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THREE GENERALIZATIONS OF FIRMLY NONEXPANSIVE
MAPPINGS: THEIR RELATIONS AND CONTINUITY

PROPERTIES

KOJI AOYAMA, FUMIAKI KOHSAKA, AND WATARU TAKAHASHI

Abstract. The purpose of this paper is to study three generalizations of a firmly
nonexpansive mapping, which is called a mapping of type (P), (Q), and (R),
respectively. Especially, we focus on relationships among them and continuity
properties of them.

1. Introduction

The class of firmly nonexpansive mappings in a Hilbert space is one of the most
important class of nonlinear mappings. Indeed, all metric projections onto a closed
convex set and all resolvents of a monotone operator are firmly nonexpansive.

Bruck [14] introduced and discussed a firmly nonexpansive mapping in a Banach
space. All norm one linear projections, all sunny nonexpansive retractions, and
all resolvents of an accretive operator are firmly nonexpansive. It is also known
that the class of firmly nonexpansive mappings coincides with that of resolvents of
accretive operators in Banach spaces; see also Bruck and Reich [15]. Let E be a
Banach space and C a nonempty subset of E. Then a mapping V : C → E is said
to be firmly nonexpansive [14] if

‖t(x− y) + (1− t)(V x− V y)‖ ≥ ‖V x− V y‖
for all x, y ∈ C and t ≥ 0. If E is smooth, it is not hard to check that a mapping
V : C → E is firmly nonexpansive if and only if

〈x− V x− (y − V y), J(V x− V y)〉 ≥ 0

for all x, y ∈ C, where J is the duality mapping on E. If E is a Hilbert space, then
this definition is reduced to

‖V x− V y‖2 ≤ 〈x− y, V x− V y〉
or equivalently

‖V x− V y‖2 + ‖x− V x− (y − V y)‖2 ≤ ‖x− y‖2

for all x, y ∈ C; see, for example, Goebel and Kirk [19].
Motivated by the proximal methods for monotone operators in Banach spaces [26,

27, 29, 30, 33, 44, 47, 54, 55, 57] and the results on relatively nonexpansive mappings
in Banach spaces [3, 4, 7, 36, 42, 43, 47], Kohsaka and Takahashi [37] proposed the
class of mappings of firmly nonexpansive type, which contains the classes of firmly
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nonexpansive mappings in Hilbert spaces and resolvents of maximal monotone op-
erators in Banach spaces. We know that this class is contained in the classes of
D-firm operators [10] and F -firmly nonexpansive operators [12]. In [37–39], some
existence theorems and convergence theorems for mappings of firmly nonexpansive
type were obtained. Let E be a smooth Banach space and C a nonempty subset of
E. Then a mapping T : C → E is said to be of firmly nonexpansive type if

〈Tx− Ty, Jx− JTx− (Jy − JTy)〉 ≥ 0

for all x, y ∈ C. In the remainder of this paper, a mapping of firmly nonexpansive
type is said to be of type (Q); see §4.

The purpose of this paper is to study three generalizations of a firmly nonex-
pansive mapping, which is called a mapping of type (P), (Q), and (R), respectively.
Especially, we focus on relationships among them and continuity properties of them.

2. Preliminaries

Throughout the present paper, E denotes a real Banach space, E∗ the dual of
E, ‖ · ‖ the norm of E or E∗, 〈x, x∗〉 the value of x∗ ∈ E∗ at x ∈ E, I the identity
mapping on E, R the set of real numbers, and N the set of nonnegative integers.
Strong convergence of a sequence {xn} in E to x is denoted by xn → x and weak
convergence by xn ⇀ x. The (normalized) duality mapping of E is denoted by J ,
that is,

Jx =
{

x∗ ∈ E∗ : ‖x‖2 = ‖x∗‖2 = 〈x, x∗〉
}

for x ∈ E. It is known that if E is reflexive, then J is surjective.
Let SE = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux differentiable

if the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y ∈ SE . In this case E is said to be smooth. The norm of E is
said to be uniformly Gâteaux differentiable if for each y ∈ SE , the limit (2.1) is
attained uniformly for x ∈ SE . The norm of E is said to be Fréchet differentiable
if for each x ∈ SE , the limit (2.1) is attained uniformly for y ∈ SE . The norm of E
is said to be uniformly Fréchet differentiable if the limit (2.1) is attained uniformly
for x, y ∈ SE . In this case E is said to be uniformly smooth. It is known that

• if E is smooth, then the duality mapping J is single-valued;
• if the norm of E is uniformly Gâteaux differentiable, then J is uniformly

norm-to-weak* continuous on each bounded subset of E;
• if the norm of E is Fréchet differentiable, then J is norm-to-norm continuous;
• if E is uniformly smooth, then J is uniformly norm-to-norm continuous on

each bounded subset of E;
see [52,53] for more details.

A Banach space E is said to be strictly convex if ‖x + y‖ < 2 whenever x, y ∈ SE

and x 6= y. It is known that if E is strictly convex, then the duality mapping J is
injective, that is, x, y ∈ E and x 6= y imply Jx∩ Jy = ∅. A Banach space E is said
to be uniformly convex if ‖xn − yn‖ → 0 whenever {xn} and {yn} are sequences in
SE and ‖xn + yn‖ → 2. It is known that if E is uniformly convex, then
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• E is strictly convex and reflexive;
• E has the Kadec–Klee property, that is, a sequence {xn} in E converges

strongly to x whenever xn ⇀ x and ‖xn‖ → ‖x‖;
see [52,53].

Let E be a strictly convex and reflexive Banach space and C a nonempty closed
convex subset of E. It is known that for each x ∈ E there exists a unique point
z ∈ C such that ‖x− z‖ ≤ ‖x− y‖ for all y ∈ C. Such a point z is denoted by PCx
and PC is called the metric projection of E onto C.

Lemma 2.1 ([52, Corollary 6.5.5]). Let E be a smooth, strictly convex, and reflexive
Banach space, C a nonempty closed convex subset of E, PC the metric projection
of E onto C, x ∈ E, and z ∈ C. Then z = PCx if and only if

〈z − y, J(x− z)〉 ≥ 0

for all y ∈ C.

Let E be a smooth Banach space. Throughout this paper, let φ : E ×E → R be
a function defined by

φ(x, y) = ‖x‖2 − 2 〈x, Jy〉+ ‖y‖2

for x, y ∈ E; see [1, 29]. It is easy to check that

(2.2) (‖x‖ − ‖y‖)2 ≤ 1
2
(φ(x, y) + φ(y, x)) = 〈x− y, Jx− Jy〉

for all x, y ∈ E. Let E be a smooth, strictly convex, and reflexive Banach space.
Then we also define a function φ∗ : E∗ × E∗ → R by

φ∗(x∗, y∗) = ‖x∗‖2 − 2
〈
J−1y∗, x∗

〉
+ ‖y∗‖2

for x∗, y∗ ∈ E∗. In this case, it is clear that φ(x, y) = φ∗(Jy, Jx) for all x, y ∈ E
and φ∗(x∗, y∗) = φ

(
J−1y∗, J−1x∗

)
for all x∗, y∗ ∈ E∗.

We know the following result:

Lemma 2.2 ([29, Proposition 2]). Let E be a smooth and uniformly convex Banach
space and {xn} and {yn} sequences in E such that {xn} or {yn} is bounded. If
φ(xn, yn) → 0, then xn − yn → 0.

We know the following lemma; see, for instance, Takahashi [53, Problem 3.2.4].
For the sake of completeness, we give another proof of it by using the functions φ
and φ∗:

Lemma 2.3. Let E be a smooth, strictly convex, and reflexive Banach space, {xn}
a sequence in E, and x ∈ E. If 〈xn − x, Jxn − Jx〉 → 0, then xn ⇀ x, Jxn ⇀ Jx,
and ‖xn‖ → ‖x‖.

Proof. It follows from (2.2) that φ(xn, x) → 0, φ(x, xn) → 0, and ‖xn‖ → ‖x‖.
Hence φ∗(Jxn, Jx) → 0 and {xn} is bounded.

Let {xni} be a subsequence of {xn} which converges weakly to u ∈ E. Since the
function φ is weakly lower semicontinuous in its first variable, we have

φ(u, x) ≤ lim inf
i→∞

φ(xni , x) = lim
i→∞

φ(xni , x) = 0.
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This shows that u = x because of the strict convexity of E. Consequently, xn ⇀ x.
Let {Jxni} be a subsequence of {Jxn} which converges weakly to u∗ ∈ E∗. Since

the function φ∗ is also weakly lower semicontinuous in its first variable, we have

φ∗(u∗, Jx) ≤ lim inf
i→∞

φ∗(Jxni , Jx) = lim
i→∞

φ∗(Jxni , Jx) = 0.

This shows that u∗ = Jx and therefore Jxn ⇀ Jx. This completes the proof. �

Let E be a smooth, strictly convex, and reflexive Banach space and C a nonempty
closed convex subset of E. It is known that for each x ∈ E there is a unique point
z ∈ C such that φ(z, x) ≤ φ(y, x) for all y ∈ C. Such a point z is denoted by
ΠCx and ΠC is called the generalized projection of E onto C; see [1] and [29]. The
generalized projection has the following properties:

Lemma 2.4 ([1] and [29]). Let E be a smooth, strictly convex, and reflexive Banach
space, C a nonempty closed convex subset of E, and ΠC the generalized projection
of E onto C. Then

〈ΠCx− y, Jx− JΠCx〉 ≥ 0,

or equivalently
φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x)

for all x ∈ E and y ∈ C.

Let C be a subset of a Banach space E and T : C → E a mapping. The set of
fixed points of T is denoted by F (T ). A point p ∈ C is said to be an asymptotic
fixed point of T [47] if C contains a sequence {xn} which converges weakly to p and
xn − Txn → 0. The set of asymptotic fixed points of T is denoted by F̂ (T ). The
mapping T is said to be relatively nonexpansive [42,43] if F̂ (T ) = F (T ) 6= ∅ and

φ(u, Tx) ≤ φ(u, x)

for all u ∈ F (T ) and x ∈ C. A relatively nonexpansive mapping T is also said to
be strongly relatively nonexpansive [7,36,47] if φ(Txn, xn) → 0 whenever {xn} is a
bounded sequence in C such that φ(u, xn)− φ(u, Txn) → 0 for some u ∈ F (T ).

Let C and D be nonempty subsets of a Banach space E. Then a mapping
U : C → D is said to be sunny if U(Ux + t(x− Ux)) = Ux whenever x ∈ C, t ≥ 0,
and Ux+t(x−Ux) ∈ C. A mapping U : C → C is said to be a retraction if U2 = U .
A mapping U : C → E is said to be generalized nonexpansive [21, 22] if F (U) 6= ∅
and φ(Ux, u) ≤ φ(x, u) for all x ∈ C and u ∈ F (U). A subset C of E is said to be
a sunny generalized nonexpansive retract (resp. generalized nonexpansive retract)
of E if there exists a sunny generalized nonexpansive retraction (resp. generalized
nonexpansive retraction) of E onto C.

Lemma 2.5 ( [22, Proposition 4.2]). Let E be a smooth and strictly convex Banach
space, C a nonempty subset of E, and RC a retraction of E onto C. If RC is sunny
and generalized nonexpansive, then

〈x−RCx, JRCx− Jy〉 ≥ 0,

or equivalently
φ(RCx, y) + φ(x,RCx) ≤ φ(x, y)

for all x ∈ E and y ∈ C.
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We also know the following result:

Lemma 2.6 ([35, Theorem 3.3]). Let E be a smooth, strictly convex, and reflex-
ive Banach space and C a nonempty closed subset of E. Then the following are
equivalent:

(1) C is a sunny generalized nonexpansive retract of E;
(2) C is a generalized nonexpansive retract of E;
(3) J(C) is closed and convex.

In this case, the unique sunny generalized nonexpansive retraction RC of E onto C
is given by J−1ΠJ(C)J , where ΠJ(C) is the generalized projection of E∗ onto J(C).

Let A be a set-valued mapping of E into E∗, which is often denoted by A ⊂
E × E∗. The effective domain of A is denoted by dom(A) and the range of A by
ran(A), that is, dom(A) = {x ∈ E : Ax 6= ∅} and ran(A) =

⋃
x∈dom(A) Ax. A

set-valued mapping A ⊂ E × E∗ is said to be a monotone operator if

〈x− y, x∗ − y∗〉 ≥ 0

for all (x, x∗), (y, y∗) ∈ A. A monotone operator A ⊂ E ×E∗ is said to be maximal
if A = A′ whenever A′ ⊂ E × E∗ is a monotone operator such that A ⊂ A′. It is
known that if A is a maximal monotone operator, then A−10 is closed and convex,
where A−10 = {x ∈ E : Ax 3 0}.

Let E be a smooth, strictly convex, and reflexive Banach space and A ⊂ E ×
E∗ a monotone operator. Then it is known that the following three single-valued
mappings are well-defined for all r > 0:

• Kr = (I + rJ−1A)−1 : ran(I + rJ−1A) → dom(A);
• Lr = (J + rA)−1J : J−1(ran(J + rA)) → dom(A);
• Mr = (I + rA−1J)−1 : ran(I + rA−1J) → J−1

(
dom(A−1)

)
,

where J−1 is the duality mapping on E∗. Such mappings are called the resolvents
of A. These mappings play essential roles in the approximation theory for zero
points of maximal monotone operators in Banach spaces. The asymptotic behavior
of sequences generated by several modifications of the well-known proximal point
algorithm [49] (see also [18, 28, 53, 56]) are deeply related to the properties of these
operators. We refer to [8, 9, 31, 40, 45, 50, 53] for some fundamental results on the
classical resolvent Kr and [2–4,6,7,10–12,16–18,20,26,27,29,30,32–34,36–39,41–44,
46, 47, 58] for some results on the resolvent Lr or its generalizations with Bregman
functions. We also refer to [21–24,35] for some results on the relatively new resolvent
Mr. The papers due to Takahashi [54, 55, 57] on four types of resolvents are also
useful to the reader.

For each r > 0, it is known that F (Kr) = F (Lr) = A−10 and F (Mr) =
(A−1J)−1(0),

(2.3)
J(x−Krx)

r
∈ AKrx

for all x ∈ ran(I + rJ−1A),

(2.4)
Jx− JLrx

r
∈ ALrx
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for all x ∈ J−1(ran(J + rA)), and

(2.5)
x−Mrx

r
∈ A−1JMrx

for all x ∈ ran(I + rA−1J). It is also known that if A ⊂ E × E∗ is a maximal
monotone operator, then

ran(I + rJ−1A) = J−1(ran(J + rA)) = ran(I + rA−1J) = E

for all r > 0; see [13, 48, 53], that is, Kr, Lr, and Mr are well-defined on the whole
space E.

Let C be a subset of a Banach space E. A mapping B : C → E∗ is said to
be demicontinuous if B is norm-to-weak* continuous. We also know the following
results:

Lemma 2.7 ( [8, Theorem 1.3] and [9, Corollary 4.2]). Let E be a reflexive Banach
space and B : E → E∗ a mapping. If B is monotone and demicontinuous, then B
is maximal monotone.

Theorem 2.8 ([52, Theorem 7.1.8]). Let E be a reflexive Banach space, C a
nonempty bounded closed convex subset of E, and B : C → E∗ a monotone and
demicontinuous mapping. Then there exists u ∈ C such that 〈y − u, Bu〉 ≥ 0 for all
y ∈ C.

3. Mappings of type (P)

In this section, we introduce and discuss a mapping of type (P) in a Banach
space.

Let E be a smooth Banach space and C a nonempty subset of E. A mapping
S : C → E is said to be of type (P) if

〈Sx− Sy, J(x− Sx)− J(y − Sy)〉 ≥ 0

for all x, y ∈ C.
Some important examples are listed below:

Example 3.1. Let E be a smooth, strictly convex, and reflexive Banach space
and C a nonempty closed convex subset of E. Then the metric projection PC is of
type (P). Indeed: Let x, y ∈ E. Then PCx, PCy ∈ C. Lemma 2.1 implies that

〈PCx− PCy, J(x− PCx)〉 ≥ 0 and 〈PCy − PCx, J(y − PCy)〉 ≥ 0.

Thus we have
〈PCx− PCy, J(x− PCx)− J(y − PCy)〉 ≥ 0.

This means that PC is a mapping of type (P).

Example 3.2. Let E be a smooth, strictly convex, and reflexive Banach space,
A ⊂ E × E∗ a monotone operator, and r > 0. Then the resolvent Kr of A is of
type (P). Indeed: It follows from (2.3) that

J(x−Krx)
r

∈ AKrx and
J(y −Kry)

r
∈ AKry
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for all x, y ∈ ran(I + rJ−1A). The monotonicity of A implies that〈
Krx−Kry,

J(x−Krx)
r

− J(y −Kry)
r

〉
≥ 0.

Therefore Kr is of type (P).

There is a close relation between a mapping of type (P) and a monotone operator.

Proposition 3.3. Let E be a smooth, strictly convex, and reflexive Banach space,
C a nonempty subset of E, S : C → E a mapping, and AS ⊂ E × E∗ an operator
defined by AS = J

(
S−1 − I

)
. Then S is of type (P) if and only if AS is monotone.

In this case S =
(
I + J−1AS

)−1, that is, S is the resolvent of AS.

Proof. The “if” part is obvious from Example 3.2. So, it is enough to prove the
“only if” part. Let (x, x∗), (y, y∗) ∈ AS . Then we have S(J−1x∗ + x) = x and
S(J−1y∗ + y) = y. Suppose that S is of type (P). Then it follows that

〈x− y, x∗ − y∗〉 =
〈
x− y, J(J−1x∗ + x− x)− J(J−1y∗ + y − y)

〉
=

〈
Sx′ − Sy′, J(x′ − Sx′)− J(y′ − Sy′)

〉
≥ 0,

where x′ = J−1x∗ + x and y′ = J−1y∗ + y. Hence AS is monotone. �

We know the following proposition:

Proposition 3.4 ([5]). Let E be a smooth Banach space, C a nonempty subset of
E, and S : C → E a mapping of type (P). Then the following hold:

(1) If C is closed and convex, then F (S) is closed and convex;
(2) F̂ (S) = F (S);
(3) a mapping V : C → E defined by V = λI + (1 − λ)S is of type (P), where

λ ∈ [0, 1] and I is the identity mapping.

4. Mappings of type (Q)

In this section, we introduce and discuss a mapping of type (Q) in a Banach
space.

Let E be a smooth Banach space and C a nonempty subset of E. A mapping
T : C → E is said to be of type (Q) if

〈Tx− Ty, Jx− JTx− (Jy − JTy)〉 ≥ 0,

or equivalently

φ(Tx, Ty) + φ(Ty, Tx) + φ(Tx, x) + φ(Ty, y) ≤ φ(Tx, y) + φ(Ty, x)

for all x, y ∈ C. Such a mapping was said to be of firmly nonexpansive type in [37];
see also [10,12,38,39].

Some important examples are listed below:

Example 4.1. Let E be a smooth, strictly convex, and reflexive Banach space and
C a nonempty closed convex subset of E. Then the generalized projection ΠC is of
type (Q). Indeed: Let x, y ∈ E. Then ΠCx,ΠCy ∈ C. Lemma 2.4 implies that

〈ΠCx−ΠCy, Jx− JΠCx〉 ≥ 0 and 〈ΠCy −ΠCx, Jy − JΠCy〉 ≥ 0.
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Thus we have

〈ΠCx−ΠCy, Jx− JΠCx− (Jy − JΠCy)〉 ≥ 0.

This means that ΠC is a mapping of type (Q).

Example 4.2. Let E be a smooth, strictly convex, and reflexive Banach space,
A ⊂ E×E∗ a monotone operator, and r > 0. Then the resolvent Lr = (J +rA)−1J
of A is of type (Q). Indeed: It follows from (2.4) that

Jx− JLrx

r
∈ ALrx and

Jy − JLry

r
∈ ALry

for all x, y ∈ J−1(ran(J + rA)). The monotonicity of A implies that〈
Lrx− Lry,

Jx− JLrx

r
− Jy − JLry

r

〉
≥ 0.

Therefore Lr is of type (Q).

There is a close relation between a mapping of type (Q) and a monotone operator.

Proposition 4.3 ([38, Proposition 3.1]). Let E be a smooth, strictly convex, and
reflexive Banach space, C a nonempty subset of E, T : C → E a mapping, and
AT ⊂ E ×E∗ an operator defined by AT = JT−1 − J . Then T is of type (Q) if and
only if AT is monotone. In this case T = (J + AT )−1 J , that is, T is the resolvent
of AT .

We know the following result:

Proposition 4.4 ([37, Lemma 5.1]). Let E be a strictly convex Banach space whose
norm is uniformly Gâteaux differentiable, C a nonempty subset of E, and T : C → E
a mapping of type (Q). Then F̂ (T ) = F (T ). In particular, if F (T ) is nonempty,
then T is strongly relatively nonexpansive.

Motivated by the technique due to Takahashi [51], Kohsaka and Takahashi [37]
obtained the following fixed point theorem for mappings of type (Q):

Theorem 4.5 ([37, Theorem 3.2]). Let E be a smooth, strictly convex, and reflexive
Banach space, C a nonempty closed convex subset of E, and T : C → C a mapping
of type (Q). Then there exists x ∈ C such that {Tnx} is bounded if and only if F (T )
is nonempty.

5. Mappings of type (R)

In this section, we introduce and discuss a mapping of type (R) in a Banach
space.

Let E be a smooth Banach space and C a nonempty subset of E. A mapping
U : C → E is said to be of type (R) if

〈x− Ux− (y − Uy), JUx− JUy〉 ≥ 0,

or equivalently

φ(Ux, Uy) + φ(Uy,Ux) + φ(x,Ux) + φ(y, Uy) ≤ φ(x,Uy) + φ(y, Ux)
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for all x, y ∈ C. Such a mapping was said to be of firmly generalized nonexpansive
type in [25].

Some important examples are listed below:

Example 5.1. Let E be a smooth, strictly convex, and reflexive Banach space and
C a subset of E such that J(C) is closed and convex in E∗. Then Lemma 2.6
implies that C is a sunny generalized nonexpansive retract of E. In this case the
sunny generalized nonexpansive retraction RC of E onto C is of type (R). Indeed:
Let x, y ∈ E. Then RCx,RCy ∈ C. Lemma 2.5 implies that

〈x−RCx, JRCx− JRCy〉 ≥ 0 and 〈y −RCy, JRCy − JRCx〉 ≥ 0.

Thus we have
〈x−RCx− (y −RCy), JRCx− JRCy〉 ≥ 0.

This means that RC is a mapping of type (R).

Example 5.2. Let E be a smooth, strictly convex, and reflexive Banach space, A ⊂
E × E∗ a monotone operator, and r > 0. Then the resolvent Mr = (I + rA−1J)−1

of A is of type (R). Indeed: It follows from (2.5) that

x−Mrx

r
∈ A−1JMrx and

y −Mry

r
∈ A−1JMry

for all x, y ∈ ran(I + rA−1J). The monotonicity of A implies that〈
x−Mrx

r
− y −Mry

r
, JMrx− JMry

〉
≥ 0.

Therefore Mr is of type (R).

There is a close relation between a mapping of type (R) and a monotone operator.

Proposition 5.3. Let E be a smooth, strictly convex, and reflexive Banach space,
C a nonempty subset of E, U : C → E a mapping, and AU ⊂ E∗ × E an opera-
tor defined by AU =

(
U−1 − I

)
J−1. Then U is of type (R) if and only if AU is

monotone. In this case U = (I + AUJ)−1, that is, U is the resolvent of AU .

Proof. The “if” part is obvious from Example 5.2. We show the “only if” part. Let
(x∗, x), (y∗, y) ∈ AU . Then x∗ = JU(x + J−1x∗) and y∗ = JU(y + J−1y∗). Suppose
that U is of type (R). Then it follows that

〈x− y, x∗ − y∗〉 =
〈
x− y, JU(x + J−1x∗)− JU(y + J−1y∗)

〉
=

〈
x′ − Ux′ − (y′ − Uy′), JUx′ − JUy′

〉
≥ 0,

where x′ = x + J−1x∗ and y′ = y + J−1y∗. Hence AU is monotone. �

We can also show the following proposition:

Proposition 5.4. Let E be a smooth Banach space, C a nonempty subset of E,
and U : C → E a mapping of type (R). Then the following hold:

(1) If C is closed and convex, then U−10 is closed and convex;
(2) if {xn} is a sequence in C such that xn ⇀ p ∈ C and Uxn → 0, then

p ∈ U−10.
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Proof. We first show the closedness of U−10 in (1). Let {un} be a sequence in U−10
such that un → w. It follows from the closedness of C that w ∈ C. Since U is of
type (R), we have

‖Uw‖2 ≤ 〈w − un, JUw〉 .

This gives us that ‖Uw‖2 ≤ 0 and hence w ∈ U−10.
We next show the convexity of U−10 in (1). Let u, v ∈ U−10 and α ∈ (0, 1) be

given and put z = αu + (1 − α)v. It follows from the convexity of C that z ∈ C.
Since U is of type (R) and u, v ∈ U−10, we have

−‖Uz‖2 = 〈−z − Uz, JUz〉+ 〈z, JUz〉
= α 〈−u− Uz, JUz〉+ (1− α) 〈−v − Uz, JUz〉+ 〈z, JUz〉
= α 〈z − Uz − u, JUz〉+ (1− α) 〈z − Uz − v, JUz〉 ≥ 0.

This implies that z ∈ U−10.
We finally show (2). Let {xn} be a sequence in C such that xn ⇀ p ∈ C and

Uxn → 0. Then we have ‖JUxn‖ = ‖Uxn‖ → 0. Since U is of type (R), we have

〈Uxn − Up, JUxn − JUp〉 ≤ 〈xn − p, JUxn − JUp〉

for all n ∈ N. Taking the limit in this inequality, we get ‖Up‖2 ≤ 0 and hence
p ∈ U−10. �

6. Relationships among mappings of type (P), (Q), and (R)

In this section, we study some relationships among mappings of type (P), (Q),
and (R).

Proposition 6.1. Let E be a smooth, strictly convex, and reflexive Banach space, C
a nonempty subset of E, and S : C → E a mapping of type (P). Let T∗ : J(C) → E∗

be a mapping defined by T∗ = J(I − S)J−1 and U : C → E a mapping defined
by U = I − S. Then T∗ is of type (Q) in E∗ and U is of type (R). Moreover
F (S) = (T∗J)−10 = U−10 and S−10 = J−1F (T∗) = F (U).

Proof. Let x∗, y∗ ∈ J(C) be given. Then there are x, y ∈ C such that x∗ = Jx and
y∗ = Jy. By the definition of T∗, it is clear that T∗J = J(I−S) and S = I−J−1T∗J .
Since S is of type (P), we have

0 ≤ 〈Sx− Sy, J(I − S)x− J(I − S)y〉
=

〈
(I − J−1T∗J)x− (I − J−1T∗J)y, T∗Jx− T∗Jy

〉
=

〈
J−1x∗ − J−1T∗x

∗ − (J−1y∗ − J−1T∗y
∗), T∗x∗ − T∗y

∗〉 .

Therefore T∗ is of type (Q) in E∗.
By the definitions of T∗ and U , it is not hard to verify that U is of type (R),

F (S) = (T∗J)−10 = U−10, and S−10 = J−1F (T∗) = F (U). This completes the
proof. �

Similarly, we obtain the following:
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Proposition 6.2. Let E be a smooth, strictly convex, and reflexive Banach space, C
a nonempty subset of E, and T : C → E a mapping of type (Q). Let S∗ : J(C) → E∗

be a mapping defined by S∗ = I∗ − JTJ−1 and U∗ : J(C) → E∗ a mapping defined
by U∗ = JTJ−1, where I∗ is the identity mapping on E∗. Then S∗ is of type (P)
in E∗ and U∗ is of type (R) in E∗. Moreover F (T ) = (S∗J)−10 = J−1F (U∗) and
T−10 = J−1F (S∗) = (U∗J)−10.

Proof. Let x∗, y∗ ∈ J(C) be given. Then there are x, y ∈ C such that x∗ = Jx and
y∗ = Jy. By the definition of S∗, it is clear that T = J−1(I∗ − S∗)J . Since T is of
type (Q), we have

0 ≤ 〈Tx− Ty, Jx− JTx− (Jy − JTy)〉
=

〈
J−1(Jx− S∗Jx)− J−1(Jy − S∗Jy), S∗Jx− S∗Jy

〉
=

〈
J−1(x∗ − S∗x

∗)− J−1(y∗ − S∗y
∗), S∗x∗ − S∗y

∗〉 .

Therefore S∗ is of type (P) in E∗. Thus Proposition 6.1 implies that U∗ = JTJ−1 =
I∗ − S∗ is of type (R) in E∗. �

As in the proof of Propositions 6.1 and 6.2, we immediately obtain the following:

Proposition 6.3. Let E be a smooth, strictly convex, and reflexive Banach space,
C a nonempty subset of E, and U : C → E a mapping of type (R). Let S : C → E
be a mapping defined by S = I − U and T∗ : J(C) → E∗ a mapping defined by
T∗ = JUJ−1. Then S is of type (P) and T∗ is of type (Q) in E∗. Moreover
F (U) = S−10 = J−1F (T∗) and U−10 = F (S) = (T∗J)−10.

Using Propositions 4.4 and 6.3, we can show the following:

Proposition 6.4. Let E be a smooth and reflexive Banach space whose dual space
has a uniformly Gâteaux differentiable norm, C a nonempty subset of E, and
U : C → E a mapping of type (R). If {xn} is a sequence in C such that Jxn ⇀ u∗ ∈
J(C) and Jxn − JUxn → 0, then J−1u∗ ∈ F (U).

Proof. Let T∗ : J(C) → E∗ be a mapping defined by T∗ = JUJ−1. Since Jxn −
JUxn → 0 and JU = T∗J , we have Jxn − T∗Jxn → 0. Since E is smooth and
reflexive, E∗ is strictly convex. It follows from Propositions 4.4 and 6.3 that T∗
is of type (Q) in E∗ and F̂ (T∗) = F (T∗). Therefore u∗ ∈ F (T∗). Hence we have
u∗ = JUJ−1u∗ and thus J−1u∗ ∈ F (U). �

The following fixed point theorem for mappings of type (R) is deduced from
Theorem 4.5 and Proposition 6.3:

Theorem 6.5. Let E be a smooth, strictly convex, and reflexive Banach space, C
a nonempty subset of E such that J(C) is closed and convex, and U : C → C a
mapping of type (R). Then there exists x ∈ C such that {Unx} is bounded if and
only if F (U) is nonempty.

Proof. The “if” part is obvious. We show the “only if” part. Suppose that there
exists x ∈ C such that {Unx} is bounded and let T∗ = JUJ−1. By Proposition 6.3,
T∗ : J(C) → J(C) is a mapping of type (Q) and F (U) = J−1F (T∗). It is easy
to see that {(T∗)nJx} is bounded. Therefore, Theorem 4.5 implies that F (T∗) is
nonempty. Thus F (U) is also nonempty. This completes the proof. �
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7. Continuity of mappings of type (P), (Q), and (R)

In this section, we study some continuity properties of mappings of type (P), (Q),
and (R).

From (2.2) and the definition of a mapping of type (R), we obtain the following:
Let E be a smooth Banach space, C a nonempty subset of E, and U : C → E a
mapping of type (R). Then

‖x− y‖ (‖Ux‖+ ‖Uy‖) ≥ 〈x− y, JUx− JUy〉
≥ 〈Ux− Uy, JUx− JUy〉

=
1
2
(φ(Ux, Uy) + φ(Uy,Ux))

≥ (‖Ux‖ − ‖Uy‖)2

(7.1)

for all x, y ∈ C.

Theorem 7.1. Let E be a smooth, strictly convex, and reflexive Banach space and
C a nonempty subset of E. If a mapping U : C → E is of type (R), then the
following hold:

(1) U is bounded on each nonempty bounded subset of C;
(2) if {xn} is a sequence in C such that xn → x ∈ C, then Uxn ⇀ Ux, JUxn ⇀

JUx, and ‖Uxn‖ → ‖Ux‖;
(3) JU : C → E∗ is monotone and demicontinuous;
(4) if E has the Kadec–Klee property, then U is norm-to-norm continuous;
(5) if E is uniformly convex, then U is uniformly norm-to-norm continuous on

each nonempty bounded subset of C;
(6) if E is uniformly convex and uniformly smooth, then JU is uniformly norm-

to-norm continuous on each nonempty bounded subset of C.

Proof. We first show (1). Suppose that U is not bounded on some nonempty
bounded subset of C. Then we have a bounded sequence {xn} in C such that
‖Uxn‖ → ∞. Fix y ∈ C. Since U is of type (R), it follows from (7.1) that

‖xn − y‖ (‖Uxn‖+ ‖Uy‖) ≥ (‖Uxn‖ − ‖Uy‖)2

for all n ∈ N. So, we have ‖xn‖ → ∞. This is a contradiction.
We next show (2). Let {xn} be a sequence in C such that xn → x ∈ C. It follows

from (1) that {Uxn} is bounded. Since U is of type (R), it follows from (7.1) that

0 ≤ 〈Uxn − Ux, JUxn − JUx〉
≤ ‖xn − x‖ (‖Uxn‖+ ‖Ux‖) → 0.

Thus Lemma 2.3 implies that Uxn ⇀ Ux, JUxn ⇀ JUx, and ‖Uxn‖ → ‖Ux‖.
The part (3) follows from (7.1) and (2).
The part (4) directly follows from (2).
We show (5). Let {xn} and {yn} be bounded sequences in C such that xn−yn →

0. Then it suffices to show that Uxn − Uyn → 0. Since U is of type (R), it follows
from (7.1) and (1) that

0 ≤ 1
2
(φ(Uxn, Uyn) + φ(Uyn, Uxn))
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≤ ‖xn − yn‖ (‖Uxn‖+ ‖Uyn‖) → 0.

This implies that φ(Uxn, Uyn) → 0. Then Lemma 2.2 ensures that Uxn−Uyn → 0.
The part (6) follows from (5) and the uniform continuity of J on each nonempty

bounded subset of E. This completes the proof. �

As a direct consequence of Lemma 2.7 and Theorem 7.1, we obtain the following
results.

Corollary 7.2. Let E be a smooth, strictly convex, and reflexive Banach space. If
a mapping U : E → E is of type (R), then JU is maximal monotone.

Theorem 7.3. Let E be a smooth, strictly convex, and reflexive Banach space and
C a nonempty subset of E. If a mapping S : C → E is of type (P), then the following
hold:

(1) S is bounded on each nonempty bounded subset of C;
(2) if {xn} is a sequence in C such that xn → x ∈ C, then Sxn ⇀ Sx, J(xn −

Sxn) ⇀ J(x− Sx), and ‖xn − Sxn‖ → ‖x− Sx‖;
(3) J(I − S) : C → E∗ is monotone and demicontinuous;
(4) if E has the Kadec–Klee property, then S is norm-to-norm continuous;
(5) if E is uniformly convex, then S is uniformly norm-to-norm continuous on

each nonempty bounded subset of C;
(6) if E is uniformly convex and uniformly smooth, then J(I − S) is uniformly

norm-to-norm continuous on each nonempty bounded subset of C.

Proof. Let U : C → E be a mapping defined by U = I − S. Then it follows from
Proposition 6.1 that U is of type (R). Thus Theorem 7.1 implies the conclusion. �

Using Theorem 2.8 and Theorem 7.3, we can show the following fixed point
theorem for mappings of type (P):

Theorem 7.4. Let E be a smooth, strictly convex, and reflexive Banach space, C
a nonempty bounded closed convex subset of E, PC the metric projection of E onto
C, and S : C → E a mapping of type (P). Then F (PCS) is nonempty. If S is a self
mapping, then F (S) is nonempty.

Proof. By Theorem 2.8 and Theorem 7.3 (2), there exists u ∈ C such that

〈y − u, J(I − S)u〉 ≥ 0

for all y ∈ C. Lemma 2.1 implies that PC(Su) = u and hence F (PCS) is nonempty.
If S is a self mapping, then PCS = S and hence F (S) is nonempty. �

The following result is directly deduced from Proposition 6.1 and Corollary 7.2:

Corollary 7.5. Let E be a smooth, strictly convex, and reflexive Banach space. If
a mapping S : E → E is of type (P), then J(I − S) is maximal monotone.

Using Corollary 7.5, we obtain the following results:

Theorem 7.6. Let E be a smooth, strictly convex, and reflexive Banach space,
S : E → E a mapping of type (P), and r > 0. Then

(1) T = (J + rJ(I − S))−1J is a single-valued mapping of E into itself;
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(2) T is of type (Q);
(3) F (S) = F (T ).

Proof. Corollary 7.5 shows that J(I−S) : E → E∗ is a maximal monotone operator.
Thus T = (J + rJ(I − S))−1J is the resolvent of J(I − S) for r. Therefore T is
a single-valued mapping on E and is of type (Q) by Example 4.2. Moreover, it is
clear that

F (S) = (J(I − S))−1(0) = F (T ).
This completes the proof. �

Corollary 7.7. Let E be a smooth, strictly convex, and reflexive Banach space,
A ⊂ E × E∗ a maximal monotone operator, r > 0, and S = (I + J−1A)−1 the
resolvent of A. Then

(1) T = (J + rJ(I − S))−1J is a single-valued mapping of E into itself;
(2) T is of type (Q);
(3) A−10 = F (T ).

Proof. By Example 3.2, we know that S is a mapping of type (P) of E into itself.
Therefore Theorem 7.6 implies the conclusion. �

Using Theorem 7.1, we also obtain the following:

Theorem 7.8. Let E be a smooth, strictly convex, and reflexive Banach space and
C a nonempty subset of E. If a mapping T : C → E is of type (Q), then the
following hold:

(1) T is bounded on each nonempty bounded subset of C;
(2) if the norm of E is Fréchet differentiable and if {xn} is a sequence in C such

that xn → x ∈ C, then Txn ⇀ Tx, JTxn ⇀ JTx, and ‖Txn‖ → ‖Tx‖;
(3) if the norm of E is Fréchet differentiable and E has the Kadec–Klee property,

then T is norm-to-norm continuous;
(4) if E is uniformly convex and uniformly smooth, then T is uniformly norm-

to-norm continuous on each nonempty bounded subset of C.

Proof. Let U∗ : J(C) → E∗ be a mapping defined by U∗ = JTJ−1. Then T =
J−1U∗J and it follows from Proposition 6.2 that U∗ is of type (R) in E∗. It is
obvious that J and J−1 is bounded on each nonempty bounded subset of E and
E∗, respectively. Thus Theorem 7.1 (1) implies (1).

We next show (2). Let {xn} be a sequence in C such that xn → x ∈ C. Then
it follows from (1) that {Txn} is bounded. By the Fréchet differentiability of the
norm of E, J is norm-to-norm continuous. Thus we have Jxn → Jx. Since T is of
type (Q), we have

0 ≤ 〈Txn − Tx, JTxn − JTx〉 ≤ 〈Txn − Tx, Jxn − Jx〉
≤ ‖Txn − Tx‖ ‖Jxn − Jx‖ → 0.

Hence Lemma 2.3 implies that Txn ⇀ Tx, JTxn ⇀ JTx, and ‖Txn‖ → ‖Tx‖.
The part (3) directly follows from (2).
We finally show (4). Since E is uniformly convex and uniformly smooth, J and

J−1 is uniformly norm-to-norm continuous on each nonempty bounded subset of E
and E∗, respectively. On the other hand, Theorem 7.1 (5) implies that the mapping
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U∗ defined above is uniformly norm-to-norm continuous on each nonempty bounded
subset of J(C). Thus T = J−1U∗J is uniformly norm-to-norm continuous on each
nonempty bounded subset of C. This completes the proof. �
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