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ITERATIVE SOLUTIONS OF NONLINEAR EQUATIONS FOR
m-ACCRETIVE OPERATORS IN BANACH SPACES

Z. Q. XUE, H. Y. ZHOU, AND Y. J. CHO

Abstract. In this paper, we prove some new strong convergence theorems of the
Ishikawa iterative scheme with mixed errors for m-accretive operators without the
Lipschitzian and bounded range assumptions in uniformly smooth Banach spaces.

1. Introduction and Preliminaries

Let E be an arbitrary real Banach space and E∗ be the dual space on E. The
normalized duality mapping J : E → 2E∗ is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for all x ∈ E, where 〈·, ·〉 denotes the generalized duality pairing. It is well known
that

(1) If E∗ is strictly convex, then the mapping J is single-valued,
(2) J(−x) = −J(x) for all x ∈ E,
(3) J(αx) = αJ(x) for all x ∈ E and α ≥ 0,
(4) If E∗ is uniformly convex, then the mapping J is uniformly continuous on

any bounded subset of E.
An operator T with the domain D(T ) and range R(T ) in E is said to be accretive

if, for any x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≥ 0.

The operator T is said to be strongly accretive if, for all x, y ∈ D(T ), there exist
j(x− y) ∈ J(x− y) and a constant k > 0 such that

〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2.

An accretive operator T is said to be m-accretive if R(T + λI) = E for all λ > 0,
where I denotes the identity mapping on E. Note that, if a mapping T is m-
accretive then, for any given f ∈ E, the equation x + Tx = f has a solution in E.
Since T is accretive, T + I is strongly accretive and hence the solution is unique.

On the other hand, Liu [3] and Xu [5] introduced the Ishikawa iterative schemes
with errors, respectively. But we remark here that Xu’s scheme with errors is a
special case of Liu’s scheme with errors and, further, putting u′′n = 0 for n =
0, 1, 2, · · · in our new Ishikawa iterative scheme (IS) with mixed error defined in our
main Theorem 2.1, we obtain also Liu’s scheme with errors.
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The purpose of this paper is to give some strong convergence theorems of the
Ishikawa iterative scheme with mixed errors for m-accretive operators without the
Lipschitzian and bounded range conditions in uniformly real Banach spaces. Our
results extend and improve the corresponding results of Chidume and Osilike [1],
Ding [2] and many others.

For our main results, we need the following:

Lemma 1.1. [4] Let E be a real Banach space. Then, for all x, y ∈ E and j(x+y) ∈
J(x + y),

(1.1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.
Lemma 1.2. [3] Let {an}∞n=0, {bn}∞n=0 and {cn}∞n=0 be three nonnegative real se-
quences satisfying the following condition:

(1.2) an+1 ≤ (1− tn)an + bn + cn, n ≥ 0,

where 0 ≤ tn < 1,
∑∞

n=0 tn = ∞, bn = ◦(tn) and
∑∞

n=0 cn < ∞. Then an → 0 as
n →∞.

Lemma 1.3. Let {an}∞n=0, {bn}∞n=0, {cn}∞n=0 and {wn}∞n=0 be four nonnegative real
sequences satisfying the following condition:

(1.3) an+1 ≤ (1− tn)an + wnan + bn + cn,

where 0 ≤ tn < 1, bn = ◦(tn),
∑∞

n=0 tn = ∞,
∑∞

n=0 cn < ∞ and
∑∞

n=0 wn < ∞.
Then an → 0 as n →∞.

Proof. Let a = lim infn→∞{an : n ≥ 0}. Then a = 0. In fact, assume that a > 0
and take ε = min{a, 1}. Since bn = ◦(tn), there exists a positive integer N > 0 such
that

bn <
1
2
εtn ≤ antn

for all n ≥ N . From (1.3), it follows that

an+1 ≤ (1− tn)an + wnan + antn + cn

≤ (1 + wn)an + cn

≤ (1 + wn)((1 + wn−1)an−1 + cn−1) + cn

≤
n∏

i=0

(1 + wi)a0 +
n∑

j=0

n∏

i=j+1

(1 + wi)cj

≤
n∏

i=0

(1 + wi)
(
a0 +

n∑

i=0

ci

)

≤ exp
( ∞∑

n=0

wn

)(
a0 +

∞∑

n=0

cn

)
< ∞

(1.4)

for all n ≥ N and so {an}∞n=0 is a bounded sequence. Hence we have a 6= +∞. Let
an ≤ M for some M > 0. By (1.3), we have

(1.5) an+1 ≤ (1− tn)an + (wnM + cn) + bn.
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Thus, by Lemma 1.2 and (1.5), we have an → 0 as n →∞, which contradicts a > 0.
Therefore there exists a subsequence {anj}∞j=0 of {an}∞n=0 such that anj → 0 as
j →∞ and so, for any ε > 0, there exists a positive integer Nj such that

(1.6) anj < ε,
bn

tn
< ε,

∞∑

i=Nj

wi < ε,

∞∑

q=Nj

cq < ε

for all n, nj ≥ Nj . Now, we show that aNj+m ≤ 2εeε for all m ≥ 1. By using (1.3)
and (1.6), we have

aNj+1 ≤ (1− tNj )aNj + wNjaNj + bNj + cNj

< (1− tNj )ε + wNj ε + tNj ε + cNj

= (1 + wNj )ε + cNj ,

aNj+2 ≤ (1− tNj+1)aNj+1 + wNj+1aNj+1 + bNj+1 + cNj+1

≤ (1− tNj+1 + wNj+1)((1 + wNj )ε + cNj ) + tNj+1ε + cNj+1

= (1 + wNj+1)(1 + wNj )ε + (1 + wNj+1)cNj − tNj+1(wNj ε + cNj ) + cNj+1

≤ (1 + wNj+1)(1 + wNj )ε + (1 + wNj+1)cNj + cNj+1,

aNj+3 ≤ (1 + wNj+2)(1 + wNj+1)(1 + wNj )ε + (1 + wNj+2)(1 + wNj+1)cNj

+ (1 + wNj+2)cNj+1 + cNj+2,

and so, by induction, we have

aNj+m ≤ ε

Nj+m−1∏

i=Nj

(1 + wi) +
Nj+m−1∑

q=Nj

Nj+m−1∏

i=Nj+1

(1 + wi)cq

≤ ε

Nj+m−1∏

i=Nj

(1 + wi) +
Nj+m−1∑

q=Nj

cq

Nj+m−1∏

i=Nj

(1 + wi)

= exp
( Nj+m−1∑

i=Nj

wi

)(
ε +

Nj+m−1∑

i=Nj

ci

)

< eε(ε + ε) = 2εeε,

which implies that an → 0 as n →∞. This completes the proof. ¤
Remark 1.1. Lemma 1.3 extends and improves Lemma 1.2.

2. Main Results

Now, we give our main results in this paper.

Theorem 2.1. Let E be a uniformly smooth real Banach space and T : E → E be
an m-accretive operator such that there exists a constant L ≥ 1 satisfying

(2.1) ‖Tx− Ty‖ ≤ L(1 + ‖x− y‖)
for all x, y ∈ E. Let {un}∞n=0, {vn}∞n=0 be two sequences in E and {αn}∞n=0, {βn}∞n=0

be two real sequences in [0, 1] satisfying the following conditions:
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(1) un = u′n + u′′n for any sequences {u′n}∞n=0, {u′′n}∞n=0 in E and n ≥ 0 with∑∞
n=0 ‖u′n‖ < ∞ and ‖u′′n‖ = ◦(αn),

(2) ‖vn‖ → 0 as n →∞,
(3) limn→∞ αn = limn→∞ βn = 0 and

∑∞
n=0 αn = ∞.

For any given f ∈ E, define a mapping S : E → E by Sx = f − Tx for all x ∈ E
and, for any given x0 ∈ E, the Ishikawa iterative sequence {xn}∞n=0 with errors by

(IS)

{
yn = (1− βn)xn + βnSxn + vn,

xn+1 = (1− αn)xn + αnSyn + un

for all n ≥ 0. Then the sequence {xn}∞n=0 defined by (IS) converges strongly to the
unique solution of the nonlinear equation x + Tx = f .

Proof. Since T is an m-accretive operator with the condition (2.1), it is well known
that the equation x + Tx = f has the unique solution q. Then the solution q is the
unique fixed point of the mapping S. Since T is m-accretive, we have

〈Sx− Sy, J(x− y)〉 = −〈Tx− Ty, J(x− y)〉 ≤ 0

for all x, y ∈ E. By using Lemma 1.1 and (IS), we have

‖xn+1 − q‖2 = ‖(1− αn)(xn − q) + αn(Syn − Sq) + un‖2

≤ ‖(1− αn)(xn − q) + αn(Syn − Sq)‖2 + 2〈un, J(xn+1 − q)〉
≤ (1− αn)2‖xn − q‖2 + 2αn〈Syn − Sq, J(xn+1 − q − un)〉

+ 2〈un, J(xn+1 − q)〉.

(2.2)

Now observe that

(2.3) 2〈un, J(xn+1 − q)〉 ≤ 2‖un‖‖xn+1 − q‖ ≤ ‖un‖(1 + ‖xn+1 − q‖2),

〈Syn − Sq, J(xn+1 − q − un)〉

=
〈 Syn − Sq

1 + ‖xn − q‖ , J
(xn+1 − q − un

1 + ‖xn − q‖
)
− J

( xn − q

1 + ‖xn − q‖
)〉

(1 + ‖xn − q‖)2

+
〈 Syn − Sq

1 + ‖xn − q‖ , J
( xn − q

1 + ‖xn − q‖
)
− J

( yn − q

1 + ‖xn − q‖
)〉

(1 + ‖xn − q‖)2

+ 〈Syn − Sq, J(yn − q)〉
≤ 2Mn(An + Bn)(1 + ‖xn − q‖2),

(2.4)

where

Mn =
‖Syn − Sq‖
1 + ‖xn − q‖ ,

An =
∥∥∥J

(xn+1 − q − un

1 + ‖xn − q‖
)
− J

( xn − q

1 + ‖xn − q‖
)∥∥∥,

Bn =
∥∥∥J

( xn − q

1 + ‖xn − q‖
)
− J

( yn − q

1 + ‖xn − q‖
)∥∥∥.
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Now we show that {Mn}∞n=0 is bounded and An, Bn → 0 as n →∞. Indeed,

‖Syn − Sq‖
1 + ‖xn − q‖ =

‖Tyn − Tq‖
1 + ‖yn − q‖

1 + ‖yn − q‖
1 + ‖xn − q‖

≤ L
1 + (1− βn)‖xn − q‖+ βn‖Txn − Tq‖+ ‖vn‖

1 + ‖xn − q‖
≤ L(1 + βnL + ‖vn‖).

Since
{ ‖Syn−Sq‖

1+‖xn−q‖
}
,
{ ‖xn−q‖

1+‖xn−q‖
}∞

n=0
are bounded and

∥∥∥(xn+1 − q − un)− (xn − q)
1 + ‖xn − q‖

∥∥∥ =
∥∥∥(αnxn − αnSyn)

1 + ‖xn − q‖
∥∥∥

=
∥∥∥αn(xn − q)− αn(Syn − Sq)

1 + ‖xn − q‖
∥∥∥

≤ αn
‖xn − q‖

1 + ‖xn − q‖ + αn
‖Tyn − Tq‖
1 + ‖yn − q‖

1 + ‖yn − q‖
1 + ‖xn − q‖

≤ αn + αnL(1 + βn + βnL + ‖vn‖) → 0

as n →∞, we have An → 0 as n →∞. Similarly, we have also Bn → 0 as n →∞.
Substituting (2.3) and (2.4) for (2.2), we have

‖xn+1 − q‖2 ≤ (1− αn)2‖xn − q‖2 + 2Mnαn(An + Bn)(1 + ‖xn − q‖2)

+ ‖un‖(1 + ‖xn+1 − q‖2).
(2.5)

Choosing a positive integer N so large that 1− ‖un‖ > 0 for all n ≥ N , we have

‖xn+1 − q‖2 ≤ (1− αn)2 + 2Mnαn(An + Bn)
1− ‖un‖ ‖xn − q‖2

+
2Mnαn(An + Bn)

1− ‖un‖ +
‖un‖

1− ‖un‖

≤ 1− ‖un‖ − 2αn + α2
n + 2Mnαn(An + Bn) + ‖un‖
1− ‖un‖ ‖xn − q‖2

+
2Mnαn(An + Bn)

1− ‖un‖ +
‖u′n‖+ ‖u′′n‖

1− ‖un‖
≤

(
1− 2− αn − 2Mn(An + Bn)− ‖u′′n‖/αn

1− ‖un‖ αn

)
‖xn − q‖2

+
‖u′n‖

1− ‖un‖‖xn − q‖2 +
2Mnαn(An + Bn) + ‖u′′n‖

1− ‖un‖ +
‖u′n‖

1− ‖un‖ .

(2.6)
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In (2.6), put

an = ‖xn − q‖2, wn =
‖u′n‖

1− ‖un‖ ,

bn =
2Mnαn(An + Bn) + ‖u′′n‖

1− ‖un‖ ,

tn =
2− αn − 2Mn(An + Bn)− ‖u′′n‖

αn

1− ‖un‖ .

Then there exists a positive integer N ′ > N such that tn ≥ 1
2 for all n > N ′, and

we have
∑∞

n=N ′ wn < ∞ and bn = ◦(αn). Therefore, by Lemma 1.3,

an+1 ≤
(
1− 1

2
αn

)
an + wnan + bn + wn

for all n ≥ N ′ implies that an → 0 as n →∞. This completes the proof. ¤
Note that the sequence (IS) in Theorem 2.1 satisfying the conditions (1)∼(3) is

called the Ishikawa iterative scheme with mixed errors ([6]).

Remark 2.1. Theorem 2.1 contains a good number of the known results as its
special cases. In particular, if the mapping T considered here satisfies one of the
following assumptions:

(i) T : E → E is Lipschitzian,
(ii) T : E → E has the bounded range.

Then T satisfies the condition (2.1) (see [6]).

Corollary 2.1. Let E be a uniformly smooth real Banach space and T : E → E be
a Lipschitz and m-accretive mapping. Let {αn}∞n=0, {βn}∞n=0 and {un}∞n=0, {vn}∞n=0

be as in Theorem 2.1. Then the sequence {xn}∞n=0 defined by (IS) converges strongly
to the unique solution of the equation x + Tx = f .

Corollary 2.2. Let E be a uniformly smooth real Banach space and T : E → E
be an m-accretive mapping with the bounded range. Let {αn}∞n=0, {βn}∞n=0 and
{un}∞n=0, {vn}∞n=0 be as in Theorem 2.1. Then the sequence {xn}∞n=0 defined by (IS)
converges strongly to the unique solution of the equation x + Tx = f .

Remark 2.2. Corollary 2.1 extends the main results of Chidume and Osilike [1]
from q−uniformly smooth Banach spaces (q > 1) to the more general uniformly
smooth Banach spaces and from the usual iterative sequences to the iterative se-
quences with errors. While Corollary 2.2 extends the main results of Ding [2] to the
more general iterative sequence with errors. By setting ‖vn‖ ≡ 0 for n = 0, 1, 2, · · · ,
we can deduce Theorems 3.1 and 3.2 of Ding [2].

Remark 2.3. Actually, all the results mentioned above can be also restated in
terms of m−dissipative operators.

A class of operators closely related to the class of accretive operators is the class of
dissipative operators. An operator T : D(T ) ⊂ E → E is said to be dissipative if −T
is accretive. The dissipative operator T is said to be m−dissipative if R(I−λT ) = E
for all λ > 0.
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Theorem 2.2. Let E be a uniformly smooth real Banach space and T : E → E be
an m−dissipative operator such that there exists a constant L ≥ 1 satisfying

||Tx− Ty|| ≤ L(1 + ||x− y||)

for all x, y ∈ E. Let {αn}∞n=0, {βn}∞n=0 and {un}∞n=0, {vn}∞n=0 be as in Theorem
2.1. For any given f ∈ E, define a mapping S : E → E by Sx = f + Tx for all
x ∈ E. Then the sequence {xn}∞n=0 defined by (IS) converges strongly to the unique
solution of the equation x− Tx = f .

Proof. It follows from Theorem 2.1. ¤

Corollary 2.3. Let E be a uniformly smooth real Banach space and T : E → E
be a Lipschitzian and m−dissipative mapping. Let {αn}∞n=0, {βn}∞n=0 and {un}∞n=0,
{vn}∞n=0 be as in Theorem 2.2. Then the sequence {xn}∞n=0 defined by (IS) converges
strongly to the unique solution of the equation x− Tx = f .

Corollary 2.4. Let E be a uniformly smooth real Banach space and T : E →
E be m−dissipative mapping with the bounded range. Let {αn}∞n=0, {βn}∞n=0 and
{un}∞n=0, {vn}∞n=0 be as in Theorem 2.1. Then the sequence {xn}∞n=0 defined by (IS)
converges strongly to the unique solution of the equation x− Tx = f .

Remark 2.4. Corollary 2.3 extends the main results of Chidume and Osilike [1]
from q−uniformly smooth Banach spaces (q > 1) to the more general uniformly
smooth Banach spaces and from the usual iterative sequences to the iterative se-
quences with errors. While Corollary 2.4 extends the main results of Ding [2] to the
more general iterative sequence with errors. By setting ‖vn‖ ≡ 0 for n = 0, 1, 2, · · · ,
we can deduce Theorems 3.3 and 3.4 of Ding [2].

References

[1] C. E. Chidume and M. O. Osilike, Approximation methods for nonlinear operator equations of
m-accretive type, J. Math. Anal. Appl. 189 (1995), 225–239.

[2] X. P. Ding, Iterative process with errors of nonlinear equations involving m-accretive operators,
J. Math. Anal. Appl. 209 (1997), 191–201.

[3] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive
mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114–125.

[4] W. Takahashi, Nonlinear Functional Analysis, Kindaikagakusha, Tokyo, 1988.
[5] Y. G. Xu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive

operator equations, J. Math. Anal. Appl. 224 (1998), 91–101.
[6] H. Y. Zhou, Y. J. Cho and S. M. Kang, Approximating the zeros of accretive operators by the

Ishikawa iterative scheme with mixed errors, submitted.

Manuscript received October 31, 2000



320 Z. Q. XUE, H. Y. ZHOU, AND Y. J. CHO

Z. Q. Xue
Department of Mathematics, Shijiazhuang Railway College, Shijiazhuang 050043, People’s Republic
of China

H. Y. Zhou
Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003,
People’s Republic of China

Y. J. Cho
Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: yjcho@nongae.gsnu.ac.kr


