ty) + V (Ty, Tx).

This implies that T is of generalized nonexpansive type. �

Lemma 3.2. Let E be a smooth Banach space, let C be a nonempty closed convex
subset of E and let T be a generalized nonexpansive type mapping from C into C.
If F (T ) is nonempty, then T is generalized nonexpansive.

Proof. From the definition of T and F (T ) 6= ∅, we have that for each x ∈ C and
p ∈ F (T ),

V (Tx, Tp) + V (Tp, Tx) ≤ V (x, Tp) + V (p, Tx).

From Tp = p, we have

V (Tx, p) + V (p, Tx) ≤ V (x, p) + V (p, Tx)

and hence V (Tx, p) ≤ V (x, p). This implies that T is generalized nonexpansive. �

Lemma 3.3. Let E be a smooth Banach space, let C be a nonempty closed convex
subset of E and let T be a firmly generalized nonexpansive type mapping from C
into C. If F (T ) is nonempty, then T is firmly generalized nonexpansive.

Proof. From the definition of T and F (T ) 6= ∅, we have that for each x ∈ C and
p ∈ F (T ),

V (x, Tx) + V (p, Tp) + V (Tx, Tp) + V (Tp, Tx) ≤ V (x, Tp) + V (p, Tx).

From Tp = p, we have

V (x, Tx) + V (p, p) + V (Tx, p) + V (p, Tx) ≤ V (x, p) + V (p, Tx)

and hence V (x, Tx) + V (Tx, p) ≤ V (x, p). This implies that T is firmly generalized
nonexpansive. �

Lemma 3.4. Let E be a smooth Banach space, let C be a nonempty closed convex
subset of E and let T be a mapping from C into itself. Then, T is of firmly
generalized nonexpansive type if and only if

(3.3) 〈x− Tx− (y − Ty), JTx− JTy〉 ≥ 0

for each x, y ∈ C.

Proof. Let x, y ∈ C. Then, by (2.3) we obtain that

V (x, Ty) = V (x, Tx) + V (Tx, Ty) + 2〈x− Tx, JTx− JTy〉
and

V (y, Tx) = V (y, Ty) + V (Ty, Tx) + 2〈y − Ty, JTy − JTx〉.
From these equalities, we have

V (x, Ty) + V (y, Tx)
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= V (x, Tx) + V (y, Ty) + V (Tx, Ty) + V (Ty, Tx)
+2〈x− Tx, JTx− JTy〉+ 2〈y − Ty, JTy − JTx〉

= V (x, Tx) + V (y, Ty) + V (Tx, Ty) + V (Ty, Tx)
+2〈(x− Tx)− (y − Ty), JTx− JTy〉

and hence

2〈(x− Tx)− (y − Ty), JTx− JTy〉
=

{
V (x, Ty) + V (y, Tx)

}
−

{
V (x, Tx) + V (y, Ty) + V (Tx, Ty) + V (Ty, Tx)

}
.

Therefore, the inequality (3.3) is equivalent to the inequality (3.2). This completes
the proof. �

Next, let us show an important example of these mappings: Let E be a reflex-
ive, strictly convex and smooth Banach space and let B ⊂ E∗ × E be a maximal
monotone operator. For each r > 0 and x ∈ E, consider the set

Jrx := {z ∈ E : x ∈ z + rBJz}.
Then Jrx consists of one point. We also denote the domain and the range of Jr

by D(Jr) = R(I + rBJ) and R(Jr) = D(BJ), respectively. Such Jr is called the
generalized resolvent of B and is denoted by

Jr = (I + rBJ)−1.

See [9,10] for more details. We obtain the following result for generalized resolvents
of maximal monotone operators in a Banach space.

Lemma 3.5. Let E be a reflexive, smooth and strictly convex Banach space, let
B ⊂ E∗×E be a maximal monotone operator and let Jr be the generalized resolvent
of B for r > 0. Then Jr is of firmly generalized nonexpansive type.

Proof. Let x, y ∈ E and r > 0. Put xr := Jrx and yr := Jry. Then, from the
definition of the generalized resolvent, we obtain that

x ∈ xr + rBJxr and y ∈ yr + rBJyr.

Therefore, we get
x− xr

r
∈ BJxr and

y − yr

r
∈ BJyr.

From the monotonicity of B, we have that

〈x− xr

r
− y − yr

r
, Jxr − Jyr〉 ≥ 0.

Since r > 0, we get
〈x− xr − (y − yr), Jxr − Jyr〉 ≥ 0.

From Lemma 3.4, we have that Jr is of firmly generalized nonexpansive type. �

From Lemmas 3.1 and 3.5, we also obtain the following result.

Lemma 3.6. Let E be a reflexive, smooth and strictly convex Banach space, let
B ⊂ E∗×E be a maximal monotone operator and let Jr be the generalized resolvent
of B for r > 0. Then Jr is of generalized nonexpansive type.
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Proof. From Lemma 3.5, we obtain that the generalized resolvent Jr is of firmly
generalized nonexpansive type. Further, by Lemma 3.1, we obtain that Jr is of
generalized nonexpansive type. �

4. Fixed point theorems

In this section, using the technique developed by Takahashi [22], we first prove a
fixed point theorem for generalized nonexpansive type mappings in a Banach space.

Theorem 4.1. Let E be a reflexive, smooth and strictly convex Banach space and
let T be a generalized nonexpansive type mapping from E into itself. Then the
following are equivalent:

(1) F (T ) is nonempty;
(2) {Tnx} is bounded for some x ∈ E.

Proof. It is clear that (1) implies (2). We show that (2) implies (1). Suppose that
{Tnx} is bounded for some x ∈ E. From the definition of T , we have that

(4.1) V (T k+1x, Ty) + V (Ty, T k+1x) ≤ V (T kx, Ty) + V (y, T k+1x)

for each k = 0, 1, . . . and y ∈ E. It follows from (2.3) that

V (Ty, T k+1x) = V (Ty, y) + V (y, T k+1x) + 2〈Ty − y, Jy − JT k+1x〉
and hence

(4.2) V (y, T k+1x)− V (Ty, T k+1x) = −V (Ty, y) + 2〈y − Ty, Jy − JT k+1x〉.
Combining this with (4.1), we obtain

(4.3) 0 ≤ V (T kx, Ty)− V (T k+1x, Ty)− V (Ty, y) + 2〈y − Ty, Jy − JT k+1x〉
for each k = 0, 1, . . .. Summing these inequalities with respect to k = 0, 1, . . . , n− 1
and then dividing by n, we have

(4.4) 0 ≤ 1
n

V (x, Ty)− 1
n

V (Tnx, Ty)− V (Ty, y) + 2〈y − Ty, Jy − S∗nx〉,

where S∗n := 1
n

∑n
k=1 JT k. Since {Tnx} is bounded, {JTnx} is also bounded. So,

we have that {S∗nx} is bounded. Let {S∗ni
x} be a subsequence of {S∗nx} such that

S∗ni
x ⇀ p∗ for some p∗ ∈ E∗. Letting ni →∞ in (4.4), we get

(4.5) 0 ≤ −V (Ty, y) + 2〈y − Ty, Jy − p∗〉.
Putting p := J−1p∗ and taking y = p, we have

0 ≤ −V (Tp, p) + 2〈p− Tp, Jp− Jp〉.
Therefore, we have that V (Tp, p) ≤ 0 and hence V (Tp, p) = 0. So, we have Tp = p.
This implies that F (T ) is nonempty. �

As a direct consequence of Theorem 4.1 and Lemma 3.1, we obtain the following
result.

Theorem 4.2. Let E be a reflexive, smooth and strictly convex Banach space and
let T be a firmly generalized nonexpansive type mapping from E into itself. Then
the following are equivalent:

(1) F (T ) is nonempty;
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(2) {Tnx} is bounded for some x ∈ E.

We also have the following theorem.

Theorem 4.3. Let E be a reflexive and smooth Banach space and E∗ has a uni-
formly Gâteaux differentiable norm. Let T be a generalized nonexpansive type
mapping from E into itself. If F (T ) is nonempty, then F̌ (T ) = F (T ).

Proof. It is obvious that F (T ) ⊂ F̌ (T ). We show that F̌ (T ) ⊂ F (T ). Let p ∈ F̌ (T ),
there exists a sequence {xn} ⊂ E such that Jxn− JTxn → 0 and Jxn ⇀ Jp. From
the definition of T , we have that

(4.6) V (Txn, Tp) + V (Tp, Txn) ≤ V (xn, Tp) + V (p, Txn).

By (2.3), we have that

V (Tp, Txn) = V (Tp, p) + V (p, Txn) + 2〈Tp− p, Jp− JTxn〉

and hence

(4.7) V (p, Txn)− V (Tp, Txn) = −V (Tp, p) + 2〈p− Tp, Jp− JTxn〉.

From (4.6) and (4.7), we obtain that

(4.8) V (Txn, Tp)− V (xn, Tp) ≤ −V (Tp, p) + 2〈p− Tp, Jp− JTxn〉.

On the other hand, we have from the definition of V that

V (Txn, Tp)− V (xn, Tp)
= ‖Txn‖2 − ‖xn‖2 − 2〈Txn − xn, JTp〉
=

(
‖Txn‖ − ‖xn‖

)(
‖Txn‖+ ‖xn‖

)
− 2〈Txn − xn, JTp〉

=
(
‖JTxn‖ − ‖Jxn‖

)(
‖Txn‖+ ‖xn‖

)
− 2〈Txn − xn, JTp〉

≥ −‖Jxn − JTxn‖
(
‖Txn‖+ ‖xn‖

)
− 2〈Txn − xn, JTp〉.

Since E∗ has a uniformly Gâteaux differentiable norm, the duality mapping J−1 on
E∗ is uniformly norm to weak continuous on each bounded set. Therefore, from
Jxn − JTxn → 0, we obtain that

(4.9) 0 ≤ lim inf
n→∞

{
V (Txn, Tp)− V (xn, Tp)

}
From Jxn − JTxn → 0 and Jxn ⇀ Jp, we have JTxn ⇀ Jp. By (4.8) and (4.9),
we get

0 ≤ −V (Tp, p) + 2〈p− Tp, Jp− Jp〉.
Therefore, we have that V (Tp, p) ≤ 0 and hence V (Tp, p) = 0. So, we have p ∈
F (T ). This implies that F̌ (T ) ⊂ F (T ). �

5. Weak convergence theorems

In this section, we prove weak convergence theorems for firmly generalized non-
expansive type mappings in a Banach space. Before proving our results, we first
obtain the following result.



FIXED POINT THEOREMS FOR NONLINEAR MAPPINGS 29

Lemma 5.1. Let E be a smooth and uniformly convex Banach space and let T be
a generalized nonexpansive mapping from E into itself. If F (T ) is nonempty, then
{RTnx} converges strongly to some element of F (T ) for each x ∈ E, where R is
the sunny generalized nonexpansive retraction of E onto F (T ).

Proof. Let x ∈ E. Then we have from Lemma 2.4 that

V (Tn+1x,RTn+1x)
≤ V (Tn+1x,RTn+1x) + V (RTn+1x,RTnx)
≤ V (Tn+1x,RTnx)
≤ V (Tnx,RTnx)

for each n ∈ N. Hence, limn→∞ V (Tnx,RTnx) exists. It follows from Lemma 2.3
and (2.3) that, for each k ∈ N,

V (Tn+kx,RTnx)

= V (Tn+kx,RTn+kx) + V (RTn+kx,RTnx)

+2〈Tn+kx−RTn+kx, JRTn+kx− JRTnx〉
≥ V (Tn+kx,RTn+kx) + V (RTn+kx,RTnx)

and hence

V (RTn+kx,RTnx) ≤ V (Tn+kx,RTnx)− V (Tn+kx,RTn+kx)

≤ V (Tnx,RTnx)− V (Tn+kx,RTn+kx).

Since F (T ) 6= ∅, we also obtain

V (RTnx, p) ≤ V (x, p)

for some p ∈ F (T ) and hence {RTnx} is bounded. Using Lemma 2.2, we have, for
m,n ∈ N with m > n

g(‖RTnx−RTmx‖) ≤ V (Tnx,RTnx)− V (Tmx,RTmx),

where g : [0,∞) → [0,∞) is a continuous, strictly increasing, and convex function
such that g(0) = 0. Then the properties of g yield that {RTnx} is a Cauchy
sequence. Since E is complete and F (T ) is closed, {RTnx} converges strongly to
some point u in F (T ). �

Next, we obtain the following theorem for firmly generalized nonexpansive type
mappings in a Banach space.

Theorem 5.2. Let E be a uniformly convex Banach space with a uniformly Gâteaux
differentiable norm and let T be a firmly generalized nonexpansive type mapping
from E into itself. If the duality mapping J is weakly sequentially continuous, then
the following are equivalent:

(1) F (T ) is nonempty;
(2) {Tnx} converges weakly for each x ∈ E.

In this case, {Tnx} converges weakly to an element of F (T ).
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Proof. We first show that (2) implies (1). Let x ∈ E. Since {Tnx} converges weakly,
then {Tnx} is bounded. From Theorem 4.2, we obtain that F (T ) is nonempty.

Next, we show that (1) implies (2). Let x ∈ E and p ∈ F (T ). Since T is a firmly
generalized nonexpansive type mapping from E into itself, from Lemma 3.3 T is
firmly generalized nonexpansive. So, we have that

(5.1) V (Tn+1x, p) ≤ V (Tnx, Tn+1x) + V (Tn+1x, p) ≤ V (Tnx, p)

for each n ∈ N and hence limn→∞ V (Tnx, p) exists. From (5.1), we obtain that

V (Tnx, Tn+1x) ≤ V (Tnx, p)− V (Tn+1x, p)

for each n ∈ N. Since {V (Tnx, p)} converges, it follows that

(5.2) lim
n→∞

V (Tnx, Tn+1x) = 0.

Since F (T ) is nonempty, by Theorem 4.2, {Tnx} is bounded. From (5.2) and Lemma
2.1, we have that

(5.3) lim
n→∞

‖Tnx− Tn+1x‖ = 0.

On the other hand, from Lemma 3.4, we have that

(5.4) 〈(Tnx− Tn+1x)− (y − Ty), JTn+1x− JTy〉 ≥ 0

for each n ∈ N and y ∈ E. Let {Tnix} be a subsequence of {Tnx} such that Tnix ⇀
p for some p ∈ E. Since the duality mapping J is weakly sequentially continuous,
we have that JTnix ⇀ Jp. Since J is norm to norm uniformly continuous on each
bounded set, by (5.3) we have ‖JTnx − JTn+1x‖ → 0 and hence JTTnix ⇀ Jp.
Letting ni →∞ in (5.4), we obtain that

(5.5) 〈−(y − Ty), Jp− JTy〉 ≥ 0

for each y ∈ E. Put y = p in (5.5). Then we have

(5.6) 〈Tp− p, Jp− JTp〉 ≥ 0

Since J is strictly monotone, it follows that p = Tp. This implies that p ∈ F (T ).
Let {Tnix} and {Tnjx} be two subsequences of {Tnx} such that Tnix ⇀ p1 and

Tnjx ⇀ p2. As above, we have p1, p2 ∈ F (T ). Put

a = lim
n→∞

(
V (Tnx, p1)− V (Tnx, p2)

)
.

Since
V (Tnx, p1)− V (Tnx, p2) = 2〈Tnx, Jp2 − Jp1〉+ ‖p1‖2 − ‖p2‖2

for n = 1, 2, . . . , from Tnix ⇀ p1 and Tnjx ⇀ p2 we have

(5.7) a = 2〈p1, Jp2 − Jp1〉+ ‖p1‖2 − ‖p2‖2

and

(5.8) a = 2〈p2, Jp2 − Jp1〉+ ‖p1‖2 − ‖p2‖2.

From (5.7) and (5.8), we obtain

〈p1 − p2, Jp1 − Jp2〉 = 0.

Since J is strictly monotone, it follows that p1 = p2. Therefore, {Tnx} converges
weakly to an element of F (T ). �
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Using Theorems 5.1 and 5.2, we finally have the following result.

Theorem 5.3. Let E be a uniformly smooth and uniformly convex Banach space
and let T be a firmly generalized nonexpansive type mapping from E into itself.
If the duality mapping J is weakly sequentially continuous, then the following are
equivalent:

(1) F (T ) is nonempty;
(2) {Tnx} converges weakly for each x ∈ E.

In this case, {Tnx} converges weakly to p ∈ F (T ), where p = limn→∞RTnx and R
is a sunny generalized nonexpansive retraction of E onto F (T ).

Proof. From Theorem 5.2, we know that the conditions (1) and (2) are equivalent.
Moreover, in this case, we also know that, for each x ∈ E, {Tnx} converges weakly
to an element p ∈ F (T ). Since Lemma 2.3, we have that

(5.9) 〈Tnx−RTnx, JRTnx− Jz〉 ≥ 0

for each z ∈ F (T ). From Theorem 5.1, we have that {RTnx} converges strongly
to some point u in F (T ). Since E has a Fréchet differentiable norm, the duality
mapping J is norm to norm continuous. Therefore, letting n → ∞ in (5.9), we
obtain from Tnx ⇀ p and RTnx → u that

〈p− u, Ju− Jz〉 ≥ 0

for each z ∈ F (T ). Putting z = p, we get

〈p− u, Ju− Jp〉 ≥ 0.

Since J is strictly monotone, it follows that u = p. Therefore, {Tnx} converges
weakly to p = limn→∞RTnx. This completes the proof. �
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