Journal of Nonlinear and Convex Analysis Volume 1, Number 3, 2000, 271–286

ON THE TOPOLOGICAL STRUCTURE OF FIXED POINT SETS FOR ABSTRACT VOLTERRA OPERATORS ON FRÉCHET SPACES

RAVI P. AGARWAL AND DONAL O'REGAN

ABSTRACT. In this paper we show that the solution set for certain abstract Volterra equations is an R_{δ} set. Application of our results to nonlinear integral equations are also presented.

1. INTRODUCTION

In this paper we study the topological structure of the solution set for the equation

$$(1.1) y = F(y).$$

Here $F: E \to E$ is a nonlinear abstract Volterra operator with $E = C([0, \infty), \mathbf{R}^n)$ or $E = L^p_{loc}([0, \infty), \mathbf{R}^n)$ $(1 . Recall that an operator <math>F: C([0, \infty), \mathbf{R}^n) \to C([0, \infty), \mathbf{R}^n)$ is an abstract Volterra operator if

$$\forall \epsilon > 0, \ \forall x, y \in C([0,\infty), \mathbf{R}^n), \ \text{ if } \ x(t) = y(t) \ \forall t \in [0,\epsilon]$$

then $F(x)(t) = F(y)(t) \ \forall t \in [0,\epsilon].$

(When considering $E = L_{loc}^{p}([0,\infty), \mathbf{R}^{n})$, the relevant equalities are replaced by equalities almost everywhere.)

The solution set of the given equation (1.1) coincides with the set of all fixed points of F, i.e.

$$Fix(F) = \{x \in E : x = F(x)\}$$

We also recall that a set S in E is called an R_{δ} set if S is homeomorphic with a decreasing sequence of compact absolute retracts. We note that some general results relating to the structure of Fix(F) can be found in [1, 3, 4, 6]. In this paper by combining some of the ideas in [1, 3] together with a trick involving the Urysohn function [2] we are able to present new results which guarantee that Fix(F) is an R_{δ} set; in particular we are able to remove the strong compactness type assumption in [3].

2.
$$Fix(F)$$
 WHEN $E = C([0,\infty), \mathbf{R}^n)$

Recall $C([0,\infty), \mathbf{R}^n)$ is a Fréchet space with the topology given by the complete family of seminorms $\{p_m\}_{m\geq 1}$ (here $p_m(y) = \sup_{t\in[0,m]} |y(t)|$), or, equivalently, by the distance d defined by

$$d(x,y) = \sum_{m=1}^{\infty} \frac{1}{2^m} \frac{p_m(x-y)}{1+p_m(x-y)},$$

Copyright C Yokohama Publishers

²⁰⁰⁰ Mathematics Subject Classification. 45N05, 47H15.

Key words and phrases. Abstract Volterra equations, topological structure of the solution set, Urysohn function, strong compactness.

for $x, y \in C([0, \infty), \mathbf{R}^n)$.

In this section we consider an operator

F

$$: C([0,\infty), \mathbf{R}^n) \to C([0,\infty), \mathbf{R}^n).$$

Define the sequence of operators $\{F_n\}_n$,

$$F_n: C([0,\infty), \mathbf{R}^n) \to C([0,\infty), \mathbf{R}^n)$$

as follows:

(2.1)
$$F_n(x)(t) = F(x)(r_n(t)), \text{ for } x \in C([0,\infty), \mathbf{R}^n) \text{ and } t \ge 0,$$

where

(2.2)
$$r_n(t) = \begin{cases} 0, \text{ if } t \in [0, 1/n]; \\ t - \frac{1}{n}, \text{ if } t > 1/n. \end{cases}$$

The main results in Sections 2 and 3 rely on the following well known result from the literature [3].

Theorem 2.1. Let X be a closed set in a Fréchet space (E, d), and $F : X \to E$ a continuous compact operator. Assume there exists a sequence $\{U_n\}_n$ of closed convex sets in X such that

$$(2.3) \qquad \qquad \forall n \in \mathbf{N}, \ 0 \in U_n,$$

(2.4)
$$\lim_{n \to \infty} diam(U_n) = 0,$$

and there exists a sequence $\{F_n\}_n$ of operators $F_n: X \to E$, with

(2.5)
$$\forall n \in \mathbf{N}, \ \forall x \in X, \ F(x) - F_n(x) \in U_n$$

and

(2.6)
$$I - F_n$$
 is a homeomorphism of the set $(I - F_n)^{-1}(U_n)$ onto U_n

holding. Then $\{x \in X : x = Fx\}$ is an R_{δ} set.

Our first result concerns the case when $F : C([0, \infty), \mathbf{R}^n) \to C([0, \infty), \mathbf{R}^n)$ is a continuous, compact operator. We use Theorem 2.1 (with $X = E = C([0, \infty), \mathbf{R}^n)$ to show that Fix(F) is an R_{δ} set. The proof is based on ideas presented in [1, 3] (for completeness we provide the details).

Theorem 2.2. Let $F : C([0,\infty), \mathbf{R}^n) \to C([0,\infty), \mathbf{R}^n)$ be a continuous, compact map. Also assume that the following conditions hold:

(i) $\exists u_0 \in \mathbf{R}^n$ with $F(x)(0) = u_0$, for all $x \in C([0,\infty), \mathbf{R}^n)$; (ii) $\forall \epsilon > 0, \forall x, y \in C([0,\infty), \mathbf{R}^n)$, if $x(t) = y(t), \forall t \in [0,\epsilon]$, then F(x)(t) = F(y)(t), $\forall t \in [0,\epsilon]$ (i.e. F is an abstract Volterra operator);

Then Fix(F) is an R_{δ} set.

PROOF: Let $E = X = C([0, \infty), \mathbb{R}^n)$. Consider the sequence $\{F_n\}_n$ defined by (2.1)-(2.2). We show that there exists a sequence $\{U_n\}_n$ of closed convex sets in E and there exists a subsequence $\{G_n\}_n$ of $\{F_n\}_n$ such that $\{U_n\}_n$ and $\{G_n\}_n$ satisfy conditions (2.3) - (2.6) in Theorem 2.1.

First, we show that $\forall n, I - F_n$ is a homeomorphism from E onto E.

The continuity of $I - F_n$ follows immediately from the continuity of F and the fact that

$$p_m(F_n(x) - F_n(y)) = \sup\{|F_n(x)(t) - F_n(y)(t)|, t \in [0, m]\} \\ = \sup\{|F(x)(t) - F(y)(t)|, t \in [0, m - 1/n]\} \\ \leq \sup\{|F(x)(t) - F(y)(t)|, t \in [0, m]\} \\ = p_m(F(x) - F(y)).$$

To see that $I - F_n$ is one-to-one, let $x, y \in E$ be such that $(I - F_n)(x) = (I - F_n)(y)$. Then, for $t \in [0, 1/n]$,

$$x(t) - y(t) = F(x)(r_n(t)) - F(y)(r_n(t)) = F(x)(0) - F(y)(0) = u_0 - u_0 = 0.$$

If $t \in [1/n, 2/n]$, then $t - \frac{1}{n} \in [0, 1/n]$ and

$$x(t) - y(t) = F(x)\left(t - \frac{1}{n}\right) - F(y)\left(t - \frac{1}{n}\right) = F(x)(s) - F(y)(s),$$

with $s \in [0, 1/n]$, therefore the difference is 0, because (ii) holds. Proceed by induction. Assume we know that x(t) - y(t) = 0 for $t \in [0, (k-1)/n]$, for some positive integer k. Since (ii) holds, this means that F(x)(t) - F(y)(t) = 0 for $t \in [0, (k-1)/n]$. Then, for $t \in [(k-1)/n, k/n]$,

$$x(t) - y(t) = F(x)\left(t - \frac{1}{n}\right) - F(y)\left(t - \frac{1}{n}\right) = F(x)(s) - F(y)(s),$$

with $s \in [0, (k-1)/n]$, so the difference is 0, and $I - F_n$ is one-to-one.

To see that $(I - F_n)^{-1}$ is continuous, let $\{x_j\}_j$ be a sequence in E. Let $x \in E$ be such that

(2.7)
$$\lim_{j \to \infty} ((x_j - F_n(x_j)) - (x - F_n(x))) = 0 \text{ in } E,$$

which implies that

(2.8)
$$\lim_{j \to \infty} \left((x_j(t) - F_n(x_j)(t)) - (x(t) - F_n(x)(t)) \right) = 0,$$

uniformly for t in every compact in $[0, \infty)$. We show that

$$\lim_{j \to \infty} (x_j - x) = 0 \text{ in } E.$$

For $t \in [0, 1/n]$, $F_n(x_j)(t) = F(x)(t) = u_0$, so

$$(x_j(t) - F_n(x_j)(t)) - (x(t) - F_n(x)(t)) = x_j(t) - x(t),$$

and since (2.8) holds uniformly for $t \in [0, 1/n]$, we have

(2.9)
$$\limsup_{j \to \infty} \{ |x_j(t) - x(t)| : t \in [0, 1/n] \} = 0.$$

Now if \overline{x} is the extension of x defined by

$$\overline{x} = \begin{cases} x(t) \text{ for } t \in [0, 1/n] \\ x\left(\frac{1}{n}\right) \text{ for } t > \frac{1}{n} \end{cases}$$

and \overline{x}_j is the extension of x_j defined similarly, then, by (2.9) and the continuity of F, we have

(2.10)
$$\lim_{j \to \infty} (F(\overline{x}_j) - F(\overline{x})) = 0 \text{ in } E.$$

In particular, for $t \in [1/n, 2/n]$, (2.10) and the definition of F_n give

(2.11)
$$\limsup_{j \to \infty} \{ |F_n(x_j)(t) - F_n(x)(t)| : t \in [1/n, 2/n] \} \\= \limsup_{j \to \infty} \{ |F(\overline{x}_j)(t) - F(\overline{x})(t)| : t \in [0, 1/n] \} = 0.$$

Now (2.8) and (2.11) imply

(2.12)
$$\limsup_{j \to \infty} \{ |x_j(t) - x(t)| : t \in [1/n, 2/n] \} = 0.$$

By induction, assume that for some k,

(2.13)
$$\limsup_{j \to \infty} \{ |x_j(t) - x(t)| : t \in [(k-1)/n, k/n] \} = 0$$

Repeating the extension argument above, this also implies

(2.14)
$$\limsup_{j \to \infty} \{ |F_n(x_j)(t) - F_n(x)(t)| : t \in [k/n, (k+1)/n] \} = 0.$$

Now (2.8) and (2.14) imply

$$\limsup_{j \to \infty} \{ |x_j(t) - x(t)| : t \in [k/n, (k+1)/n] \} = 0.$$

Thus, we showed by induction that

$$\limsup_{j\to\infty}\{|x_j(t)-x(t)|:t\in[(k-1)/n,k/n]\}=0,\forall k,$$

which implies that $\lim_{j\to\infty} p_m(x_j - x) = 0, \forall m$, or $\lim_{j\to\infty} (x_j - x) = 0$ in E. To prove the surjectivity of $I - F_n$ let $z \in E$ and consider the equation

$$(2.15) x = F_n(x) + z.$$

Let $x \in E$ be defined by induction as follows:

(2.16)
$$x(t) = u_0 + z(t), \text{ for } t \in [0, 1/n].$$

This x is continuous on [0, 1/n] because z is continuous on $[0, \infty)$ (by "x is continuous on [0, 1/n]" we mean that x is continuous on (0, 1/n), it is continuous at 0 from the right, and it is continuous at 1/n from the left). Now let x_1 be a continuous extension of x from [0, 1/n] to $[0, \infty)$, given by Tietze's theorem. Let

(2.17)
$$x(t) = F(x)\left(t - \frac{1}{n}\right) + z(t), \text{ for } t \in (1/n, 2/n].$$

Since $t - \frac{1}{n} \in (0, 1/n]$, we have $F(x)\left(t - \frac{1}{n}\right) = F(x_1)\left(t - \frac{1}{n}\right)$, and therefore x is continuous on (1/n, 2/n], because $F(x_1)$ and z are continuous on $[0, \infty)$. To see

that x is also continuous at 1/n, we have

$$\lim_{t \to 1/n, t > 1/n} x(t) = \lim_{t \to 1/n, t > 1/n} \left(F(x_1) \left(t - \frac{1}{n} \right) + z(t) \right)$$
$$= F(x_1)(0) + z \left(\frac{1}{n} \right)$$
$$= F(x)(0) + z \left(\frac{1}{n} \right)$$
$$= u_0 + z \left(\frac{1}{n} \right)$$

from the continuity of $F(x_1)$ and z, and

$$\lim_{t \to 1/n, t < 1/n} x(t) = u_0 + z\left(\frac{1}{n}\right)$$

from (2.16). Now x is constructed on [0, 2/n] and is continuous on [0, 2/n]. By induction, assume x is defined and continuous on [0, k/n]. Let x_k be a continuous extension of x from [0, k/n] to $[0, \infty)$, given by Tietze's theorem. Define

(2.18)
$$x(t) = F(x)\left(t - \frac{1}{n}\right) + z(t), \text{ for } t \in (k/n, (k+1)/n],$$

Since $t - \frac{1}{n} \in (0, k/n]$, we have $F(x)\left(t - \frac{1}{n}\right) = F(x_k)\left(t - \frac{1}{n}\right)$, and therefore x is continuous on (k/n, (k+1)/n], because $F(x_k)$ and z are continuous on $[0, \infty)$. To see that x is also continuous at k/n, we have

$$\lim_{t \to k/n, t > k/n} x(t) = \lim_{t \to k/n, t > k/n} \left(F(x_k) \left(t - \frac{1}{n} \right) + z(t) \right)$$
$$= F(x_k) \left(\frac{k-1}{n} \right) + z \left(\frac{k}{n} \right)$$

from the continuity of $F(x_k)$ and z, and

$$\lim_{t \to k/n, t < k/n} x(t) = F(x_k) \left(\frac{k-1}{n}\right) + z \left(\frac{k}{n}\right)$$

from (2.18). Now this x, constructed inductively, satisfies (2.18) and is continuous on $[0, \infty)$.

Now since E is a Fréchet space there exists a sequence $\{U_n\}_n$ of closed, convex neighborhoods of 0 with

$$U_n \subseteq \overline{B}\left(0, \frac{1}{n}\right);$$

here $\overline{B}(0,\frac{1}{n})$ is the closed ball with center 0 and radius $\frac{1}{n}$. Note

$$diam U_n \leq \frac{2}{n}$$

Also since U_n is a neighborhood of 0,

(2.19)
$$\forall n \in \mathbf{N}, \ \exists \epsilon_n > 0 \ \text{with} \ \overline{B}(0, \epsilon_n) \subseteq U_n$$

and $\lim_{n\to\infty} \epsilon_n = 0$ (Without loss of generality assume $\epsilon_{n+1} \leq \epsilon_n$ for all $n \in \mathbf{N}$).

We now show that F_n converges to F in E, uniformly for $x \in E$. Since F is compact, F(E) is relatively compact in $C([0,\infty), \mathbf{R}^n)$. Then F(E) is relatively compact in $C([0,m], \mathbf{R}^n)$, $\forall m$. By the Arzelà-Ascoli theorem, F(E) is bounded and equicontinuous in $C([0,m], \mathbf{R}^n)$, $\forall m$, i.e. $\forall m, \exists M_m > 0$ such that $p_m(F(x)) \leq M_m, \forall x \in E$, and $\forall \epsilon > 0, \exists \delta_m > 0$ such that if $t, s \in [0,m]$ with $|t-s| < \delta_m$, then

(2.20)
$$|F(x)(t) - F(x)(s)| < \epsilon, \forall x \in E.$$

Let $\epsilon > 0$ and let *n* be sufficiently large, such that $\frac{1}{n} < \delta_m$. We have

(2.21)
$$F_n(x)(t) - F(x)(t) = \begin{cases} F(x)(0) - F(x)(t), \text{ if } t \in [0, 1/n] \\ F(x)\left(t - \frac{1}{n}\right) - F(x)(t), \text{ if } t \ge \frac{1}{n}, \end{cases}$$

therefore $|F_n(x)(t) - F(x)(t)| = |F(x)(t) - F(x)(s)|$, where

$$s = \begin{cases} 0, \text{ if } t \in [0, 1/n) \\ t - \frac{1}{n}, \text{ if } t \in [1/n, \infty) \end{cases}$$

so $|t-s| < \frac{1}{n} < \delta_m$. Then (2.20) and (2.21) show that for n sufficiently large, we have

$$|F_n(x)(t) - F(x)(t)| < \epsilon, \forall t \in [0, m], \forall x \in E, \forall m,$$

or

(2.22)
$$p_m(F_n(x) - F(x)) < \epsilon, \forall x \in E, \forall m$$

Thus F_n converges to F in $C([0,\infty), \mathbf{R}^n)$, uniformly for $x \in E$. Consequently

(2.23)
$$\lim_{n \to \infty} \sup \{ d(F_n(x), F(x)) : x \in E \} = 0.$$

To finish the proof, we show that there exists a subsequence $\{G_n\}_n$ of $\{F_n\}_n$, such that for all n

$$(2.24) G_n(x) - F(x) \in U_n, \forall x \in E,$$

since in that case $\{U_n\}_n$ and $\{G_n\}_n$ satisfy the hypotheses in Theorem 2.1, and so Fix(F) is an R_{δ} set. For this, apply (2.23) to construct $\{G_n\}_n$ inductively. There exists n_1 such that for $n \ge n_1$

$$d(F_n(x), F(x)) < \epsilon_1, \forall x \in E.$$

There exists $n_2 > n_1$ such that for $n \ge n_2$

$$d(F_n(x), F(x)) < \epsilon_2, \forall x \in E.$$

By induction, there exists $n_k > n_{k-1}$ such that for $n \ge n_k$

$$d(F_n(x), F(x)) < \epsilon_k, \forall x \in E.$$

Now define $G_k := F_{n_k}, \forall k$, and $\{G_k\}_k$ is such that for all k

$$d(G_k(x), F(x)) < \epsilon_k, \forall x \in E.$$

This together with (2.19) guarantees that (2.24) holds. \Box

We remark that in application

$$F: C([0,\infty), \mathbf{R}^n) \to C([0,\infty), \mathbf{R}^n)$$

is usually continuous, and completely continuous but it is rarely compact. As a result we would like to relax the compactness assumption on F in Theorem 2.2. In applications we usually encounter the nonlinear operator equation

(2.25)
$$y(t) = L Fy(t) \text{ for } t \in [0,\infty);$$

here L is an affine map. We will assume the following conditions are satisfied:

(2.26)
$$LF: C([0,\infty), \mathbf{R}^n) \to C([0,\infty), \mathbf{R}^n)$$

(2.27)
$$\exists u_0 \in \mathbf{R}^n \text{ with } LF(x)(0) = u_0, \text{ for all } x \in C([0,\infty), \mathbf{R}^n)$$

(2.28)
$$\begin{cases} \forall \epsilon > 0, \ \forall x, y \in C([0, \infty), \mathbf{R}^n), & \text{if } x(t) = y(t) \ \forall t \in [0, \epsilon] \\ \text{then } LF(x)(t) = LF(y)(t) \ \forall t \in [0, \epsilon] \end{cases}$$

and

(2.29)
$$\begin{cases} \exists \text{ a continuous function } \phi : [0, \infty) \to [0, \infty) \\ \text{such that } |y(t)| \le \phi(t) \text{ for } t \in [0, \infty), \text{ for} \\ \text{all solutions } y \in C([0, \infty), \mathbf{R}^n) \text{ to } (2.25). \end{cases}$$

Let $\epsilon > 0$ be given and let $\tau_{\epsilon} : \mathbf{R}^n \to [0, 1]$ be the Urysohn function for

$$(\overline{B}(0,1), \mathbf{R}^n \setminus B(0,1+\epsilon))$$

such that

$$\tau_{\epsilon}(x) = 1$$
 if $|x| \le 1$ and $\tau_{\epsilon}(x) = 0$ if $|x| \ge 1 + \epsilon$.

Let the operator F_{ϵ} be defined by

$$F_{\epsilon}(y)(t) = \tau_{\epsilon} \left(\frac{y(t)}{\phi(t)+1}\right) F(y)(t); \text{ here } y \in C([0,\infty), \mathbf{R}^n).$$

Consider the operator equation

(2.30)
$$y(t) = L F_{\epsilon} y(t) \text{ for } t \in [0, \infty).$$

Let S_F denote the solution set of (2.25) and $S_{F_{\epsilon}}$ the solution set of (2.30). Our next result will be particularly useful in applications, as we will see in Section 4.

Theorem 2.3. Suppose (2.26)–(2.29) hold. Let $\epsilon > 0$ be given and assume the following conditions are satisfied:

(2.31)
$$\begin{cases} |w(t)| \le \phi(t) \text{ for } t \in [0,\infty), \text{ for any possible} \\ \text{solution } w \in C([0,\infty), \mathbf{R}^n) \text{ to } (2.30) \end{cases}$$

and

(2.32)
$$LF_{\epsilon}: C([0,\infty), \mathbf{R}^n) \to C([0,\infty), \mathbf{R}^n)$$
 is continuous and compact

Then S_F is an R_{δ} set.

Remark. If, for example,

$$\begin{cases} L: C([0,\infty), \mathbf{R}^n) \to C([0,\infty), \mathbf{R}^n) & \text{is completely continuous} \\ \text{and } F & \text{maps bounded sets in } C([0,\infty), \mathbf{R}^n) & \text{into} \\ \text{bounded sets in } C([0,\infty), \mathbf{R}^n) \end{cases}$$

then it is clear that

$$LF_{\epsilon}: C([0,\infty), \mathbf{R}^n) \to C([0,\infty), \mathbf{R}^n)$$
 is compact.

PROOF: Notice (2.29) and (2.31) guarantee that $S_F = S_{F_{\epsilon}}$; to see this notice if $y \in S_{F_{\epsilon}}$ then (2.31) implies that $|y(t)| \leq \phi(t)$ for $t \in [0, \infty)$, so

$$\tau_{\epsilon}\left(\frac{y(t)}{\phi(t)+1}\right) = 1 \text{ since } \left|\frac{y(t)}{\phi(t)+1}\right| \le 1,$$

and so we have $y(t) = L F_{\epsilon} y(t) = L F y(t)$ i.e. $y \in S_F$. Next notice Theorem 2.2 guarantees that $S_{F_{\epsilon}}$ is an R_{δ} set. \Box

3.
$$Fix(F)$$
 WHEN $E = L_{loc}^p([0,\infty), \mathbf{R}^n), 1$

Recall $L_{loc}^{p}([0,\infty), \mathbf{R}^{n})$ is a Fréchet space with the topology given by the complete family of seminorms $\{p_{m}\}_{m\geq 1}$ (here $p_{m}(y) = \left(\int_{0}^{m} |y(t)|^{p} dt\right)^{\frac{1}{p}}$), or, equivalently, by the distance d defined by

$$d(x,y) = \sum_{m=1}^{\infty} \frac{1}{2^m} \frac{p_m(x-y)}{1+p_m(x-y)},$$

for $x, y \in L^p_{loc}([0,\infty), \mathbf{R}^n)$.

In this section we consider an operator

 $F: L^p_{loc}([0,\infty), \mathbf{R}^n) \to L^p_{loc}([0,\infty), \mathbf{R}^n).$

Define the sequence of operators $\{F_n\}_n$,

$$F_n: L^p_{loc}([0,\infty), \mathbf{R}^n) \to L^p_{loc}([0,\infty), \mathbf{R}^n),$$

as follows:

(3.1)
$$F_n(x)(t) = F(x)(r_n(t)), \text{ for } x \in L^p_{loc}([0,\infty), \mathbf{R}^n) \text{ and } t \ge 0,$$

where

(3.2)
$$r_n(t) = \begin{cases} 0, \text{ if } t \in [0, 1/n]; \\ t - \frac{1}{n}, \text{ if } t > 1/n. \end{cases}$$

Theorem 3.1. Let $F: L^p_{loc}([0,\infty), \mathbf{R}^n) \to L^p_{loc}([0,\infty), \mathbf{R}^n)$ be a continuous, compact map. Also assume that the following conditions hold:

(i) $\exists u_0 \in \mathbf{R}^n$ with $F(x)(0) = u_0$, for all $x \in L^p_{loc}([0,\infty), \mathbf{R}^n)$; (ii) $\forall \epsilon > 0, \forall x, y \in L^p_{loc}([0,\infty), \mathbf{R}^n)$, if x(t) = y(t) for a.e. $t \in [0,\epsilon]$, then F(x)(t) = F(y)(t), for a.e. $t \in [0,\epsilon]$ (i.e. F is an abstract Volterra operator);

Then Fix(F) is an R_{δ} set.

PROOF: Let $E = X = L_{loc}^p([0,\infty), \mathbb{R}^n)$. Consider the sequence $\{F_n\}_n$ defined by (3.1) - (3.2). We show that there exists a sequence $\{U_n\}_n$ of closed convex sets in E and there exists a subsequence $\{G_n\}_n$ of $\{F_n\}_n$ such that $\{U_n\}_n$ and $\{G_n\}_n$ satisfy conditions (2.3) - (2.6) in Theorem 2.1.

First, we show that $\forall n, I - F_n$ is a homeomorphism from E onto E. To see that $I - F_n$ is continuous, let $\epsilon > 0$. Since F is continuous, $\exists \delta > 0$ such that if $x, y \in E$

with $p_m(x-y) < \delta$, then $p_m(F(x) - F(y)) < \epsilon$, $\forall m$. Then, if $x, y \in E$ are such that $p_m(x-y) < \delta$, $\forall m$, we also have

$$p_m^p(F_n(x) - F_n(y)) = \int_0^m |F_n(x)(t) - F_n(y)(t)|^p dt$$

$$= \int_{1/n}^m |F_n(x)(t) - F_n(y)(t)|^p dt$$

$$= \int_{1/n}^m \left|F(x)\left(t - \frac{1}{n}\right) - F(y)\left(t - \frac{1}{n}\right)\right|^p dt$$

$$= \int_0^{m-1/n} |F(x)(t) - F(y)(t)|^p dt$$

$$\leq \int_0^m |F(x)(t) - F(y)(t)|^p dt$$

$$= p_m^p(F(x) - F(y)) < \epsilon^p, \forall m.$$

Therefore, F_n is continuous, and thus $I - F_n$ is continuous.

The fact that $I - F_n$ is one-to-one follows exactly like in the proof of Theorem 2.2.

To see that $(I - F_n)^{-1}$ is continuous, let $\{x_j\}_j$ be a sequence in E. Let $x \in E$ be such that

(3.3)
$$\lim_{j \to \infty} p_m((x_j - F_n(x_j)) - (x - F_n(x))) = 0, \forall m.$$

For $t \in [0, 1/n]$ we have $F_n(x_j)(t) = F(x_j)(0) = u_0 = F_n(x)(t)$, so (3.3) implies that $\lim_{j \to \infty} p_m((x_j - x)\chi_{[0,1/n]}) = 0, \forall m,$

where $\chi_{[0,1/n]}$ is the characteristic function of the interval [0, 1/n]. Since F is continuous, it also follows that

(3.4)
$$\lim_{j \to \infty} p_m((F(x_j) - F(x))\chi_{[0,1/n]}) = 0, \forall m.$$

For $t \in [1/n, 2/n]$, we have $t - \frac{1}{n} \in [0, 1/n]$ and $F_n(x_j)(t) = F(x_j)(t - \frac{1}{n})$, $F_n(x)(t) = F(x)(t - \frac{1}{n})$, therefore (3.3) and (3.4) give $\lim_{x \to \infty} n_m((F(x_j) - F(x))\chi_{[0,0](n)}) = 0 \quad \forall m$

$$\lim_{j \to \infty} p_m((F(x_j) - F(x))\chi_{[0,2/n]}) = 0, \forall m$$

and therefore

$$\lim_{j \to \infty} p_m((x_j - x)\chi_{[0,2/n]}) = 0, \forall m.$$

Assume by induction that for some positive integer k we have

(3.5)
$$\lim_{j \to \infty} p_m((x_j - x)\chi_{[0,(k-1)/n]}) = 0, \forall m.$$

By the continuity of F, we also have

(3.6)
$$\lim_{j \to \infty} p_m((F(x_j) - F(x))\chi_{[0,(k-1)/n]}) = 0, \forall m.$$

Then, as above, (3.5) and (3.6) imply that

(3.7)
$$\lim_{j \to \infty} p_m((x_j - x)\chi_{[0,k/n]}) = 0, \forall m.$$

Therefore, (3.7) is true for all k, which shows that

$$\lim_{j \to \infty} p_m(x_j - x) = 0, \forall m,$$

and therefore $(I - F_n)^{-1}$ is continuous.

To prove the surjectivity of $I - F_n$ let $z \in E$ and consider the equation

$$(3.8) x = F_n(x) + z.$$

Let $x \in E$ be defined by induction as follows:

$$x(t) = u_0 + z(t), \text{ for } t \in [0, 1/n),$$
$$x(t) = F(x)\left(t - \frac{1}{n}\right) + z(t), \text{ for } t \in [1/n, 2/n).$$

Given x(t) for $t \in [(k-1)/n, k/n)$, define

$$x(t) = F(x)\left(t - \frac{1}{n}\right) + z(t), \text{ for } t \in [k/n, (k+1)/n).$$

Then this x is in E and it satisfies the equation $x = F_n(x) + z$.

Construct $\{U_n\}_n$ as in Theorem 2.2, and the proof of Theorem 3.1 is complete if we show that F_n converges to F uniformly for $x \in E$. Since F is compact, F(E)is relatively compact in $L^p_{loc}([0,\infty), \mathbf{R}^n)$, which implies that F(E) is also relatively compact in $L^p([0,m], \mathbf{R}^n)$, $\forall m$. Therefore, $\forall m, \exists M_m > 0$ such that

$$(3.9) p_m(F(x)) \le M_m, \forall x \in E$$

and

(3.10)
$$\int_0^m |F(x)(t+\tau) - F(x)(t)|^p dt \to 0 \text{ as } \tau \to 0, \text{ uniformly for } x \in E.$$

Thus we have

$$p_m^p(F_n(x) - F(x)) = \int_0^m |F_n(x)(t) - F(x)(t)|^p dt$$

=
$$\int_0^{1/n} |F(x)(0) - F(x)(t)|^p dt$$

+
$$\int_{1/n}^m \left| F(x) \left(t - \frac{1}{n} \right) - F(x)(t) \right|^p dt.$$

The first term is bounded above by $\frac{1}{n}(|u_0|^p + M_m^p)$, therefore its limit is 0 as $n \to \infty$, uniformly for $x \in E$. The second term has the limit 0 as $n \to \infty$, uniformly for $x \in E$, since (3.10) holds. Therefore,

$$\lim_{n \to \infty} p_m(F_n(x) - F(x)) = 0, \text{ uniformly for } x \in E, \forall m,$$

and the proof is complete. \Box

Next consider the operator equation

(3.11) $y(t) = L F y(t) \text{ for a.e. } t \in [0, \infty);$

here L is an affine map. We will assume the following conditions are satisfied:

(3.12) $LF: L^p_{loc}([0,\infty), \mathbf{R}^n) \to L^p_{loc}([0,\infty), \mathbf{R}^n)$

ON THE TOPOLOGICAL STRUCTURE OF FIXED POINT SETS

(3.13)
$$\exists u_0 \in \mathbf{R}^n \text{ with } LF(x)(0) = u_0, \text{ for all } x \in L^p_{loc}([0,\infty),\mathbf{R}^n)$$

(3.14)
$$\begin{cases} \forall \epsilon > 0, \ \forall x, y \in L^p_{loc}([0,\infty), \mathbf{R}^n), & \text{if } x(t) = y(t) \text{ for a.e.} \\ t \in [0,\epsilon] \text{ then } LF(x)(t) = LF(y)(t) \text{ for a.e. } t \in [0,\epsilon] \end{cases}$$

and

(3.15)
$$\begin{cases} \exists \text{ a continuous function } \phi : [0, \infty) \to [0, \infty) \\ \text{such that } \int_0^t |y(s)|^p \, ds \le \phi(t) \text{ for } t \in [0, \infty), \text{ for} \\ \text{all solutions } y \in L^p_{loc}([0, \infty), \mathbf{R}^n) \text{ to } (3.11). \end{cases}$$

Let $\epsilon > 0$ be given and let $\tau_{\epsilon} : \mathbf{R}^n \to [0, 1]$ be as in Section 2. Let the operator F_{ϵ} be defined by

$$F_{\epsilon}(y)(t) = \tau_{\epsilon}\left(\frac{\int_{0}^{t} |y(s)|^{p} ds}{\phi(t) + 1}\right) F(y)(t); \text{ here } y \in L^{p}_{loc}([0, \infty), \mathbf{R}^{n}).$$

Consider the operator equation

(3.16)
$$y(t) = L F_{\epsilon} y(t) \text{ for a.e. } t \in [0, \infty).$$

Let S_F denote the solution set of (3.11) and $S_{F_{\epsilon}}$ the solution set of (3.16).

Theorem 3.2. Suppose (3.12)–(3.15) hold. Let $\epsilon > 0$ be given and assume the following conditions are satisfied:

(3.17)
$$\begin{cases} \int_0^t |w(s)|^p \, ds \le \phi(t) \quad \text{for } t \in [0,\infty), \quad \text{for any possible} \\ \text{solution } w \in L^p_{loc}([0,\infty), \mathbf{R}^n) \quad \text{to } (3.16) \end{cases}$$

and

(3.18)
$$\begin{cases} L F_{\epsilon} : L^{p}_{loc}([0,\infty), \mathbf{R}^{n}) \to L^{p}_{loc}([0,\infty), \mathbf{R}^{n}) \\ is \ continuous \ and \ compact. \end{cases}$$

Then S_F is an R_{δ} set.

PROOF: Notice (3.15) and (3.17) guarantee that $S_F = S_{F_{\epsilon}}$; to see this notice if $y \in S_{F_{\epsilon}}$ then $\int_0^t |y(s)|^p ds \leq \phi(t)$ for $t \in [0, \infty)$, so

$$\tau_{\epsilon} \left(\frac{\int_0^t |y(s)|^p \, ds}{\phi(t) + 1} \right) = 1,$$

and so $y \in S_F$. Theorem 3.1 guarantees that $S_{F_{\epsilon}}$ is an R_{δ} set. \Box

4. Applications

In this section we will use the theorems in Section 2 to establish existence results for the integral equation

(4.1)
$$y(t) = h(t) + \int_0^t k(t,s) g(s,y(s)) ds \text{ for } t \in [0,\infty).$$

Throughout this section we assume p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. We begin by presenting a result for (4.1) based on Theorem 2.2.

Theorem 4.1. Assume that $g : [0, \infty) \times \mathbf{R} \to \mathbf{R}$ is a locally integrably bounded L^q -Carathéodory function, i.e. for each compact subinterval I of $[0, \infty)$, the following three conditions hold:

(4.2) the map
$$t \mapsto g(t, y)$$
 is measurable for all $y \in \mathbf{R}$,

(4.3) the map
$$y \mapsto g(t, y)$$
 is continuous for almost all $t \in I$,

(4.4)
$$\begin{cases} \text{ there exists } \mu \in L^q(I, \mathbf{R}) \text{ such that} \\ |g(t, y)| \le \mu(t), \text{ for almost all } t \in I \end{cases}$$

Suppose also that

$$(4.5) h \in C([0,\infty), \mathbf{R}),$$

(4.6)
$$k_t(s) = k(t,s) \in L^p([0,t], \mathbf{R}), \forall t \in [0,m], \forall m \in \mathbf{N},$$

and

(4.7)
$$\begin{cases} \forall t, t' \in [0, \infty), \\ \int_0^{t^*} |k_t(s) - k_{t'}(s)|^p ds \to 0 \text{ as } t \to t', \\ where \ t^* = \min\{t, t'\} \end{cases}$$

hold. Then the solution set of equation (4.1) is an R_{δ} set.

PROOF: Let $E = C([0, \infty), \mathbf{R})$, and let $F : E \to E$ be defined by

$$F(y)(t) = h(t) + \int_0^t k(t,s) g(s,y(s)) ds \text{ for } t \in [0,\infty).$$

From [5], conditions (4.2) - (4.7) guarantee that F is well defined, F is a Volterra operator such that $F(y)(0) = h(0), \forall y \in C([0,\infty), \mathbf{R})$, and the restriction $F : C([0,m], \mathbf{R}) \to C([0,m], \mathbf{R})$ is continuous. In fact, $F : E \to E$ is continuous, because if $\{y_j\}_{j \in \mathbf{N}}$ is a sequence in E and $y_0 \in C([0,\infty), \mathbf{R})$ is such that $y_j \to y_0$ in $C([0,\infty), \mathbf{R})$ as $j \to \infty$, then $y_j \to y_0$ in $C([0,m], \mathbf{R})$ as $j \to \infty$, for all m. Since $F : C([0,m], \mathbf{R}) \to C([0,m], \mathbf{R})$ is continuous, we then have that $F(y_j) \to F(y_0)$ in $C([0,m], \mathbf{R})$ as $j \to \infty$, for all m. This implies that $F(y_j) \to F(y_0)$ in $C([0,\infty), \mathbf{R})$ as $j \to \infty$.

We next show $F : E \to E$ is compact. Let $\{y_j\}_{j \in \mathbb{N}}$ be a sequence in E and consider the sequence $\{F(y_j)\}_{j \in \mathbb{N}}$ in F(E). The restriction $F : C([0,m], \mathbb{R}) \to C([0,m], \mathbb{R})$, is compact, so $F(E|_{[0,m]})$ is relatively compact in $C([0,m], \mathbb{R})$; here $E|_{[0,m]} = \{y|_{[0,m]} : y \in E\}$. For m = 1, there exists a subsequence N_1 of \mathbb{N} , and there exists a $z_1 \in C([0,1], \mathbb{R})$, such that

$$F(y_j)|_{[0,1]} \to z_1$$
 in $C([0,1], \mathbf{R})$ as $j \to \infty$ in N_1 .

Now consider the sequence $\{F(y_j)\}_{j \in N_1}$, restricted to [0, 2]. Since $F(E|_{[0,2]})$ is relatively compact in $C([0, 2], \mathbf{R})$, there exists a subsequence N_1 of N_2 , and there exists a $z_2 \in C([0, 2], \mathbf{R})$, such that

$$F(y_j)|_{[0,2]} \to z_2 \text{ in } C([0,2], \mathbf{R}) \text{ as } j \to \infty \text{ in } N_2.$$

In addition,

$$z_2|_{[0,1]} = z_1$$
 on $[0,1]$.

By induction, assume the sequence $\{F(y_j)\}_{j\in N_k}$ and $z_k \in C([0,k], \mathbf{R})$ are found such that $N_k \subseteq N_{k-1} \subseteq ... \subseteq N_1 \subseteq \mathbf{N}$,

$$F(y_j)|_{[0,k]} \to z_k \text{ in } C([0,k], \mathbf{R}) \text{ as } j \to \infty \text{ in } N_k,$$

and

$$z_k|_{[0,1]} = z_{k-1}$$
 on $[0, k-1]$.

Since $F(E|_{[0,k+1]})$ is relatively compact in $C([0, k+1], \mathbf{R})$, there exists a subsequence N_{k+1} of N_k , and there exists a $z_{k+1} \in C([0, k+1], \mathbf{R})$, such that

$$F(y_j)|_{[0,k+1]} \to z_{k+1}$$
 in $C([0,k+1],\mathbf{R})$ as $j \to \infty$ in N_{k+1} .

In addition,

$$z_{k+1}|_{[0,k]} = z_k$$
 on $[0,k]$

Now define $z \in C[0,\infty)$ by

$$z(t) = z_k(t), t \in [k-1,k), k = 1, 2, \dots$$

The induction above shows that the sequence $\{F(y_j)\}_{j\in\mathbb{N}}$ contains a subsequence which converges in $C([0,\infty), \mathbb{R})$ to $z \in C[0,\infty)$. Therefore F(E) is relatively compact in $C([0,\infty), \mathbb{R})$, and the operator $F: E \to E$ is compact. Now apply Theorem 2.2. \Box

In Theorem 4.1 notice assumption (4.4) is very restrictive. In our next theorem we remove this "global" condition and replace with a "local" one. Our proof is based on Theorem 2.3.

Theorem 4.3. Assume that

$$g:[0,\infty)\times\mathbf{R}\to\mathbf{R}$$

is a locally L^q -Carathéodory function, i.e. for each compact subinterval I of $[0, \infty)$, the following three conditions hold:

(4.8) the map
$$t \mapsto g(t, y)$$
 is measurable for all $y \in \mathbf{R}$,

(4.9) the map $y \mapsto g(t, y)$ is continuous for almost all $t \in I$,

(4.10)
$$\begin{cases} \text{for all } r > 0 \text{ there exists } \mu_r \in L^q(I, \mathbf{R}) \text{ such that} \\ |y| < r \text{ implies that } |g(t, y)| \le \mu_r(t), \text{ for almost} \\ all \ t \in I. \end{cases}$$

Suppose also that

$$(4.11) h \in BC([0,\infty), \mathbf{R}),$$

(4.12)
$$k_t(s) = k(t,s) \in L^p([0,t], \mathbf{R}), \forall t \in [0,m], \forall m \in \mathbf{N},$$

(4.13)
$$\begin{cases} \forall t, t' \in [0, \infty), \\ \int_0^{t^*} |k_t(s) - k_{t'}(s)|^p ds \to 0 \text{ as } t \to t', \\ where \ t^* = \min\{t, t'\}, \end{cases}$$

(4.14)
$$\begin{cases} \text{there exists an } \alpha \in L^{1}_{loc}([0,\infty),\mathbf{R}), \text{ and there exists} \\ a \text{ nondecreasing, continuous function } \psi : [0,\infty) \to [0,\infty), \\ \text{such that } |k(t,s)g(s,y(s))| \leq \alpha(s)\psi(|y(s)|), \text{ a.e. } t \in [0,\infty), \\ a.e. \ s \in [0,t], \ \forall y \in C([0,\infty),\mathbf{R}), \end{cases}$$

and

(4.15)
$$\int_0^m \alpha(s) ds < \int_{|h|_\infty}^\infty \frac{ds}{\psi(s)}, \, \forall m \in \mathbf{N};$$

here $|h|_{\infty} = \sup_{t \in [0,\infty)} |h(t)|$. Then the solution set of equation (4.1) is an R_{δ} set. PROOF: Let

$$\phi(t) = I^{-1} \left(\int_0^t \alpha(s) \, ds \right) \quad \text{for } t \in [0, \infty),$$

where

$$I(z) = \int_{|h|_{\infty}}^{z} \frac{ds}{\psi(s)}$$

Let $\epsilon > 0$ be given and let $\tau_{\epsilon} : \mathbf{R} \to [0, 1]$ be the Urysohn function for

$$\left(\overline{B}(0,1), \mathbf{R} \setminus B(0,1+\epsilon)\right)$$

such that

$$\tau_{\epsilon}(x) = 1$$
 if $|x| \le 1$ and $\tau_{\epsilon}(x) = 0$ if $|x| \ge 1 + \epsilon$.

Let the operator L and F be given by

$$L y(t) = h(t) + \int_0^t k(t,s) y(s) \, ds, \ F(y)(t) = g(t,y(t)),$$

and the operator F_{ϵ} be defined by

$$F_{\epsilon}(y)(t) = \tau_{\epsilon} \left(\frac{y(t)}{\phi(t)+1}\right) F(y)(t).$$

Associate with (4.1) we consider the equation

(4.17)
$$y(t) = h(t) + \int_0^t k(t,s) \tau_\epsilon \left(\frac{y(s)}{\phi(s)+1}\right) g(s,y(s)) ds \text{ for } t \in [0,\infty).$$

Essentially the same reasoning as in Theorem 4.2 guarantees that

$$\left\{ \begin{array}{l} L\,F_{\epsilon}:C([0,\infty),{\bf R})\to C([0,\infty),{\bf R})\\ \text{ is continuous and completely continuous.} \end{array} \right.$$

If we show

(4.18)
$$\begin{cases} |y(t)| \le \phi(t) \text{ for } t \in [0,\infty) \text{ for any} \\ \text{possible solution } y \in C([0,\infty), \mathbf{R}) \text{ to } (4.1), \end{cases}$$

and

(4.19)
$$\begin{cases} |y(t)| \le \phi(t) \text{ for } t \in [0,\infty) \text{ for any} \\ \text{possible solution } y \in C([0,\infty), \mathbf{R}) \text{ to } (4.17), \end{cases}$$

then we can apply Theorem 2.3 to complete the proof.

It remains to show (4.18) and (4.19). Let $y \in C([0,\infty), \mathbf{R})$ be any solution to (4.1). Then

$$|y(t)| \le |h|_{\infty} + \int_0^t \alpha(s) \,\psi(|y(s)|) \, ds \quad \text{for} \quad t \in [0,\infty).$$

Let

$$w(t) = |h|_{\infty} + \int_0^t \alpha(s) \,\psi(|y(s)|) \, ds \quad \text{for} \quad t \in [0,\infty).$$

Then

$$w'(t) = \alpha(t) \psi(|y(t)|) \le \alpha(t) \psi(w(t))$$

 \mathbf{SO}

$$\int_{|h|_{\infty}}^{w(t)} \frac{ds}{\psi(s)} \le \int_0^t \alpha(s) \, ds \quad \text{for} \ t \in [0, \infty).$$

Consequently

$$|y(t)| \le w(t) \le \phi(t)$$
 for $t \in [0, \infty)$

so (4.18) holds. Let $y \in C([0,\infty), \mathbf{R})$ be any solution to (4.17). Then since $\tau_{\epsilon} : \mathbf{R} \to [0,1]$ we have

$$|y(t)| \le |h|_{\infty} + \int_0^t \alpha(s) \,\psi(|y(s)|) \, ds \quad \text{for} \quad t \in [0,\infty),$$

and as above we obtain

$$|y(t)| \le w(t) \le \phi(t)$$
 for $t \in [0,\infty)$.

Thus (4.19) is true. \Box

Remark. If ψ in (4.14) has at most linear growth, then one could replace (4.11) with

$$h \in C([0,\infty),\mathbf{R}),$$

and delete assumption (4.15) and the result in Theorem 4.3 is again true. The proof is similar to that in Theorem 4.3, the only difference is that the ϕ in (4.18) (and (4.19)) is constructed from Gronwall's inequality (i.e. construct ϕ from Gronwall's inequality and

$$|y(t)| \le |h(t)| + \int_0^t \alpha(s) \,\psi(|y(s)|) \, ds \text{ for } t \in [0,\infty);$$

note ψ is at most linear growth).

References

- [1] D.M. Bedivan and D. O'Regan, Fixed point sets for abstract Volterra operators on Fréchet spaces, *Applicable Analysis*, to appear.
- [2] R. Kannan and D. O'Regan, A note on the solution set of integral equations, Jour. Integral Equations and Applications, 12(2000), 85–94.
- [3] Z. Kubáček, On the structure of fixed point sets of some compact maps in the Fréchet space, Mathematica Bohemica, 118(1993), 343–358.
- [4] M. Meehan and D. O'Regan, Continuums of solutions in a Fréchet space of abstract Volterra equations, Applicable Analysis, 74(2000), 95–112.
- [5] D. O'Regan and M. Meehan, Existence Theory of Nonlinear Integral and Integrodifferential Equations, *Kluwer Academic*, Dordrecht, 1998.

- [6] V. Šeda and Z. Kubáček, On the connectedness of the set of fixed points of a compact operator in the Fréchet space C^m(⟨b,∞⟩, ℝⁿ), Czech. Math. Jour., 42 (117) (1992), 577-588.
- [7] S. Szufla, On the Kneser-Hukuhara property for integral equations in locally convex spaces, Bull. Austral. Math. Soc., 36(1987), 353-360.
- [8] S. Szufla, Set of fixed points of nonlinear mappings in function spaces, Funkcialaj Ekvacioj, 22(1979), 121–126.

Manuscript received September 13, 2000

Ravi P. Agarwal

Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260

E-mail address: matravip@nus.edu.sg

Donal O'Regan

Department of Mathematics, National University of Ireland, Galway, Ireland *E-mail address:* donal.oregan@nuigalway.ie