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LIPSCHITZ FUNCTIONS ON SUBSPACES OF ASPLUND
GENERATED SPACES ARE GENERICALLY VIRTUALLY

PSEUDO-REGULAR

J.R.GILES AND SCOTT SCIFFER

Abstract. Locally Lipschitz functions on separable Banach spaces are generi-
cally pseudo-regular. A slightly weaker property does hold on all Banach spaces
which are closed subspaces of Asplund generated spaces. We deduce that for
locally Lipschitz functions on such spaces the set of points of Gâteaux but not
strict differentiability is of the first category.

A real valued function ψ on an open subset A of a Banach space X is locally
Lipschitz if given x ∈ A there exists K > 0 and δ > 0 such that

|ψ(y)− ψ(z)| ≤ K‖y − z‖ for all y, z ∈ B(x; δ).

Important tools in the study of the differentiability of such a function ψ are the
Dini directional derivative at x ∈ A in the direction y ∈ X,

ψ+(x)(y) := lim sup
λ→0+

ψ(x + λy)− ψ(x)
λ

and the Clarke directional derivative at x ∈ A in the direction y ∈ X

ψ◦(x)(y) := lim sup
z→x

λ→0+

ψ(z + λy)− ψ(z)
λ

.

We say that ψ is pseudo-regular at x ∈ A in the direction y ∈ X if

ψ◦(x)(y) = ψ+(x)(y)

and is pseudo-regular at x ∈ A if it is pseudo-regular at x in all directions y. In
general, given y ∈ X, ψ is pseudo-regular in the direction y at the points of a
residual subset of A and if X is separable then ψ is pseudo-regular at the points of
a residual subset of A, [G-S, p208]. It is not known whether this property extends in
general beyond separable spaces. However we can define a property slightly weaker
than pseudo-regularity and show that it holds generically for all locally Lipschitz
functions on spaces belonging to a large class which includes the separable spaces.

Now the Clarke directional derivative has useful continuity properties: given
x ∈ A, ψ◦(x)(y) is sublinear in y and given y ∈ X, ψ◦(x)(y) is upper semi-continuous
in x. So we are able to define the Clarke subdifferential at x ∈ A

∂◦ψ(x) := {f ∈ X∗ : f(y) ≤ ψ◦(x)(y) for all y ∈ X}
a non-empty weak∗compact convex subset of X∗ and the Clarke subdifferential
mapping x 7→ ∂◦ψ(x) a locally bounded weak∗upper semi-continuous set-valued
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mapping. The Dini directional derivative does not have comparable useful continu-
ity properties. However we can define an associated directional derivative at x ∈ A
in the direction y ∈ X

ψut(x)(y) := ψ◦(x)(y)− ψ+(x)(y)

and aim to study the associated subdifferential

∂utψ(x) := {f ∈ X∗ : f(y) ≤ ψut(x)(y) for all y ∈ X}.
Now 0 ∈ ∂utψ(x) for all x ∈ A and if ψ is pseudo-regular at x ∈ A then ∂utψ(x) =
{0}. But since ψut(x)(y) is not in general sublinear in y the converse does not hold.
So we are led to say that ψ is virtually pseudo-regular at x ∈ A if ∂utψ(x) = {0}.

Although virtual pseudo-regularity is a generalisation of pseudo-regularity a sim-
ple example shows that it is somewhat weaker.

Example
Consider the Lipschitz function ψ on R2 given in polar coordinates by

ψ(r, θ) = r sin 2θ.

For all directions (r, θ) ∈ R2\(0, 0), ψ+(0, 0)(r, θ) = r sin 2θ; but for all (r1, θ1) ∈
R2\(0, 0), ψ+(r1, θ1)(r, θ) = 2θr1 cos 2θ1 + r sin 2θ1 → r sin 2θ1 as r1 → 0. So
ψ◦(0, 0)(r, θ) = r. Then ψ is not pseudo-regular at (0, 0) although ∂utψ(0, 0) = {0}.

We overcome the continuity deficiencies of the Dini directional derivative as fol-
lows. Given p ∈ N we define the approximate Dini directional derivative at x ∈ A
in the direction y ∈ X as




ψ+
p (x)(y):= sup

0<λ<1/p

ψ(x + λy)− ψ(x)
λ

for ‖y‖ = 1

ψ+
p (x)(αy):= αψ+

p (x)(y) α ≥ 0.

We observe that it has useful continuity properties: given x ∈ A, ψ+
p (x)(y) is

continuous in y and given y ∈ X, because ψ+
p (x)(y) is the supremum of continuous

functions, it is lower semi-continuous in x. Further,

ψ+(x)(y) = lim
p→∞ψ+

p (x)(y).

For our purposes we consider the associated directional derivative at x ∈ A in the
direction y ∈ X defined by

ψutp (x)(y) := ψ◦(x)(y)− ψ+
p (x)(y)

which for given y ∈ X is upper semi-continuous in x. Clearly,

ψut(x)(y) = lim
p→∞ψutp (x)(y).

Our result on virtual pseudo-regularity is derived from an analysis of the associated
subdifferential of ψ at x ∈ A defined as

∂utp ψ(x) := {f ∈ X∗ : f(y) ≤ max{0, ψutp (x)(y)} for all y ∈ X}.
It is not difficult to see that this is a weak∗compact convex subset of X∗ and that
0 ∈ ∂utp ψ(x) for all x ∈ A. Furthermore, it follows from the continuity properties
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of ψutp (x)(y) that the associated subdifferential mapping x 7→ ∂utp ψ(x) is a locally
bounded weak∗upper semi-continuous set-valued mapping. Clearly

∂utψ(x) = ∪p∈N∂utp ψ(x).

We now proceed to define the class of spaces on which we will establish our
virtual pseudo-regularity property. A real-valued function ψ on an open subset A
of a Banach space X is Gâteaux differentiable at x ∈ A if there exists a continuous
linear functional ψ′(x) on X and given ε > 0 and y ∈ X there exists δ(ε, y) > 0
such that ∣∣∣∣

ψ(x + λy)− ψ(x)
λ

− ψ′(x)(y)
∣∣∣∣ < ε for all λ ∈ (0, δ),

and is Fréchet differentiable at x ∈ A if given ε > 0 there exists δ(ε) > 0 such that
∣∣∣∣
ψ(x + λy)− ψ(x)

λ
− ψ′(x)(y)

∣∣∣∣ < ε for all λ ∈ (0, δ) and y ∈ X, ‖y‖ = 1.

A Banach space Z is an Asplund (weak Asplund) space if every continuous convex
function on an open convex subset A of Z is Fréchet (Gâteaux) differentiable at the
points of a residual subset of A. A Banach space Y where there exists an Asplund
space Z and a continuous linear mapping T : Z → Y such that Y = T (Z) is called
an Asplund generated space. All weakly compactly generated spaces are Asplund
generated spaces, [F,p12]. We are interested in considering a Banach space X which
is a closed subspace of an Asplund generated space Y = T (Z). The class of such
spaces is a tractable subclass of the weak Asplund spaces, [F, p17] and we aim to
show that on a space of this class locally Lipschitz functions are generically virtually
pseudo-regular.

Fabian and Preiss [F-P] developed special techniques for the analysis of a Banach
space X which is a closed linear subspace of an Asplund generated space Y = T (Z).
Given n ∈ N, they consider the set

An := (T (B(Z)) +
1
n

B(Y )) ∩X

whose Minkowski gauge ‖.‖n is an equivalent norm for X. Our theorem is built on
the following crucial properties developed for such a space X with such equivalent
norms.

Given a non-empty subset E of the dual X∗ of a Banach space X a weak∗slice of
E is a non-empty subset of E of the form

S(E) := {f ∈ E : f(x) > r}
where we are given x ∈ X and r ∈ R. We have a key slice property.

Lemma 1, [F-P,p738]
Consider a Banach space X which is a closed subspace of an Asplund generated
space Y = T (Z). Given n ∈ N every non-empty subset E of B(X∗) has a weak∗slice
S(E) with ‖.‖∗n-diam S(E) < 3/n.

Accompanying this result we have an important differentiability property for
locally Lipschitz functions.



308 J.R.GILES AND SCOTT SCIFFER

Lemma 2, [F-P,p735]
Consider a Lipschitz function ψ with Lipschitz constant 1 on an open subset A of
a Banach space X which is a closed subspace of an Asplund generated space Y =
T (Z). Given n ∈ N and a weak∗slice S(∂◦ψ(A)) with ‖.‖∗n-diam S(∂◦ψ(A)) < 3/n
then there exists an xn ∈ A and fxn ∈ ∂◦ψ(xn) ∩ S(∂◦ψ(A)) and δn > 0 such that
∣∣∣∣
ψ(xn + λy)− ψ(xn)

λ
− fxn(y)

∣∣∣∣ <
9
n

for all λ ∈ (0, δn) and all y ∈ X, ‖y‖n = 1.

For the proof of our theorem we need the following special property.

Lemma 3
Consider a Lipschitz function ψ with Lipschitz constant 1 on an open subset A
of a Banach space X which is a closed subspace of an Asplund generated space
Y = T (Z). If, given n ∈ N, at xn ∈ A there exists fxn ∈ B(X∗) and δn > 0 such
that

∣∣∣∣
ψ(xn + λy)− ψ(xn)

λ
− fxn(y)

∣∣∣∣ <
9
n

for all λ ∈ (0, δn) and all y ∈ X, ‖y‖n = 1

then given p ∈ N there exists an open neighbourhood U of xn such that

fxn + ∂utp ψ(U) ⊂ ∂◦ψ(U) +
18
n

Bn(X∗).

Proof There exists δ ∈ (0,min(δn, 9/n, 1/p)) such that
∣∣∣∣
ψ(xn + λy)− ψ(xn)

λ
− fxn(y)

∣∣∣∣ <
9
n

for all λ ∈ (0, δ) and all y ∈ X, ‖y‖n = 1.

But then
∣∣∣∣
ψ(z + λy)− ψ(z)

λ
− fxn(y)

∣∣∣∣ ≤
2‖z − xn‖

λ
+

∣∣∣∣
ψ(xn + λy)− ψ(xn)

λ
− fxn(y)

∣∣∣∣ <
18
n

for all z ∈ U := B(xn; 9δ/(4n)), all λ ∈ (δ/2, δ) and all y ∈ X, ‖y‖n = 1. Therefore,

fxn(y)− ψ+
p (z)(y) < fxn(y)− sup

δ/2<λ<δ

ψ(z + λy)− ψ(z)
λ

<
18
n

for all z ∈ U and y ∈ X, ‖y‖n = 1. Then for f ∈ fxn + ∂utp ψ(z) we have

f(y) ≤ fxn(y) + max{0, ψ◦(z)(y)− ψ+
p (z)(y)}

≤ max{fxn(y), ψ◦(z)(y) + fxn(y)− ψ+
p (z)(y)}

≤ max{fxn(y), ψ◦(z)(y) + 18/n} for all y ∈ X, ‖y‖n = 1

which implies that f ∈ ∂◦ψ(U) +
18
n

Bn(X∗).
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We have seen that a Banach space X which is a closed linear subspace of an
Asplund generated space Y = T (Z) has for each n ∈ N an equivalent norm ‖.‖n

with dual norm ‖.‖∗n on X∗. We note that there is a norm ‖.‖ρ on X∗ related to all
of these dual norms ‖.‖∗n on X∗ as follows.

Lemma 4 [G-S, Corol 3.4]
Consider a Banach space X which is a closed subspace of an Asplund generated
space Y = T (Z). There is a norm ‖.‖ρ on the dual X∗ which has the property that,
given a bounded subset E of X∗ there exists an α > 0 such that

‖f‖ρ ≤ ‖f‖∗n + α/n for all f ∈ E.

We are now in a position to establish our theorem.

Theorem
A locally Lipschitz function ψ on an open subset A of a Banach space X which is
a closed linear subspace of an Asplund generated space Y = T (Z) has the property
that ∂utψ(x) = {0} at the points of a residual subset of A.

Proof We may assume without loss of generality that ψ is Lipschitz with Lipschitz
constant 1 on A, [F-P, p378]. Consider a non-empty subset U of A.
By Lemma 1, given n ∈ N there exists a weak∗slice generated by some y ∈ X, ‖y‖ =
1 and r ∈ R

S(∂◦ψ(U)) := {f ∈ ∂◦ψ(U) : f(y) > r}
such that ‖.‖∗n-diam S(∂◦ψ(U)) < 3/n.
By Lemma 2, there exists xn ∈ U and fxn ∈ ∂◦ψ(xn)∩ S(∂◦ψ(U)) and δn > 0 such
that∣∣∣∣

ψ(xn + λy)− ψ(xn)
λ

− fxn(y)
∣∣∣∣ <

9
n

for all λ ∈ (0, δn) and all y ∈ X, ‖y‖n = 1.

By Lemma 3, given p ∈ N there exists an open neighbourhood V of xn such that
V ⊂ U and

fxn + ∂utp ψ(V ) ⊂ ∂◦ψ(V ) +
18
n

Bn(X∗).

Now fxn ∈ S(∂◦ψ(V )) ⊂ S(∂◦ψ(U)) and so ‖.‖∗n-diam S(∂◦ψ(V )) < 3/n. Then

‖.‖∗n-diam S(fxn + ∂utp ψ(V )) <
39
n

.

Now ψ is pseudo-regular in the direction y at the points of a residual subset Py of
A, [G-S, p208]. So for z ∈ V ∩ Py we have

ψ◦(z)(y)− ψ+
p (z)(y) ≤ 0

and it follows from the definition of ∂utp ψ(z) that fz(y) = 0 for all fz ∈ ∂utp ψ(z).
Now fxn(y) > r so (fxn + fz)(y) > r for all fz ∈ ∂utp ψ(z) and then

fxn + ∂utp ψ(z) ⊂ S(fxn + ∂utp ψ(V )).

Since the mapping x 7→ ∂utp ψ(x) is weak∗upper semi-continuous there exists an open
neighbourhood W of z where W ⊂ V such that

fxn + ∂utp ψ(W ) ⊂ S(fxn + ∂utp ψ(V ))
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and we conclude that
‖.‖∗n-diam ∂utp ψ(W ) < 39/n.

By Lemma 4, since ∂◦ψ(A) ⊂ B(X∗), there exists α > 0 such that

‖.‖ρ-diam ∂utp ψ(W ) < (39 + α)/n.

Then given p ∈ N and ε > 0 the set

Op
ε := ∪{open sets W in A : ‖.‖ρ-diam ∂utp ψ(W ) < ε}

is open and dense in A and so Dp := ∩ε>0O
p
ε is a dense Gδ subset of A at the

points of which the mapping x 7→ ∂utp ψ(x) is single-valued and ‖.‖ρ-norm upper
semi-continuous. We conclude that the mapping x 7→ ∂utψ(x) is single-valued at
the points of the dense Gδ subset D := ∩p∈NDp. Since 0 ∈ ∂utψ(x) for all x ∈ A we
deduce that ∂utψ(x) = {0} for all x ∈ D.

A locally Lipschitz function ψ on an open subset A of a Banach space X is said
to be strictly differentiable at x ∈ A if it is Gâteaux differentiable at x and

lim
z→x

λ→0+

ψ(z + λy)− ψ(z)
λ

= ψ′(x)(y) for all y ∈ X.

It is well known that for a continuous function on the real line the set of points
where it is differentiable but not strictly differentiable is of the first category. But
also, for a locally Lipschitz function on an open subset of a separable Banach space,
the set of points where it is Gâteaux differentiable but not strictly differentiable
is of the first category, [G-S, p210]. We now extend this result to a Banach space
which is a closed subspace of an Asplund generated space.

A real valued function ψ on an open subset A of a Banach space X is directionally
differentiable at x ∈ A if

ψ′+(x)(y) := lim
λ→0+

ψ(x + λy)− ψ(x)
λ

exists for all y ∈ X.

Corollary
For a locally Lipschitz function ψ on an open subset A of a Banach space X which
is a closed linear subspace of an Asplund generated space Y = T (Z), the set of
points where ψ is directionally differentiable but not strictly differentiable is of the
first category.

Proof It is sufficient to consider the case where ψ is directionally differentiable
at the points of a residual subset of A. Since X is a closed subspace of an Asplund
generated space Y = T (Z) then ψ is Gâteaux differentiable at the points of a
residual subset G of A, [Z, p185, F-P, p733]. From the Theorem, ψ has the property
that ∂utψ(x) = {0} at the points of a residual subset D of A. Then for x ∈ D ∩G
and f ∈ ∂◦ψ(x) we have f(y) ≤ ψ◦(x)(y) for all y ∈ X so (f − ψ′(x))(y) ≤
ψ◦(x)(y)−ψ′(x)(y) for all y ∈ X; that is, (f −ψ′(x) ∈ ∂utψ(x). But then f = ψ′(x)
and ∂◦ψ(x) = {ψ′(x)}.
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