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CONJUGATE POINTS FOR A CONSTRAINED NONLINEAR
PROGRAMMING PROBLEM

KAWASAKI HIDEFUMI

Abstract. Conjugate point is a global concept in calculus of variations, and is
a key factor of optimality conditions. In variational problems, the variable is not
a vector x in Rn but a function x(t). So a simple and natural question arises.
Is it possible to establish a conjugate points theory for a minimization problem:
minimize f(x) on x ∈ Rn? In [4], the author positively answered this question.
He introduced the Jacobi equation and conjugate points for it, and described
optimality conditions in terms of conjugate points. In this paper, we extend it
to a constrained nonlinear programming problem.

1. Introduction

In this section, we first review the classical conjugate points theory for the sim-
plest problem in calculus of variations in brief:

(SP ) Minimize
∫ T

0
f(t, x(t), ẋ(t))dt

subject to x(0) = A, x(T ) = B.

If x̄ is a weak minimum for (SP ), then it satisfies the Euler equation

d

dt
fẋ(t, x̄(t), ˙̄x(t)) = fx(t, x̄(t), ˙̄x(t))

and the Legendre condition fẋẋ(t, x̄(t), ˙̄x(t)) ≥ 0. Legendre attempted to prove
its inverse, that is, he expected that if a feasible solution x̄(t) satisfies the Euler
equation and the strengthened Legendre condition: fẋẋ(t, x̄(t), ˙̄x(t)) > 0, then x̄(t)
would be a weak minimum. However, his conjecture was false. Jacobi solved this
problem by introducing ”conjugate points” in 1837. For a feasible solution x̄(t) for
(SP ), conjugate points are defined via the Jacobi equation:

(1.1)
d

dt
{f̄ẋx(t)y(t) + f̄ẋẋ(t)ẏ(t)} = f̄xx(t)y(t) + f̄xẋ(t)ẏ(t).

where f̄ẋẋ(t) := fẋẋ(t, x̄(t), ˙̄x(t)), etc. A point c ∈ (0, T ] is said to be conjugate to
t = 0 if there exists a non-trivial solution y(t) of the Jacobi equation (1.1) on [0, c]
and y(0) = y(c) = 0. Then Jacobi proved the following result:
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Theorem 1.1. (Jacobi) If x̄(t) is a weak minimum for the simplest problem (SP )
and it satisfies the strengthened Legendre condition, then there is no point conjugate
to t = 0 on [0, T ). Conversely, if x̄(t) satisfies the Euler equation and the strength-
ened Legendre condition, and if there is no point conjugate to t = 0 on [0, T ], then
x̄(t) is a weak minimum.

Recently, conjugate point has been extended to complex extremal problems such
as optimal control problems and variational problems with state constraints, see e.g.
Kawasaki-Zeidan [5], Loewen-Zheng [6], Warga [8], Zeidan [9], and Zeidan-Zezza
[10]-[12]. The present paper is outside of this trend. We deal with a minimization
problem in a finite dimensional space:

(P ) Minimize f(x)
subject to gi(x) ≤ 0 i ∈ I := {1, . . . , `},

gi(x) = 0 i ∈ J := {` + 1, . . . , m},
x ∈ Rn,

where f : Rn → R and gi : Rn → R are assumed to be twice continuously dif-
ferentiable. It seems to the author that one reason why researchers have not paid
much attention to conjugate points for (P ) even in the unconstrained case lies in
the following elementary results on the unconstrained problem:

Theorem 1.2. If x̄ is a minimum for (P ), then it satisfies f ′(x̄) = 0 and f ′′(x̄) ≥ 0,
Conversely, if x̄ satisfies f ′(x̄) = 0 and f ′′(x̄) > 0, then it is a minimum for (P ),
where ”≥” and ”>” stand for non-negative definite and positive definite, respec-
tively.

Theorem 1.2 seems to assert that there is no room for conjugate points to play
a role in (P ). However, the author succeeded to establish a conjugate points the-
ory based on an insight of Gelfand and Fomin [2] for an unconstrained nonlinear
programming problem in [4]. The purpose of this paper is to extend it to the
constrained case.

In Section 2, we review the outline of [4]. Section 3 is the main part of this paper.
We define conjugate points for (P ), and describe optimality conditions in terms of
conjugate points. In Section 4, we give an example which is a finite-dimensional
version of the shortest path problem on the unit sphere.

2. Unconstrained Problem

In this section, we briefly review the conjugate points theory presented in [4],
where we dealt with

(P0) Minimize f(x), x ∈ Rn.

According to Sylvester’s criterion, an n×n-symmetric matrix A = (aij) is positive-
definite if and only if its descending principal minors |Ak|, (k = 1, . . . , n) are positive,
where

Ak :=




a11 · · · a1k
...

. . .
...

ak1 · · · akk


 .
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The following lemma shows that the determinant of any square matrix is expanded
w.r.t. the descending principal minors.

Lemma 2.1. ([4]) For any n× n-matrix A = (aij), its determinant is expanded as
follows:

(2.1) |A| =
n−1∑

k=0

∑
ρ

ε(ρ)ak+1ρ(k+1)ak+2ρ(k+2) · · · anρ(n)|Ak|

where |A0| := 1, ε(ρ) denotes the sign of ρ,and the summation is taken over all
permutations ρ on {k + 1, . . . , n} satisfying that there is no ` > k such that ρ is
closed on {` + 1, . . . , n}.
Example 2.1. When A is a tridiagonal matrix:

(2.2)




a1 b1

b1 a2
. . .

. . . . . . bn−1

bn−1 an


 ,

the expansion (2.1) reduces to

(2.3) |Ak| = ak|Ak−1| − b2
k−1|Ak−2|,

which coincides with (81) in [2, p.127].

Definition 2.1. ([4]) For any n×n-matrix A = (aij), we call the recursion relation
on y0, . . . , yn

(2.4) yk =
k−1∑

i=0

∑
ρ

ε(ρ)ai+1ρ(i+1)ai+2ρ(i+2) · · · akρ(k)yi, k = 1, . . . , n

the Jacobi equation for A. We say that k is conjugate to 1 if a solution {yi} of
the Jacobi equation with y0 > 0 changes the sign from positive to non-positive at k.
Namely,

(2.5) y0 > 0, y1 > 0, . . . , yk−1 > 0, and yk ≤ 0.

Readers may refer to [4] regarding the reason why we call the recursion relation
(2.4) the Jacobi equation.

Theorem 2.1. ([4]) For any n×n-symmetric matrix A, A > 0 if and only if there
is no point conjugate to 1.

Theorem 2.2. ([4]) A sufficient condition for an extremal x̄ to be a minimum for
(P0) is that there is no point conjugate to 1 concerning the Hesse matrix f ′′(x̄).

Next, we consider a necessary optimality condition for (P0). Since the descending
principal minors |A1|, . . . , |An| are not enough to characterize A ≥ 0, the situation
is slightly different from the sufficiency case.
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Definition 2.2. ([4]) Let A = (aij) be an n × n symmetric matrix, and let 1 ≤
i, j ≤ n be two distinct integers. Then we say that j is strictly conjugate to i if
there exist a permutation σ and 1 < k ≤ n such that σ(1) = i, σ(k) = j, and if a
solution {yi} of the Jacobi equation (2.4) for Aσ with y0 > 0 changes the sign from
nonnegative to negative at k, that is,

(2.6) y0 > 0, y1 ≥ 0, . . . , yk−1 ≥ 0, and yk < 0,

where Aσ denotes the matrix whose (i, j)-component is (σ(i), σ(j))-component of A.

Theorem 2.3. ([4]) Let A be a symmetric matrix. Then A ≥ 0 if and only if there
is no pair 1 ≤ i, j ≤ n of integers such that j is strictly conjugate to i.

Theorem 2.4. ([4]) A necessary condition for an extremal x̄ to be a minimum for
(P0) is that there is no pair 1 ≤ i, j ≤ n of integers such that j is strictly conjugate
to i concerning the Hesse matrix f ′′(x̄).

3. Constrained Problem

In this section, we extend the results in the previous section to the constrained
case.

Let x̄ be a feasible solution for (P ), and I(x̄) := {i ∈ I : gi(x̄) = 0}. We assume
that

(3.1) {g′i(x̄) : i ∈ I(x̄) ∪ J} are linearly independent.

Then, if x̄ is a minimum, there exists λ = (λ1, . . . , λm)T ∈ Rm such that

(3.2) L′(x̄) = 0

and

(3.3) λi ≥ 0, λigi(x̄) = 0 ∀i ∈ I,

where L(x) := f(x) +
∑m

i=1 λigi(x). Furthermore, it holds that
(3.4)

ξT L′′(x̄)ξ ≥ 0 ∀ξ ∈ Rn s.t.
{

g′i(x̄)ξ ≤ 0 ∀i ∈ I(x̄) ∩ {i : λi = 0}
g′i(x̄)ξ = 0 ∀i ∈ (I(x̄) ∩ {i : λi > 0}) ∪ J

Under the assumption of the strict complementarity:

(3.5) λi > 0 ∀i ∈ I(x̄),

the second-order condition (3.4) reduces to

(3.6) ξT L′′(x̄)ξ ≥ 0 ∀ξ ∈ Rn satisfying (g′i(x̄)ξ = 0 ∀i ∈ I(x̄) ∪ J).

Conversely, if there exists λ ∈ Rm such that (3.2), (3.5), and

(3.7) ξT L′′(x̄)ξ > 0 ∀ξ 6= 0 satisfying (g′i(x̄)ξ = 0 ∀i ∈ I(x̄) ∪ J),

then x̄ is a minimum, see Fiacco and McCormick[1].
Now, let k := |I(x̄) ∪ J | and G′ denote the k × n-matrix whose row vectors are

{g′i(x̄) : i ∈ I(x̄) ∪ J}. Then it follows from (3.1) that rankG′ = k, so that G′
can be divided as G′ = (B,N), where B is a k × k-nonsingular matrix and N a
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k × (n − k)-matrix. Similarly, we divide ξ ∈ Rn as ξT = (yT , zT ) ∈ Rk × Rn−k.
Then G′ξ = 0 is equivalent to y = −B−1Nz, so that

(3.8) ξT L′′(x̄)ξ = zT (−NT B−T , I)L′′(x̄)
( −B−1N

I

)
z.

Hence the following matrix is a key to describe optimality conditions in terms of
conjugate points.

(3.9) M := (−NT B−T , I)L′′(x̄)
( −B−1N

I

)

Indeed, conditions (3.6) and (3.7) are equivalent to M ≥ 0 and M > 0, respectively.
Therefore we get the following theorem.

Theorem 3.1. A sufficient condition for a feasible solution of (P ) be a minimum
is that there exists λ ∈ Rm such that (3.2), (3.5), and there is no point conjugate
to 1 concerning M defined by (3.9). Conversely, if x̄ is a minimum for (P ), then
there exists λ ∈ Rm such that (3.2), (3.3), and there is no pair 1 ≤ i, j ≤ n of
integers such that j is strictly conjugate to i concerning M .

4. Example

In this section, we present an example that can be regarded as a finite-dimensional
analogue to the classical shortest path problem on the unit sphere S. We compute
conjugate points for the former one.

Example 4.1. The original variational problem is finding a shortest path on S
joining A = (1, 0, 0) and B = (cos T, sinT, 0), where 0 < T < 2π is given. Its
finite-dimensional analogue is obtained by the following procedure:

1. For k = 1, . . . , n + 1, let Rk be the ring defined by {(cos kT
n+1 , y, z) ∈ S}.

2: Choose one point, say Xk, on each Rk for k = 1, 2, . . . n.
3: Minimize the length of the polygonal curve joining A,X1, . . . , Xn, and B.
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Figure 4.1

Then it is formulated as follows:

Min f(y1, . . . , yn, z1, . . . , zn)

:=
n∑

k=0

√
(yk+1 − yk)2 + (zk+1 − zk)2 + (cos(k + 1)∆t− cos k∆t)2

s.t. (y0, z0) = (0, 0), (yn+1, zn+1) = (sin T, 0)
gk(y1, . . . , yn, z1, . . . , zn) := y2

k + z2
k − sin2 k∆t = 0, k = 1, . . . , n,

where ∆t := T/(n + 1). Since the equatorial arc corresponds to

(ȳ, z̄) := (ȳ1, . . . , ȳn, z̄1, . . . , z̄n) = (sin ∆t, . . . , sinn∆t, 0, . . . , 0),

it can be easily seen that

(4.1) f ′(ȳ, z̄) = 2 sin
∆t

2
(sin∆t, . . . , sin n∆t, 0, . . . , 0) ∈ R2n

and

(4.2) g′(ȳ, z̄) = 2




sin∆t 0 · · · 0
sin 2∆t 0 · · · 0

. . .
...

...
sinn∆t 0 · · · 0
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Hence λk = − sin ∆t
2 , so that L(y, z) = f(y, z) − sin ∆t

2

∑n
k=1(y

2
k + z2

k − sin2 k∆t).
Furthermore, we may choose as B and N in (3.9)

B = 2




sin∆t
sin 2∆t

. . .
sinn∆t


 , N =




0 · · · 0
0 · · · 0
...

...
0 · · · 0


 ,

respectively. Thus

M = (−NT B−T , I)
(

Lyy Lyz

Lxx Lzz

)( −B−1N
I

)

= Lzz

=
1

2 sin ∆t
2




2c −1

−1 2c
. . .

. . . . . . −1
−1 2c


(4.3)

where c := cos ∆t. On the other hand, it is easily seen that

k





∣∣∣∣∣∣∣∣∣

2c −1

−1 2c
. . .

. . . . . . −1
−1 2c

∣∣∣∣∣∣∣∣∣
=

sin(k + 1)∆t

sin∆t
.

Since ∆t = T/(n + 1), we conclude that

(a) when T < π, there is no point conjugate to 1,
(b) when T ≥ π, the first number k satisfying (k + 1)/(n + 1) ≥ π/T is conjugate

to 1,

which matches the classical result. Additionally speaking, we gave in [4] another
finite-dimensional analogue to the same classical shortest problem. We treated it
as an unconstrained extremal problem by using the spherical coordinate. The key
matrix was

(4.4)
1√

2(1− c)




2c −1

−1 2c
. . .

. . . . . . −1
−1 2c


 ,

which is same with (4.3) up to constant. So we had the same conclusion.
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