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EXACT PENALTY IN CONSTRAINED OPTIMIZATION AND
CRITICAL POINTS OF LIPSCHITZ FUNCTIONS

ALEXANDER J. ZASLAVSKI

Abstract. In this paper we use the penalty approach to study two constrained
minimization problems in infinite-dimensional Asplund spaces. A penalty func-
tion is said to have the exact penalty property if there is a penalty coefficient
for which a solution of an unconstrained penalized problem is a solution of the
corresponding constrained problem. We establish a simple sufficient condition
for exact penalty property using the notion of the Mordukhovich basic subdiffer-
ential.

1. Introduction

Penalty methods are an important and useful tool in constrained optimization.
See, for example, [4-8, 11, 14, 18, 19, 21] and the references mentioned there. In this
paper we use the penalty approach in order to study two constrained nonconvex
minimization problems with Lipschitzian (on bounded sets) objective functions.
The first problem is an equality-constrained problem in an Asplund space with a
locally Lipschitzian constraint function and the second problem is an inequality-
constrained problem in an Asplund space with a locally Lipschitzian constraint
function. Note that a Banach space is an Asplund space if and only if every separable
subspace has a separable dual [13].

A penalty function is said to have the exact penalty property if there is a penalty
coefficient for which a solution of an unconstrained penalized problem is a solution
of the corresponding constrained problem. The notion of exact penalization was
introduced by Eremin [10] and Zangwill [19] for use in the development of algo-
rithms for nonlinear constrained optimization. For a detailed historical review of
the literature on exact penalization see [4, 6, 8].

In [21] it was established the existence of a penalty coefficient for which ap-
proximate solutions of the unconstrained penalized problem are close enough to
approximate solutions of the corresponding constrained problem. This is a novel
approach in the penalty type methods.

Consider a minimization problem h(z) → min, z ∈ X where h : X → R1 is a lower
semicontinuous bounded from below function on a Banach space X. If the space X
is infinite-dimensional or if the function h does not satisfy a coercivity assumption,
then the existence of solutions of the problem is not guaranteed and in this situation
we consider δ-approximate solutions. Namely, x ∈ X is a δ-approximate solution of
the problem h(z) → min, z ∈ X, where δ > 0, if h(x) ≤ inf{h(z) : z ∈ X}+ δ.
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In [21] and in this paper we consider minimization problems in a general Banach
space and in a general Asplund space respectively. Therefore we are interested in
approximate solutions of the unconstrained penalized problem and in approximate
solutions of the corresponding constrained problem. Under certain mild assumptions
we show the existence of a constant Λ0 > 0 such that the following property holds:

For each ε > 0 there exists δ(ε) > 0 which depends only on ε such that if x is
a δ(ε)-approximate solution of the unconstrained penalized problem whose penalty
coefficient is larger than Λ0, then there exists an ε-approximate solution y of the
corresponding constrained problem such that ||y − x|| ≤ ε.

This property implies that any exact solution of the unconstrained penalized
problem whose penalty coefficient is larger than Λ0, is an exact solution of the
corresponding constrained problem. Indeed, let x be a solution of the unconstrained
penalized problem whose penalty coefficient is larger than Λ0. Then for any ε > 0
the point x is also a δ(ε)-approximate solution of the same unconstrained penalized
problem and in view of the property above there is an ε-approximate solution yε

of the corresponding constrained problem such that ||x − yε|| ≤ ε. Since ε is an
arbitrary positive number we can easily deduce that x is an exact solution of the
corresponding constrained problem. Therefore our results also include the classical
penalty result as a special case.

In [21] the existence of the constant Λ0 for the equality-constrained problem
was established under the assumption that the set of admissible points does not
contains critical points of the constraint function. The notion of critical points used
in [21] is based on Clarke’s generalized gradients [7]. It should be mentioned that
there exists also the construction of Mordukhovich basic subdifferential introduced
in [12] which is intensively used in the literature. See, for example, [13, 14] and the
references mentioned there. In the present paper we generalize the results of [21]
for minimization problems on Asplund spaces using the (less restrictive) notion of
critical points via Mordukhovich basic subdifferential.

2. Main results

Let (X, || · ||) be an Asplund space and (X∗, || · ||∗) its dual equipped with the
weak* topology w∗.

If F : X → 2X∗
is a set-valued mapping between the Banach space X and its

dual X∗, then the notation

lim sup
x→x̄

F (x) := {x∗ ∈ X∗ : there exist sequences xk → x̄ and x∗k
w∗
→→x∗

(2.1) as k →∞ with x∗k ∈ F (xk) for all natural numbers k}

signifies the sequential Painleve-Kuratowski upper limit with respect to the norm
topology of X and the weak* topology of X∗.

For each x∗ ∈ X∗ and each r > 0 set

B∗(x∗, r) = {l ∈ X∗ : ||l − x∗||∗ ≤ r}.

In this paper in order to obtain a sufficient condition for the existence of an exact
penalty we use the notion of Mordukhovich basic subdifferential introduced in [12]
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(see also [13, page 82]). In order to meet this goal we first present the notion of an
analytic ε-subdifferential (see [13, page 87]).

Let φ : X → R1, ε > 0 and let x̄ ∈ X. Then the set

(2.2) ∂̂aεφ(x̄) := {x∗ ∈ X∗ : lim inf
x→x̄

[(φ(x)−φ(x̄)− < x∗, x− x̄ >)||x− x̄||−1] ≥ −ε}

is the analytic ε-subdifferential of φ at x̄.
By Theorem 1.8.9 of [13, page 92], the set

(2.3) ∂φ(x̄) = lim sup
x

φ→→x̄, ε→0+

∂̂aεφ(x)

is Mordukhovich basic (limiting) subdifferential of the function φ at the point x̄.
It should be mentioned that in view of Theorem 2.34 of [13, p. 218],

∂φ(x̄) = lim sup
x

φ→→x̄

∂̂a0φ(x).

Here we use the notation that x
φ→ →x̄ if and only if x → x̄ with φ(x) → φ(x̄),

where φ(x) → φ(x̄) is superfluous if φ is continuous at x̄.
Note that in the present paper we do not provide a definition of Mordukhovich

basic (limiting) subdifferential as it appears in the literature [13, page 82]. Instead
of it we work with the formula (2.3) which is more convenient for our goals.

Let f : X → R1 be a locally Lipschitzian function. For each x ∈ X denote by
∂f(x) Mordukhovich basic subdifferential of f at x and set

(2.4) Ξf (x) = inf{||l||∗ : l ∈ ∂f(x)}.
(We suppose that infimum of an empty set is ∞). It should be mentioned that an
analogous functional, defined using the Clarke subdifferentials, was introduced in
[20] and then used in [10, 17].

A point x ∈ X is a critical point of f if 0 ∈ ∂f(x).
A real number c ∈ R1 is called a critical value of f if there exists a critical point

x of f such that f(x) = c.
For each function h : X → R1 and each nonempty set A ⊂ X set

inf(h) = inf{h(z) : z ∈ X}, inf(h;A) = inf{h(z) : z ∈ A}.
For each x ∈ X and each B ⊂ X put

d(x,B) = inf{||x− y|| : y ∈ B}.
Let f : X → R1 be a function which is Lipschtzian on all bounded subsets of X

and which satisfies the growth condition

(2.5) lim
||x||→∞

f(x) = ∞.

Clearly, the function f is bounded from below.
Let g : X → R1 be a locally Lipschitzian function.
We say that the function g satisfies the Palais-Smale (P-S) condition on a set

M ⊂ X if for each normed-bounded sequence {zi}∞i=1 ⊂ M such that the sequence
{g(zi)}∞i=1 is bounded and lim infi→∞ Ξg(zi) = 0 there exists a norm convergent
subsequence of {zi}∞i=1 [1-3, 15, 20].

Let c ∈ R1 be such that g−1(c) 6= ∅.
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We consider the following constrained minimization problems

(Pe) f(x) → min subject to x ∈ g−1(c)

and

(Pi) f(x) → min subject to x ∈ g−1((−∞, c]).

We associate with these two problems the corresponding families of unconstrained
minimization problems

(Pλe) f(x) + λ|g(x)− c| → min, x ∈ X

and

(Pλi) f(x) + λmax{g(x)− c, 0} → min, x ∈ X

where λ > 0.
The following two theorems are our main results.

Theorem 2.1. Assume that there exists γ∗ > 0 such that the functions g and −g
satisfy the (P-S) condition on the set g−1([c−γ∗, c+γ∗]) and the following property
holds:

If x ∈ g−1(c) is a critical point of the function g or a critical point of the function
−g, then f(x) > inf(f ; g−1(c)).

Then there exists a positive number λ̄ such that for each ε > 0 there exists δ ∈
(0, ε) such that the following assertion holds.

If λ > λ̄ and if x ∈ X satisfies

f(x) + λ|g(x)− c| ≤ inf{f(z) + λ|g(z)− c| : z ∈ X}+ δ,

then there is y ∈ g−1(c) such that

||y − x|| ≤ ε and f(y) ≤ inf(f ; g−1(c)) + δ.

Theorem 2.2. Assume that there exists γ∗ > 0 such that the function g satisfies
the (P-S) condition on the set g−1([c, c+ γ∗]) and the following property holds:

If x ∈ g−1(c) is a critical point of the function g, then f(x) > inf(f ; g−1(−∞, c]).
Then there exists a positive number λ̄ such that for each ε > 0 there exists δ ∈

(0, ε) such that the following assertion holds.
If λ > λ̄ and if x ∈ X satisfies

f(x) + λmax{g(x)− c, 0} ≤ inf{f(z) + λmax{g(z)− c, 0} : z ∈ X}+ δ,

then there is y ∈ g−1(−∞, c]) such that

||y − x|| ≤ ε and f(y) ≤ inf(f ; g−1(−∞, c]) + δ.

3. Proofs of Theorems 2.1 and 2.2

We prove Theorems 2.1 and 2.2 simultaneously. Set

(3.1) A = g−1(c) in the case of Theorem 2.1

and

(3.2) A = g−1((−∞, c]) in the case of Theorem 2.2.
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For each λ > 0 define a function ψλ : X → R1 as

(3.3) ψλ(z) = f(z) + λ|g(z)− c|, z ∈ X
in the case of Theorem 2.1 and as

(3.4) ψλ(z) = f(z) + λmax{g(z)− c, 0}, z ∈ X
in the case of Theorem 2.2.

Clearly, the function ψλ is locally Lipschitzian for all λ > 0. We show that there
exists λ̄ > 0 such that the following property holds:

(P) For each ε ∈ (0, 1) there exists δ ∈ (0, ε) such that for each λ > λ̄ and each
x ∈ X which satisfies

ψλ(x) ≤ inf(ψλ) + δ

the set
{y ∈ A : ||x− y|| ≤ ε and ψλ(y) ≤ ψλ(x)}

is nonempty.
It is not difficult to see that the existence of λ̄ > 0 for which the property (P)

holds implies the validity of Theorems 2.1 and 2.2.
Let us assume the contrary. Then for each natural number k there exist

(3.5) εk ∈ (0, 1), λk > k, xk ∈ X
such that

(3.6) ψλk
(xk) ≤ inf(ψλk

) + 2−1εkk
−2

and

(3.7) {z ∈ A : ||z − xk|| ≤ εk and ψλk
(yk) ≤ ψλk

(xk)} = ∅.
Let k be a natural number. It follows from (3.6) and Ekeland’s variational principle
[9] that there exists yk ∈ X such that

(3.8) ψλk
(yk) ≤ ψλk

(xk),

(3.9) ||yk − xk|| ≤ (2k)−1εk,

(3.10) ψλk
(yk) ≤ ψλk)(z) + k−1||z − yk|| for all z ∈ X.

By (3.8), (3.9) and (3.7),

(3.11) yk 6∈ A for all natural numbers k.

In the case of Theorem 2.2 we obtain that

(3.12) g(yk) > c for all natural numbers k.

In the case of Theorem 2.1 we obtain that for each natural number k either g(yk) > c
or g(yk) < c.

In the case of Theorem 2.1 by extracting a subsequence and re-indexing we may
assume that either g(yk) > c for all natural numbers k or g(yk) < c for all natural
natural numbers k. Replacing g with −g and c with −c if necessary we may assume
without loss of generality that (3.12) holds in the case of Theorem 2.1 too. Now
(3.12) is valid in both cases.
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Let k be a natural number. Then by (3.12) there is an open neighborhood Vk of
yk in X such that

g(z) > c for all z ∈ Vk.

Together with (3.3), (3.4) and (3.10) this implies that for all z ∈ Vk

(3.13) f(yk) + λk(g(yk)− c) = ψλk
(yk) ≤ f(z) + λk(g(z)− c) + k−1||z − yk||.

Put

(3.14) φk(z) = f(z) + λkg(z) + k−1||z − yk||, z ∈ Vk.

By (2.3), (2.2), (3.14) and (3.13),

(3.15) 0 ∈ ∂(φk)(yk).

It follows from (3.15), (3.14) and Theorem 3.36 of [13] that

(3.16) 0 ∈ ∂f(yk) + λk∂g(yk) + k−1∂(|| · −yk||)(yk).

In view of (3.16) and Corollary 1.8.1 of [13],

(3.17) 0 ∈ ∂g(yk) + λ−1
k ∂f(yk) + λ−1

k k−1∂(|| · −yk||)(yk)

⊂ ∂g(yk) + λ−1
k ∂f(yk) + λ−1

k k−1B∗(0, 1).
It follows from (3.3)-(3.6) and (3.8) that for all natural numbers k

(3.18) f(yk) ≤ ψλk
(yk) ≤ inf(ψλk

) + 1 ≤ inf(ψλk
;A) + 1 = inf(f ;A) + 1.

In view of this inequality and the growth condition (2.5) the sequence {yk}∞k=1 is
bounded. Since the function f is Lipschitzian on bounded subsets of X it follows
from the boundedness of the sequence {yk}∞k=0 and Corollary 1.8.1 of [13] that there
exists L > 0 such that

(3.19) ∂f(yk) ⊂ B∗(0, L) for all natural numbers k.

By (3.5), (3.17) and (3.19) for all natural numbers k,

0 ∈ ∂g(yk) + λ−1
k B∗(0, L) + k−1B∗(0, 1)

and in view of (2.4)

(3.20) lim
k→∞

Ξg(yk) = 0.

By (3.3)-(3.6), (3.8) and (3.12) for all integers k ≥ 1,

inf(f) + λk(g(yk)− c) ≤ f(yk) + λk(g(yk)− c) = ψλk
(yk)

≤ inf(f ;A) + 1
and

(3.21) 0 < g(yk)− c ≤ λ−1
k [inf(f ;A) + 1− inf(f)] → 0 as k →∞.

Hence there is a natural number k0 such that for all integers k ≥ k0

(3.22) g(yk) ∈ (c, c+ γ∗].

By (3.22), the boundedness of the sequence {yk}∞k=1 in the norm topology and
the (P-S) condition there exists a strictly increasing sequence of natural numbers
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{kj}∞j=1 such that {ykj
}∞j=1 converges in the norm topology to y∗ ∈ X. In view of

(3.21),

(3.23) g(y∗) = c.

By (3.3), (3.4), (3.8) and (3.16),

f(y∗) = lim
j→∞

f(ykj
) ≤ lim sup

j→∞
ψλkj

(ykj
)

≤ lim sup
j→∞

inf(ψλkj
) ≤ lim sup

j→∞
inf(ψλkj

;A) = inf(f ;A).

Together with (3.23), (3.1) and (3.2) this implies that

(3.24) f(y∗) = inf(f ;A).

We have already mentioned that the sequence {yk}∞k=1 is bounded. Choose a number
M > 4 such that

(3.25) {yk}∞k=1 ⊂ B(0,M − 2).

Since the function f is Lipschitz on bounded subsets of X there exists L0 ≥ 1 such
that

(3.26) |f(z1)− f(z2)| ≤ L0||z1 − z2|| for all z1, z2 ∈ B(0,M).

Let k be a natural number. We may assume that

(3.27) Vk ⊂ B(yk, 1) ⊂ B(0,M).

By (3.13), (3.27), (3.26) and (3.15) for all z ∈ Vk \ {yk},

(g(z)− g(yk))||z − yk||−1 ≥ ||z − yk||−1[f(yk)− f(z)]λ−1
k − k−1λ−1

k

≥ −L0λ
−1
k − k−1 ≥ −k−1(1 + L0).

By the relation above and the definition (2.2),

0 ∈ ∂̂aγk
gk(yk)

with

γk = k−1(1 + L0).

Together with (2.3) and the equality y∗ = limj→∞ ykj
in the norm topology, 0 ∈

∂g(y∗). This contradicts to the relation (3.23) and (3.24). The contradiction we
have reached proves the existence of λ̄ > 0 for which the property (P) holds.

This completes the proofs of Theorems 2.1 and 2.2.
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