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A RELAXED CUTTING PLANE ALGORITHM FOR SOLVING
THE VASICEK-TYPE INTEREST RATE MODEL

HOMING CHEN AND CHENG-FENG HU

Abstract. This work considers the resolution of the Vasicek-type interest rate
model. A deterministic process is adopted to model the random behavior of
interest rate variation as a deterministic perturbation. It shows that the solution
of the Vasicek-type interest rate model can be obtained by solving a nonlinear
semi-infinite programming problem. A relaxed cutting plane algorithm is then
proposed for solving the resulting optimization problem. The numerical results
illustrate that our approach essentially generates the yield functions with minimal
fitting errors and small oscillation.

1. Introduction

The interest rate model plays a central role in the theory of modern economics
and finance. In the past studies interest rate models described by stochastic process
are widely used. It is usually assumed that the interest rates are sufficient statistics
for the stochastic movement of current term structure. An enormous amount of
work has been directed towards modeling and estimation of the short term interest
rate dynamics. Some single-factor models [2, 3, 19] have been proposed and widely
used in practice because of their tractability and their ability to fit reasonably well
the dynamics of the short term interest rates. Econometric estimation of these
models has also been intensively studied in the literature [2, 6, 7, 1, 14]. Recently,
Kortanek and Medvedev [12] introduced a deterministic process to model the ran-
dom behavior of interest rate variation as a deterministic perturbation which were
later investigated by Staffa [15], and Tichatschke et al. [17]. Inspired and motivated
by the recent research, this work considers a Vasicek-type interest rate model, which
can be described by the following stochastic differential equation.

(1.1) dr(t) = (α + βr(t))dt + σdB(t), r(t0) = r0,

where r(t) is the instance interest rate, B(t) denotes the Brownian motion, σ
is the instantaneous standard deviation of the interest rate, the coefficients α, β
and the constant r0 satisfy the following conditions with the pre-assigned bounds
α, α, β, β, r0, r0.

0 < α 6 α 6 α, β 6 β 6 β < 0, 0 < r0 6 r0 6 r0.

The main feature of the Vasicek-type interest rate model (1.1) is the instantaneous
trend of the process to revert to its long run mean value. The mean reverting
property undermines that the Vasicek-type interest rate model is an equilibrium
model. The parameter β(t) determines a speed of the adjustment and should be
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negative to ensure convergence[12]. The Vasicek-type model has also been extended
in subsequent research. The work of Dothan [5], Courtadon[4], Cox et al. [3]and
Stapleton and Subrahmanyam [16] can also be placed in this category.

To solve the Vasicek-type interest rate model (1.1), the concept of the determin-
istic perturbations is adopted to deal with the random behavior of interest rate
variations. It is shown that the solution of the Vasicek-type interest rate model
(1.1) can be obtained by solving a nonlinear semi-infinite programming problem. A
relaxed cutting plane algorithm is proposed for solving the resulting optimization
problem. In each iteration, we solve a finite optimization problem and add one or
some more constraints. The proposed algorithm chooses a point at which the infi-
nite constrains are violated to a degree rather than the violation being maximized.
The organization of the rest of this paper is as follows. Section 2 provides some
basic definitions to formulate the Brownian motion in the Vasicek-type interest rate
model in terms of the deterministic perturbation. It shows that the Vasicek-type in-
terest rate model can be solved via a nonlinear semi-infinite programming problem.
Solution algorithms are developed in section 3 for solving the resulting semi-infinite
programming problem. Some numerical results of the Vasicek-type interest rate
model are presented in section 4. Section 5 concludes this paper by making some
remarks.

2. The Vasicek-type interest rate model with impulse perturbation

As mentioned in the previous section, in this paper a deterministic process is adopted
to model the uncertainty in the interest rate behavior. It is assumed that the
uncertainty is deterministic, which is depending on the time t. For convenience we
denote the uncertainty as an integral function w(t), and w(t), w(t) are assumed to
be the pre-assigned upper and lower bounds of w(t), respectively, i.e.,

(2.1) w(t) ≤ w(t) ≤ w(t).

In this case, the Vasicek-type interest rate model can be formulated as the following
differential equation with uncertainty.

(2.2) dr(t) = (α + βr(t))dt + w(t)dt.

To specify the perturbation function w(t), here we introduce some notations and
definitions. Assume that there are M observed yields, say R̄i, with time to ma-
turity T corresponding to the i−th day of observation, i = 1, 2, . . . ,M. Let ℵ̃ 4

=
{t0, t1, . . . , tM+T }, where ti−1 < ti, and ℵi

4
= [ti−1, ti], i = 1, 2, . . . ,M + T . For con-

venient, we denote M + T = N.

Definition 2.1 (The Observed Treasury Yield). The observed Treasury yield is
defined as follows.

R̄(t | T )
4
= R̄i,∀t ∈ ℵi, i = 1, 2, . . . ,M.
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Definition 2.2 (The Yield Function). The yield function is defined as the mean
value of interest rate of integral, i.e.,

(2.3) y(t | T )
4
=

1
T

∫ t+T

t
r(τ)dτ,∀t ∈ ℵi, i = 1, 2, . . . ,M.

Definition 2.3 (The Function of Estimation Error). The function of estimation
error is defined as the difference of the yield function and the observed Treasury
yield, i.e.,

ξ(t)
4
= y(t | T )−R(t | T ),∀t ∈ ℵi, i = 1, 2, . . . ,M.(2.4)

Definition 2.4 (The Impulse Perturbation). Let w(t)
4
= wi(t),∀t ∈ ℵi, i = 1, 2, . . . , N.

The impulse perturbation is defined to be

wi(t) = wi,∀t ∈ ℵi, i = 1, 2, . . . , N,(2.5)

where wi ∈ R is a constant and wi 6 wi 6 wi, i = 1, 2, . . . , N, with wi and wi, i =
1, 2, . . . , N, are pre-assigned bounds for the perturbations.

The solution of the Vasicek-type interest rate model (2.2) with the impulse pertur-
bation function defined in (2.5) can be derived in Theorem 2.5.

Theorem 2.5. The instance interest rate function of the Vasicek-type interest rate
model (2.3) is

given by r(t) = eβtr0 +
α

β
(eβt − 1) +

i−1∑
j=1

wj
eβt

β
(e−βtj−1 − e−βtj )

+ wi
1
β

(eβ(t−ti−1) − 1), t ∈ ℵi, i = 1, 2, . . . , N.(2.6)

Proof. Multiply both sides with the integrating factor e−β(t−t0) for (2.2) we have

e−β(t−t0) dr(t)
dt
− βr(t)e−β(t−t0) = e−β(t−t0)(α + w(t)).

Integrating each side from t0 to t∫ t

t0

d(e−β(τ−t0)r(τ)) =
∫ t

t0

e−β(τ−t0)(α + w(τ))dτ

e−β(τ−t0)r(τ)|tt0 =
∫ t

t0

e−β(τ−t0)(α + w(τ))dτ

e−β(τ−t0)r(τ)|tt0 =
∫ t

t0

e−β(τ−t0)αdτ +
∫ t

t0

e−β(τ−t0)w(τ)dτ

e−β(t−t0)r(t)− r(t0) =
−α

β
e−β(τ−t0)|tt0 +

∫ t1

t0

e−β(τ−t0)w1(τ)dτ

+
∫ t2

t1

e−β(τ−t0)w2(τ)dτ + · · ·
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+
∫ ti−1

ti−2

e−β(τ−t0)wi−1(τ)dτ

+
∫ t

ti−1

e−β(τ−t0)wi(τ)dτ.

Hence

r(t) = eβ(t−t0)r(t0)− eβ(t−t0) α

β
(e−β(t−t0) − 1) + eβ(t−t0)

i−1∑
j=1

wj

∫ tj

tj−1

e−β(τ−t0)dτ

+eβ(t−t0)wi

∫ t

ti−1

e−β(τ−t0)dτ.

= eβ(t−t0)r(t0) +
α

β
(eβ(t−t0) − 1) +

i−1∑
j=1

eβ(t−t0) wj

β
(e−β(tj−1−t0) − e−β(tj−t0))

−eβ(t−t0)wi

β
(e−β(t−t0) − e−β(ti−1−t0)).

= r(t0)eβ(t−t0) +
α

β
(eβ(t−t0) − 1) +

i−1∑
j=1

eβ(t−t0) wj

β
(e−β(tj−1−t0) − e−β(tj−t0))

+
wi

β
(e−β(ti−1−t) − 1).

= r0e
β(t−t0) +

α

β
(eβ(t−t0) − 1) +

i−1∑
j=1

wj

β
(e−β(tj−1−t) − e−β(tj−t))

+
wi

β
(eβ(t−ti−1) − 1), t ∈ ℵi, i = 1, 2, . . . , N.

�

The solution of the Vasicek-type interest rate model (2.3) with the impulse pertur-
bation function defined in (2.5) has the form.

r(t) = eβtr0 +
α

β
(eβt − 1) +

i−1∑
j=1

wj
eβt

β
(e−βtj−1 − e−βtj )

+ wi
1
β

(eβ(t−ti−1) − 1), t ∈ ℵi, i = 1, 2, . . . , N.

It is well known that the yield function is one of the most important financial indi-
cators in the theory of modern economics and finance. Substituting (2.6) into (2.3)
yields the following result.

Theorem 2.6. The yield function has the form

y(t|T ) =
eβ(t+T ) − eβt

T β
r0 +

(eβ(t+T ) − eβt

T β2
− 1

β

)
α
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+
i−1∑
k=1

eβ(t−tk−1+T ) − eβ(t−tk+T ) + eβ(t−tk) − eβ(t−tk−1)

T β2
wk

+
(eβ(t−tk−1+T ) − eβ(t−ti+T ) − eβ(t−ti−1) + 1

T β2
− ti − t

T β

)
wi

+
i+T −1∑
k=i+1

(eβ(t−tk−1)+T − eβ(t−tk−1+T )

T β2
− tk − tk−1

T β

)
wk

+
(eβ(t−ti+T −1+T ) − 1

T β2
− t− ti+T −1 + T

T β

)
wi+T , t ∈ ℵi, i = 1, 2, . . . ,M.

(2.7)

Proof.

y(t|T ) =
1
T

∫ t+T

t
r(τ)dτ

=
1
T

{
r0

∫ t+T

t
eβτdτ +

α

β

∫ t+T

t
(eβτ − 1)dτ

+
∫ ti

t

( i−1∑
k=1

wk
eβτ

β
(e−βtk−1 − e−βtk) + wi

eβ(τ−ti−1) − 1
β

)
dτ

+
i+T −1∑
j=i+1

∫ tj

tj−1

(
j−1∑
k=1

wk
eβτ

β
(e−βtk−1 − e−βtk) + wj

eβ(τ−tj−1) − 1
β

)dτ

+
∫ t+T

ti+T −1

(
i+T −1∑

k=1

wk
eβτ

β
(e−βtk−1 − e−βtk) + wi+T

eβ(τ−ti+T −1) − 1
β

)dτ

}

=
1
T

{
eβ(t+T ) − eβt

β
r0 + (

eβ(t+T ) − eβt

β2
− T

β
)α

+
i−1∑
k=1

e−βtk−1 − e−βtk

β
wk

∫ t+T

t
eβτdτ

+(
1
β

∫ ti

t
(eβ(τ−ti−1) − 1)dτ +

e−βti−1 − e−βti

β

∫ t+T

ti

eβτdτ)wi

+
i+T −1∑
k=i+1

(
1
β

∫ tk

tk−1

(eβ(τ−tk−1) − 1)dτ +
e−βtk−1 − e−βtk

β

∫ t+T

tk

eβτdτ)wk

+
1
β

∫ t+T

ti+T −1

(eβ(τ−ti+T −1) − 1)wi+T dτ

}

=
eβ(t+T ) − eβt

T β
r0 + (

eβ(t+T ) − eβt

T β2
− 1

β
)α
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+
i−1∑
k=1

eβ(t−tk−1+T ) + eβ(t−tk+T ) + eβ(t−tk) − eβ(t−tk−1)

T β2
wk

+(
eβ(t−tk−1+T ) − eβ(t−ti+T ) − eβ(t−ti−1) + 1

T β2
− ti − t

T β
)wi

+
i+T −1∑
k=i+1

(
eβ(t−tk−1+T ) − eβ(t−tk+T )

T β2
− tk − tk−1

T β
)wk

+(
eβ(t−ti+T −1+T ) − 1

T β2
− t− ti+T −1 + T

Tβ
)wi+T , t ∈ ℵi, i = 1, 2, . . . ,M.

�

To shorten the mathematical formulas in (2.7), the following notations are intro-
duced. Let
(2.8)

ak(β, t|T ) =



eβ(t−tk−1+T ) − eβ(t−tk+T ) + eβ(t−tk) − eβ(t−tk−1)

T β2
, if k < i,

eβ(t−tk−1+T ) − eβ(t−tk+T ) − eβ(t−tk−1) + 1
T β2

− tk − t

T β
, if k = i,

eβ(t−tk−1+T ) − eβ(t−tk+T )

Tβ2
− tk − tk−1

T β
, if i < k < i + T ,

eβ(t−tk−1+T ) − 1
T β2

− t− tk−1 + T
T β

, if k = i + T .

We have

y(t|T ) =
eβ(t+T ) − eβt

T β
r0 + (

eβ(t+T ) − eβt

Tβ2
− 1

β
)α +

i+T∑
k=1

ak(β, t|T )wk,

t ∈ ℵi, i = 1, 2, . . . ,M.(2.9)

This work considers to find the impulse perturbation w(t) that minimizes the max-
imum absolute value of the function of estimation errors defined in (2.4). It leads
to the following optimization problem.

Problem 1

min ε

subject to R̄(t | T ) 6 y(t|T ) + ε,∀t ∈ ℵi, i = 1, 2, . . . ,M,

R̄(t | T ) > y(t|T )− ε,∀t ∈ ℵi, i = 1, 2, . . . ,M,

α ≤ α ≤ α,

β ≤ β ≤ β,

r0 ≤ r0 ≤ r0,

wi ≤ wi ≤ wi, i = 1, 2, . . . , N.
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Substituting (2.9) into the Problem 1 leads to the following nonlinear programming
problem.

Problem 2 min ε

subject to Ri 6
eβ(t+T ) − eβt

T β
r0 + (

eβ(t+T ) − eβt

T β2
− 1

β
)α +

i+T∑
j=1

aj(β, t|T )wj + ε,

∀t ∈ ℵi, i = 1, 2, . . . ,M,

Ri >
eβ(t+T ) − eβt

T β
r0 + (

eβ(t+T ) − eβt

T β2
− 1

β
)α +

i+T∑
j=1

aj(β, t|T )wj − ε,

∀t ∈ ℵi, i = 1, 2, . . . ,M,

α ≤ α ≤ α,

β ≤ β ≤ β,

r0 ≤ r0 ≤ r0,

wi ≤ wi ≤ wi, i = 1, 2, . . . , N.

It should be noticed that the Problem 2 is a semi-infinite programming problem
with finite variables, α, β, r0, ε, wi, i = 1, 2, . . . , N, and infinite many constraints.

3. An algorithm

In this work a cutting plane based algorithm is considered to effectively deal with
the infinite number of constraints in Problem 2 [9, 10, 11]. Following the ba-
sic concept of the cutting plane approach, we can easily design an iterative al-
gorithm which adds one or some more constraints at a time for consideration
until an optimal solution is identified. To be more specific, at the k − th itera-
tion, given subsets Nk

i = {τ i
1, τ

i
2, . . . , τ

i
pk

i
} and ℵk

i = {ui
1, u

i
2, . . . , u

i
qk
i
} of ℵi, where

pk
i , q

k
i ≥ 1, i = 1, 2, . . . ,M, we consider the following finite optimization problem.

Program SDk

min φ(α, β, r0, w, ε) = ε

subject to

Ri 6
eβ(τ i

s+T ) − eβτ i
s

T β
r0 + (

eβ(τ i
s+T ) − eβτ i

s

T β2
− 1

β
)α +

i+T∑
j=1

aj(β, τ i
s|T )wj + ε,

s = 1, 2, . . . , pk
i , i = 1, 2, . . . ,M,

Ri >
eβ(ui

l+T ) − eβui
l

T β
r0 + (

eβ(ui
l+T ) − eβui

l

T β2
− 1

β
)α +

i+T∑
j=1

aj(β, ui
l|T )wj − ε,

l = 1, 2, . . . , qk
i , i = 1, . . . ,M,

α ≤ α ≤ α,

β ≤ β ≤ β,

r0 ≤ r0 ≤ r0,
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wi ≤ wi ≤ wi, i = 1, 2, . . . , N.

Let F k be the feasible region of Program SDk. Suppose that (αk, βk, rk
0 , wk, εk) is an

optimal solution of SDk. We define the “constraint violation functions” as follows.

gk+1
i (τ)

4
= Ri −

eβk(τ+T ) − eβkτ

T βk
rk
0 − ((

eβk(τ+T ) − eβkτ

T (βk)2
)− 1

βk
)αk

−
i+T∑
j=1

aj(βk, τ |T )wk
j − εk,

τ ∈ ℵi, i = 1, 2, . . . ,M,(3.1)

and

vk+1
i (u)

4
=

eβk(u+T ) − eβku

T βk
rk
0 + ((

eβk(u+T ) − eβku

T (βk)2
)− 1

βk
)αk

+
i+T∑
j=1

aj(βk, u|T )wk
j − εk −Ri,

u ∈ ℵi, i = 1, 2, . . . ,M.(3.2)

Since Ri, aj are continuous over the compact set ℵi, the function gk+1
i (τ) achieves

its maximum over ℵi, i = 1, 2, . . . ,M. A similar argument holds for the function
vk+1
i (u), i = 1, 2, . . . ,M. Let τ i

pk
i +1

and ui
qk
i +1

be such maximizers, i = 1, 2, . . . ,M,

and consider the values of gk+1
i (τ i

pk
i +1

) and vk+1
i (ui

qk
i +1

), i = 1, 2, . . . ,M. If the values

are less than or equal to zero, then (αk, βk, rk
0 , wk, εk) becomes a feasible solution

of the Problem 2, and hence (αk, βk, rk
0 , wk, εk) is optimal for the Problem 2

(because the feasible region F k of Program SDk is no smaller than the feasible
region of the Problem 2). Otherwise, we know that at least τ i

pk
i +1

/∈ Nk
i or ui

qk
i +1

/∈
ℵk

i , i = 1, 2, . . . ,M. This background provides a foundation for us to outline a cutting
plane algorithm for solving the Problem 2.

CPSD Algorithm:
Initialization
Set k = pk

i = qk
i = 1, i = 1, 2, . . . ,M ; Choose any τ i

1, u
i
1 ∈ ℵi, i = 1, 2, . . . ,M ; Set

N1
i = {τ i

1} and ℵ1
i = {ui

1}, i = 1, 2, . . . ,M.

Step 1.: Solve SDk and obtain an optimal solution (αk, βk, rk
0 , wk, εk).

Step 2.: Find a maximizer τ i
pk

i +1
of gk+1

i (τ) over ℵi and a maximizer ui
qk
i +1

of

vk+1
i (u) over ℵi, i = 1, 2, . . . ,M.

Step 3.: If gk+1
i (τ i

pk
i +1

) ≤ 0 and vk+1
i (ui

qk
i +1

) ≤ 0, i = 1, 2, . . . ,M, then stop

with (αk, βk, rk
0 , wk, εk) being an optimal solution of the Problem 2. Oth-

erwise, go to step 4.
Step 4.: If gk+1

i (τ i
pk

i +1
) > 0, then set Nk+1

i ← Nk
i

⋃
{τ i

pk
i +1
}, pk+1

i ← pk
i + 1.

Otherwise, set Nk+1
i ← Nk

i , pk+1
i ← pk

i , i = 1, 2, . . . ,M.
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Step 5.: If vk+1
i (ui

qk
i +1

) > 0, then set ℵk+1
i ← ℵk

i

⋃
{ui

qk
i +1
}, qk+1

i ← qk
i + 1.

Otherwise, set ℵk+1
i ← ℵk

i , q
k+1
i ← qk

i , i = 1, 2, . . . ,M.
Step 6.: Set k ← k + 1 go to Step 1.

When the Problem 2 has at least one feasible solution, it can be shown without
much difficulty that the CPSD algorithm either terminates in a finite number of iter-
ations with an optimal solution or generates a sequence of points {(αk, βk, rk

0 , wk, εk),
k = 1, 2, . . .}, which converges to an optimal solution (α∗, β∗, r∗0, w

∗, ε∗), under some
appropriate assumptions. However, for the above cutting plane algorithm, one ma-
jor computation bottleneck lies in Step 2 of finding maximizers. Ideas of relaxing
the requirement of finding global maximizers for different settings can be referred
to [8, 18]. But the required computation work could still be a bottleneck. Here we
propose a simple and yet very effective relaxation scheme which chooses points at
which the infinite constrains are violated to a degree rather than the violation being
maximized. The proposed algorithm is stated as follows.

Relaxed CPSD Algorithm:
Let δ > 0 be a prescribed small number.
Initialization Set k = pk

i = qk
i = 1, i = 1, 2, . . . ,M ; Choose any τ i

1, u
i
1 ∈ ℵi, i =

1, 2, . . . ,M ; Set N1
i = {τ i

1} and ℵ1
i = {ui

1}, i = 1, 2, . . . ,M.

Step 1.: Solve SDk and obtain an optimal solution (αk, βk, rk
0 , wk, εk). Define

gk+1
i (τ) and vk+1

i (u), i = 1, 2, . . . ,M, according to (3.1) and (3.2),respectively.
Step 2.: Find any τ i

pk
i +1
∈ ℵi such that gk+1

i (τ i
pk

i +1
) > δ, and ui

qk
i +1
∈ ℵi such

that vk+1
i (ui

qk
i +1

) > δ, i = 1, 2, . . . ,M.

Step 3.: If such τ i
pk

i +1
and ui

qk
i +1

do not exist, then output (αk, βk, rk
0 , wk, εk)

as a solution. Otherwise, go to step 4.
Step 4.: If such τ i

pk
i +1

exists, then set Nk+1
i ← Nk

i

⋃
{τ i

pk
i +1
}, pk+1

i ← pk
i + 1.

Otherwise, set Nk+1
i ← Nk

i , pk+1
i ← pk

i , i = 1, 2, . . . ,M.

Step 5.: If such ui
qk
i +1

exists, then set ℵk+1
i ← ℵk

i

⋃
{ui

qk
i +1
}, qk+1

i ← qk
i + 1.

Otherwise, set ℵk+1
i ← ℵk

i , q
k+1
i ← qk

i , i = 1, 2, . . . ,M.
Step 6.: Set k ← k + 1; go to step 1.

Note that in Step 1 of the Relaxed CPSD Algorithm, we face the challenge of
solving Program SDk, for k ≥ 1. The presence of many non-linear inequality con-
strains in the problem SDk causes difficulties in finding an optimal solution of SDk.
The method we adopted here is a so-called “aggregate constraint method” to ap-
proximate the original constraint set of SDk by a uniform (lp) approximation with
p→∞. The detail discussion of the “aggregate constraint method” for solving the
finite optimization problem SDk can be refer to [13]. Also note that if gk+1

i (τ∗i,k) ≤ 0,

where τ∗i,k is a maximizer of gk+1
i (τ), then τ i

pk
i +1

does not exist in Step 3. A similar

argument holds for checking the existence of the ui
qk
i +1

in Step 3. Moreover, when
δ is chosen to be sufficiently small, if the relaxed algorithm terminates in a finite
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number of iterations at Step 3, then an optimal solution is indeed obtained, assum-
ing that the original the Problem 2 is feasible. We now construct a convergence
proof for the relaxed CPSD algorithm.

Theorem 3.1. Given any δ > 0, assume that there is a scalar M > 0 such that
|| (α, β, r0, w, ε) ||≤ M for each feasible solution (α, β, r0, w, ε) of SD1(Bounded
Feasible Domain Assumption), then the relaxed CPSD algorithm terminates in a
finite number of iterations.

Proof. If the relaxed CPSD algorithm does not terminate in a finite number of it-
erations, then the algorithm generates an infinite sequence {(αk, βk, rk

0 , wk, εk)}∞k=1.
We have

(3.3) gk+1
i (τ i

pk
i +1

) > δ, i = 1, 2, . . . ,M, k = 1, 2, . . . ,

and

(3.4) vk+1
i (ui

qk
i +1

) > δ, i = 1, 2, . . . ,M, k = 1, 2, . . . ,

where τ i
pk

i +1
and ui

qk
i +1

are generated by the relaxed CPSD algorithm.

Due to the Bounded Feasible Domain Assumption and the compactness of ℵi, i =
1, 2, . . . ,M, there exists a subsequence {(αkj , βkj , r

kj

0 , wkj , εkj )} of {(αk, βk, rk
0 , wk, εk)}

such that lim
j→∞

(αkj , βkj , r
kj

0 , wkj , εkj ) = (α∗, β∗, r∗0, w
∗, ε∗), lim

j→∞
τ i

p
kj
i +1

= τ∗, and

lim
j→∞

ui

q
kj
i +1

= u∗. Consequently, by (3.3) and (3.4), we have

Ri − eβ∗(τ∗+T )−eβ∗τ∗

T β∗ r∗0 − (( eβ∗(τ∗+T )−eβ∗τ∗

T (β∗)2 )− 1
β∗ )α

∗ −
i+T∑
j=1

aj(β∗, τ∗|T )w∗j−

ε∗ ≥ δ, i = 1, 2, . . . ,M,

and

eβ∗(u∗+T )−eβ∗u∗

T β∗ r∗0 + (( eβ∗(u∗+T )−eβ∗u∗

T (β∗)2 )− 1
β∗ )α

∗ +
i+T∑
j=1

aj(β∗, u∗|T )w∗j−

ε∗ −Ri ≥ δ, i = 1, 2, . . . ,M.

However, for each τ i
pk

i
and ui

qk
i
, i = 1, 2, . . . ,M, k = 1, 2, . . . ,

Ri − e
βl(τi

pk
i

+T )

−e
βlτi

pk
i

T βl rl
0 − (( e

βl(τi
pk
i

+T )

−e
βlτi

pk
i

T (βl)2
)− 1

βl )αl −
i+T∑
j=1

aj(βl, τ i
pk

i
|T )wl

j−

εl ≤ 0, i = 1, 2, . . . ,M, ∀ l ≥ k,

and

e
βl(ui

qk
i

+T )

−e
βlui

qk
i

T βl rl
0 + (( e

βl(ui
qk
i

+T )

−e
βlui

qk
i

T (βl)2
)− 1

βl )αl +
i+T∑
j=1

aj(βl, ui
qk
i
|T )wl

j−

εl −Ri ≤ 0, i = 1, 2, . . . ,M, ∀ l ≥ k.

Therefore, for any fixed k, as the subsequence {(αkj , βkj , r
kj

0 , wkj , εkj )} →
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(α∗, β∗, r∗0, w
∗, ε∗), we see that

Ri −
φeβ∗T − φ

T β∗
r∗0 − ((

φeβ∗T − φ

T (β∗)2
)− 1

β∗
)α∗ −

i+T∑
j=1

aj(β∗, τ i
pk

i
|T )w∗j−

ε∗ ≤ 0, i = 1, 2, . . . ,M,where φ
4
= e

β∗(τ i

pk
i

)
,

and
ϕeβ∗T − ϕ

T β∗
r∗0 + ((

ϕeβ∗T − ϕ

T (β∗)2
)− 1

β∗
)α∗ +

i+T∑
j=1

aj(β∗, ui
qk
i
|T )w∗j−

ε∗ −Ri ≤ 0, i = 1, 2, . . . ,M,where ϕ
4
= e

β∗(ui

qk
i

)
.

Since the above expression is true for all k, we have

Ri − eβ∗(τ∗+T )−eβ∗τ∗

T β∗ r∗0 − (( eβ∗(τ∗+T )−eβ∗τ∗

T (β∗)2 )− 1
β∗ )α

∗ −
i+T∑
j=1

aj(β∗, τ∗|T )w∗j−

ε∗ ≤ 0, i = 1, 2, . . . ,M,

and

eβ∗(u∗+T )−eβ∗u∗

T β∗ r∗0 + (( eβ∗(u∗+T )−eβ∗u∗

T (β∗)2 )− 1
β∗ )α

∗ +
i+T∑
j=1

aj(β∗, u∗|T )w∗j−

ε∗ −Ri ≤ 0, i = 1, 2, . . . ,M,

which contradicts the facts that

Ri − eβ∗(τ∗+T )−eβ∗τ∗

T β∗ r∗0 − (( eβ∗(τ∗+T )−eβ∗τ∗

T (β∗)2 )− 1
β∗ )α

∗ −
i+T∑
j=1

aj(β∗, τ∗|T )w∗j−

ε∗ ≥ δ, i = 1, 2, . . . ,M,

and

eβ∗(u∗+T )−eβ∗u∗

T β∗ r∗0 + (( eβ∗(u∗+T )−eβ∗u∗

T (β∗)2 )− 1
β∗ )α

∗ +
i+T∑
j=1

aj(β∗, u∗|T )w∗j−

ε∗ −Ri ≥ δ, i = 1, 2, . . . ,M.

The theorem is proved. �

4. Numerical results

The numerical examples and results of the Vasicek-type interest rate model with
impulse perturbations are presented in this section. The numerical experiments
are performed on the Intel Pentium 4 3.0 Ghz under the Windows XP Professional
Sp2 operating system. The observed 3-MONTH TREASURY BILL RATE data
of the St. Louis Federal Reserve Bank from 2007-05-15 to 2007-08-08 is employed
for analysis. The initial values and bounds of the parameters of the Vasicek-type
interest rate model are listed in Table 1. The numerical analysis results for different
β are shown in Table 2. In Table 2, r∗0, α

∗, β∗, ε∗ denotes the optimal value of the
Problem 2, and Tol is the stopping tolerance value for solving the Problem 2.
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Figure 1(a)∼(e) show the estimates of the yield curves for different initial values of
β. It should be noted that when β is chosen to be large enough, the value of the mean
reversion ratio will tend to a certain small value. Moreover, the numerical results of
Figure 1 illustrate that our approach essentially generates the yield functions with
minimal fitting errors and small oscillation.

Table 1. The initial values and bounds of the parameters of the
Vasicek-type interest rate model

0 initial value lower bound upper bound
r0 0 0 30
α 0 0 30
β Shown in Table 2 -30 0

w(t) 0 -30 30
ε 0 0 30

Table 2. The numerical analysis results for different β

Case 1 2 3 4 5
β -0.1 -1.0 -5.0 -15.0 -100.0
r∗0 0.0165 0.0386 0.0375 0.0356 0.0329
α∗ 0.8102 0.0544 0.2380 0.7066 1.3455
β∗ -3.6482 -1.0524 -4.9707 -14.9618 -28.5366
−α∗

β∗ 0.2221 0.0516 0.0479 0.0472 0.0471
ε∗ 0.0882 0.0904 0.0906 0.0905 0.0900
Tol 10−8 10−8 10−8 10−8 10−8

5. Conclusions

The Vasicek-type interest rate model with impulse perturbation is studied. The
concept of deterministic perturbation is adopted to deal with the random behavior
of interest rate variation. It shows that the solution of the Vasicek-type interest rate
model can be obtained by solving a nonlinear semi-infinite programming problem.
A relaxed cutting plane algorithm is then proposed for solving the resulting opti-
mization problem. In each iteration, we solve a finite optimization problem and add
one or some more constraints. The proposed algorithm chooses a point at which
the infinite constrains are violated to a degree rather than the violation being max-
imized. Compared to the traditional approach in the term structure literature of
using stochastic processes to describe uncertainty, our method essentially generates
the yield functions with minimal fitting errors and small oscillation.
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(a) β = -0.1 (b) β = -1.0

(c) β = -5 (d) β = -15

(e) β = -100

Figure 1. Yield Curves for different values of β.
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