R Py, 6,/‘

Journal of Nonlinear and Convex Analysis Ig “)kdlam pﬂb"Shefs
Volume 1, Number 3, 2000, 295-304 < , =7 ISSN 1880-5221 ONLINE JOURNAL

Y"k%

ROTATIVE MAPPINGS IN HILBERT SPACE

MALGORZATA KOTER-MORGOWSKA

ABSTRACT. The aim of this paper is to give some conditions providing existence
of fixed points for lipschitzian mappings in a Hilbert space which are n-rotative
with n > 3.

1. PRELIMINARIES.

Let C' be a nonempty subset of a Banach space X. A mapping T : C — (' is said
to be (a,n)-rotative if for an integer n > 2 and 0 < a < n,

(1) |le = T"z|| < al|lxz—Tz| forany xz € C.

We will simply say that the mapping is n-rotative if it is (a,n)-rotative with some
a < n, and rotative if it is n-rotative for some n > 2.
Recall that T : C — (' is called k-lipschitzian if for all z,y € C,

[Te = Tyll < kllz -yl

If £ =1 such a mapping is said to be nonexpansive.

It is known that any nonexpansive and rotative selfmapping of a closed and
convex subset of a Banach space has fixed points (see, e.g., [1],[2], [4]). Moreover,
if we consider k-lipschitzian mappings with k£ > 1, the condition of rotativeness (1)
assures the existence of fixed points provided k is not to large. Namely, we have
the following

Theorem 1. [3] If C is a nonempty, closed and convex subset of a Banach space
X, then for any n > 2 and a < n there exists v > 1 such that any (a,n)-rotative
and k-lipschitzian mapping T : C' — C has a fixed point provided k < ~.

Clearly, v which appears in the above theorem depends on a,n and the space in
which the set C' is contained. Thus it is convenient to define the function ;X (a) as
follows

vX (a) = inf{k : there is a closed and convex set C' C X and a fixed point free

k-lipschitzian (a,n)-rotative selfmapping of C'}.
Now we can reformulate Theorem 1 in following way:

For any Banach space X, n > 2 and a < n, we have %)f (a) > 1.
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In general, precise values of v, (a) are not known. If n is arbitrary, we have only
an estimate from below of the function ;X at a = 0 (see [6]):

2 for n = 2,

(2) Yu (0) = \1/7;2 <_1 +yfnn-1) - ﬁ) for n > 3.

Moreover, in an arbitrary Banach space

(3) 'y?(a)Zmax{; (2_a+ (2—a)2+a2),

1 2 2 2
8<a +4—|—\/(a +4) —64a—|—64>}

(see [1]). There exist also some evaluations of ¥4/, where H is a Hilbert space (see
[1],[8]). In this case, the best known estimate is due to T. Komorowski [7]:

Theorem 2.

(4) ' (a) 2 \/a;—)i—l'

Proof. Suppose that for ¢ € (0,1) and z € C, ||[T?z —Tz|| > (1 —¢)||Tz — z|.
Then if we put u = % (T2a: + Ta:) , we get

2
lu — Tul® =

1, , 1
‘2(T x—Tu)+§(T:E—Tu)

= Ll + e - rug? - L 22 — 7
k2 5 K2 s 1, )
< T Tw—ulP + 5 o —wl® ~ § [T — T
2
e e A

k2 1 2 2 1 2 1 2 2
+2< HT:):—&CH +§\]Tx—w\| —4HT$—T$H>

2
k% (a® +1 1
<|EEAD 1o a,
Let 1 = 2 and for n € N set
Tn41 :71:32771 - if ||T?2—Tz||<1—¢)||Tz—=z|,
Fupr = T2 - T > (- ) [T ]
Then {x,} converges to a fixed point of T' provided % (k‘2 (a2 + 1) -1+ 6) < 1.
Since € was arbitrarily chosen, this gives (4). O

Although the estimate (4) is better than (3) and better than that obtained in
[8] for a Hilbert space, it is still not sharp. Namely, one can prove (see [8]) that
74T (0) > V72 — 3 = 2.62, while it follows from (4) that 747 (0) > /5 ~ 2.24.
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In [5] J. Gérnicki gives an evaluation of ¥4’ (a) in a Hilbert space. Unfortunately,
there are some miscalculations in his paper.

2. Evaruation oF v (a) FOR n > 3.

We will start with two lemmas.

Lemma 1. Let ai,as,...ap, € H, oy, 2, ...an € (0,1), 3" a; = 1. Then

n 2 n

2 2
E Qia;|| = E i |lail|” — E, ooy [la; — a;|”
i1 i=1

1<i<j<n
Proof. Tt is known that for u,v € H, a € (0,1),

()

2 2 2 2
11 —a)u+av]” = (1 =) ull” + o] —a -a)lu-wv]",

Suppose now that (5) holds for some n € N. Let a; € H, i = 1,..n + 1 and
a; € (0,1), Z?:Jrll a; = 1. Setting o = > | o we have a1 =1 — o and

2 2

n+1

g Qia;
=1

n
@
az Elai +(1—a)ap+1
i=1
2
+ (1= a) llana]|* —a (1 - a)

n 2

Iy
Z Ez (ai - an—i—l)

i=1

(67 (67107
= (3 el - X T e el |+ (1= 0) anea

i=1 1<i<j<n

n

(6% 2 ;00 2
—a(l—a) Zj”ai—anﬂﬂ — Z ;2] llai — aj||

i=1 1<i<j<n

n n
= aillail® + (1= a) fantil®> = (1 =) > i flai — anga |
=1 =1

2
- Y aiajllai —aj|

1<i<j<n
n+1

2 2
=Y aillal® = Y gl —al?,
=1

1<i<j<n+1

which, by induction argument, ends the proof. Il

In particular, if o; = %, 1 =1,...n, then

2

, 1 & 1 @ 5 1 5

(5) EE @i :EE [ladl] 2 E lai — aj|”
i=1 i=1
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Lemma 2. Let C be a convex subset of a Hilbert space H and let T : C — C be
k-lipschitzian and (a,n)-rotative with n > 3. For x € C put

:l(T:U+T2x+---+TnfB)-

n
Then
2 2 2 2
6)  Je-TeP < PO g
TL
1 n—1 A g 1 n—1 )
+ 3 Zk‘Q("_]) Hx — T]xH ) Z HT”QL‘ — TJxH .
=2 j=1

Proof. Using (5') we get

1 & , 1 . .
o= T2 = =S [Tl = Te|* = = 3" 7' - Toa|
i=1 1<i<j<n
k? &
<>

=1

i 1 S ; 2
T 1x—g(Tx+-~-+T”x) ) Z |T'z — TV x||

1<i<j<n

Z( ZHT“ Tl - Y T%TW)

i=1 1<i<j<n

ST O [

1<i<j<n
B2 (S . k2 +1 . -
HQZ(ZTZ T) S |7 - i
=1 j=1 1<i<j<n
B2 U -
- B e -1
j=1
k[ < - " .
+ 5 ZHTm—T%H +---+ZHT"—1¢7TJ:EH
e “(ZHT il + 3 T+

+ HT"_lzc — T"xHQ)

k2 " j 2 1 " g 2 " 2 j 2
e S [ 2 N Y [ 2 R A
j=1 Jj=2 Jj=3

2
T o i e P
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n—2
(7% = Tl + 7% = T2a]) + o S [T — T
j=1

k& T R N s R 9 2
S e+ B (S e g 5 e
j=1 j=2 =3
1n—1
bt ) - S e
=1

Since T is (a,n)-rotative, we have

k2 n—1

k2a? )
(%) |z —Tz||* < n—ZHx—Ttz—i-ﬁZHx—zjHQ
=1

J
k2 —1 . 2 1= -
—1—7”2 Z HT%—TJQ:H _EZHT%:_T]%H
1<i<j<n—1 j=1
Observe that

g2 o k2—1 , 2
S e =Tl +=—= > [[T'%—Ta|
=1 1<i<j<n—1

2
— % <||a: — Ta:H2 + Hx — T2xH2 + - Ha: - T"fle2>

E2—1
n2

(I7e =72 + |72 = T2 + - [Tz = T

|| T2 — TP | + - + || T2 — T |

|2 - T )
k‘Q 2 2 112 n—1_.|2
§—2<||:U—T1:|| +H3:—T :L'H +---H:L"—T ZEH )
n

k2 -1

+— (k2 |z — Ta||* + &2 || — T236||2 o B o — T"*QQﬂH2
n

ko =Tzl + -+ |Jo — T3

+ 1) g — Ta?)
n—1 i
K2 k21 E2(n—i-1) _q 2
:;<n2+ 2 K2 71 )H.I—TJ.TH ,

which together with (x) gives desired inequality (6) . O
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Using only the triangle inequality and the fact that T' is k-lipschitzian we have

(7) Ha:—ijH <(Q+k+..+k)|z—Tz|
ijrl_l L

On the other hand, using the condition of (a,n)-rotativeness of 7' we can also
evaluate the expression Hx -T ”*le in a different manner. Namely,

(8) |z —T" 2| < |lo — T"2| + || Tz — T" ||
< (a+k"1)|x—Tz.
Now by (6) and (7) we obtain
(9) |z —Tz|| < L a2y Z/&J W1 : |z — Tx|?
~ n? = k-1
1 n—1 . ; 5
_ﬁZHT =T J:H ,
j=1
while by (6), (7) and (8) we get

-1 —j 2
B P R LI ) i — Tz|
Iz =T2|” < —5 |2k%a® + 2ak" ! + 2" + - lz = Tz]]
j=2

1 n—1 -
(10) —nZZ;HT”a:—TJxH :
p

We are now ready to formulate the main theorem of our paper, which is a gener-
alization of Theorem 2.

Theorem 3. Given an integer n > 2, let v} (a) be the solution of the equation

n—1 k‘ni] _1 2
2 2 23 _ .2
j=1
and additionally for n > 3 let 72 (a) be the solution of the equatz’on
(12) 2k%a? + 2ak" T + 2" 4 Z k% et S N =n®+1
k—1 ’

IfT:C—C, C CH, isa k—lzpschztzmn and (a,n)-rotative mapping such that
k < max (v (a),72 (a)), then T has fized points. In other words,

() o (@) 2 max (7, (@), 7 () 1) -

Proof. For n = 2 our claim follows from Theorem 2.
Given an integer n > 3, suppose that for ¢ € (0,1) and x € C,

n—
ZHT” T]:):H (1—¢) [Tz —x|.
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It then follows from (9) and (10) that

1 o (kT -1
|]Tz—z||2§§ Ka®+> kY (kl) —1+e||z—Tx|?
j=1

and
1 N A

1Tz — 2||* < = | 2k%a® + 20k + 2" + >~ k% () —1+el|||lz - Taz|?,
n

2 —
= k-1

where z = % (T:c +T%c 4+ T"a:) . Consider now the sequence defined as follows:
r1 = x and for n € N,

Tnp1 =T 'y, it Y| T - Tia|)? < (1—e) [Tz — 2,
T = 5 g Do if Y| T — Tie|)* > (1 —¢) [T — 2.
Then the sequence {z,} converges to a fixed point of T" provided

e\ 2
1, [k2a2+zg?;11 K (B2 —1+€} <1

or
i\ 2
5 [2k2a2 20k k2 SR (M) -y 5] <1.
Since € was arbitrarily chosen, the proof is complete. O

Unfortunately, inequality (%) does not give any estimate of v’ (a) for n > 6.
Indeed, one can check that only for n < 6 there exists b, € (0,n) such that
max (v, (a),72 (a)) > 1 for a € (0,b,) (b =2 and for n > 3, b, <n).

It follows from Theorem 3 that vi’ (0) > 1.3666, i (0) > 1.1962, ~i (0) >
1.0849 and ~& (0) > 1.0228. All these evaluations are slightly better than those
obtained by W. A. Kirk [6] in the general case of Banach space X. Indeed, it follows
from (2) that 43 (0) > 1.3452, ;X (0) > 1.065, v (0) > 1.0351 and & (0) > 1.022.

Theorem 3 allows us also to evaluate v (a) for some a slightly greater than
0. Using computer techniques one can sketch the lower boundaries of the sets
D, C (0,n) x (1,00) such that (a,vZ (a)) € Dp, n =2,...6. In the following figures
the thicker lines are the graphs of k = max (v, (a) ,72 (a)) .
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3. UNIFORMLY LIPSCHITZIAN ROTATIVE MAPPINGS.

Recall, that a mapping T : C — C is called uniformly k-lipschitzian if for all
m € Nand z,y € C,

[T = T™y[| < k= —yll-

If such a mapping is (a,2)-rotative, we have exactly the same situation as in the
general case of lipschitzian mappings. However, if we consider mappings which
are uniformly k-lipschitzian and (a,n)-rotative with n > 3, then, instead of the
inequality in the last part of the proof of Lemma 2, we get

2 o k2—1 , 2
S e =Tl +=—= > [T — T4
Jj=1 1<i<j<n—1

1(k2 k21
+

e e 1>> e = T

This evaluation and inequality () lead to the following
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Lemma 3. Let C' be a convex subset of a Hilbert space H and let T : C — C be
uniformly k-lipschitzian and (a,n)-rotative, n > 3. For x € C' put

:%(Ta:—i—TQx—i—---—&—T":U).

Then
2
o= T2l < 55 (@ + (1= 2) K — (n—3)) l}o — Tz
6 K — =Dk = (n—j—2)) ||z — TVz||”
(6') + 52 (=i =Dk —(n—j-2) |z~ Ta|
=2
n—1

a2
j=1

Since T is uniformly k-lipschitzian, we see that
(7" |z —T7z|| <1+ (G-1)k) |z —Tz|, j=1,.n—1.
Using additionally the condition of (a,n)-rotativeness of T we get also
(8 |z =T 'z|| < (a+k) ||z — Tz .
It follows from (6') and (7’) that
|z = Tz|]” < f; (@ + (n—2)k* — (n — 3)] ||z — Tz|

S (== DR — (== 2) 1+ (G~ k) [z — T

n2 4
Jj=2

1 n—1 '
-— > | T - 19
j=1

while using additionally (8') we get

(9) +

k2
2= T2 < n— [a2+ (n=2)k* = (n = 3) + (a + k)’| | - e

(10 Z n—j-1)k—(n-j-2)1+G-1)k?|z—Tz|

1 )
- L3 e
j=1
Consequently, we obtain an analogue of Theorem 3 for uniformly lipschitzian

mappings in a Hilbert space.

Theorem 4. Given an integer n > 3, let 7. (a) be the solution of the equation

k? (a® + (n —2) k* — (n — 3))
W Ry (== DR —(n—j—2) 1+ (=~ DR =n? +1,
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and let 52 (a) be the solution of the equation
% (a2+(n—2)k2—(n—3)+(a+k;)2)
HES I (== DR = (n—j—2) 1+ (i —1)k)*=n?+1.

IfT:C — C, C C H, is a uniformly k-lipschitzian and (a,n)-rotative mapping
such that k < max (3. (a),72 (a)) , then T has fized points.

If we define

7H (@) = inf{k: there is a closed and convex set C' C H and a fixed point free

(12)

uniformly k-lipschitzian (a,n)-rotative selfmapping of C'},

then, obviously, 77 (a) > ~vH (a) . Nevertheless, it turns out that Theorem 4, sim-
ilarly to Theorem 3, gives us an evaluation of 3 (a) only for n = 3,..6. It is
also surprising that max (3}, (a),52 (a)) > 1 if and only if max (v, (a) ,72 (a)) > 1,
which means that the lower boundaries of the sets D,, € (0,n) x (1,00) such that
(a, yH (a)) € D, lie above the line k = 1 for exactly the same intervals as the lower

boundaries of the sets D,, do (i.e. for a € <O, \/5) when n = 3, for a € <O, @)
when n = 4,5 and for a € <0, @) when n = 6).

However, it follows from Theorem 4 that 47 (0) > 1.5447, 1 (0) > 1.2418,
74 (0) > 1.1429 and 4 (0) > 1.0277; and these evaluations are better than those
obtained for 7 (0), n = 3,4,5,6, from Theorem 3.
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