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Abstract. We prove two variants of Fan’s type inequality for vector-valued mul-
tifunctions in topological vector spaces with respect to a cone preorder in the tar-
get space. The main tool for their proofs is a new two-function result, based on a
two-function result of Simons, which in turn is proved here directly by the classi-
cal scalar Fan inequality. As a consequence of our results, this new two-function
result is equivalent to the scalar Fan inequality.

1. Introduction

Fan’s inequality is one of the main tools in the nonlinear and convex analy-
sis, equivalent to Brouwer’s fixed point theorem, Knaster-Kuratowski-Mazurkiewicz
theorem, etc. As an analytical instrument, in many situations it is more appropriate
and applicable than the other main theorems in nonlinear analysis. We refer to [2]
for various type equivalent theorems in nonlinear analysis.

In this paper we prove two kinds of vector-valued Fan’s type inequality for mul-
tifunctions. One of them (Theorem 3.1) generalizes the main result of Ansari-Yao
in [1], namely, the existence result in the so-called there Generalized Vector Equi-
librium Problem. The generalization is in the sense that our Theorem 3.1 contains
Fan’s inequality in its full generality (for lower semicontinuous functions), while
their result cantains it only for continuous functions.

Our proofs are quite different from that one in [1] and are based on the classical
scalar Fan inequality. More precisely, in the proofs we use a new two-function result
(see Theorem 2.3) which is a slightly more general form of a two-function result of
Simons [6, Corollary 1.6] and, as a consequence of our results, it implies the classical
Fan inequality. Our two-function result follows from another two-function result of
Simons [6, Theorem 1.2]. The latter is used in [6] to derive Fan’s inequality, while
here, conversely, we derive it directly by Fan’s inequality. For a simple proof of
the classical Fan inequality, based on Brouwer’s fixed point theorem and continuous
partition of unity, we refer to [3].

The proofs of the main results (Theorems 4.1–4.2) use Theorem 2.3 for special
scalar functions possessing semicontinuity and convexity properties, inherited by
the semicontinuity and convexity properties of multifunctions.
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2. Fan’s inequality and a new two-function result

Firstly we recall the classical scalar Fan inequality and prove that it implies a
two-function result of Simons (namely [6, Theorem 1.2]), which is used in the sequel
to prove the main tool for proving the multivalued versions of Fan’s inequality
(Theorems 4.1–4.2).

Theorem 2.1. (Fan) Let X be a nonempty compact convex subset of a topological
vector space and f : X × X → R be quasiconcave in its first variable and lower
semicontinuous in its second variable. Then

min
y∈X

sup
x∈X

f(x, y) ≤ sup
x∈X

f(x, x).

Theorem 2.2. (Simons [6, Theorem 1.2]) Let Z be a nonempty compact convex
subset of a topological vector space, f : Z × Z → R lower semicontinuous in its
second variable, g : Z × Z → R quasiconcave in its first variable, and f ≤ g on
Z × Z. Then

min
y∈Z

sup
x∈Z

f(x, y) ≤ sup
z∈Z

g(z, z).

Proof. Define the function cof as a quasiconcave envelope of f with respect to the
first variable:

cof(x, y) := sup{ min
i∈{1,...,n}

f(xi, y) : x =
n∑

i=1

λixi, xi ∈ Z, λi ≥ 0,

n∑

i=1

λi = 1, n ∈ N},

where N is the set of the natural numbers. This function satisfies the conditions of
Fan’s inequality and applying the latter, we obtain the result.

Now we present our main tool for proving the main results in this paper (Theo-
rems 4.1 and 4.2). Its proof is similar to that of [6, Corollary 1.6].

Theorem 2.3. Let X be a nonempty compact convex subset of a topological vector
space, a : X ×X → R lower semicontinuous in its second variable, b : X ×X → R
quasiconvex in its second variable, and

x, y ∈ X and a(x, y) > 0 ⇒ b(y, x) < 0.

Suppose that infx∈X b(x, x) ≥ 0. Then there exists z ∈ X such that a(x, z) ≤ 0 for
all x ∈ X.

Proof. Define

f(x, y) = 1 if a(x, y) > 0 and f(x, y) = 0 otherwise.

Analogically define

g(x, y) = 1 if b(y, x) < 0 and g(x, y) = 0 otherwise.

These functions satisfy the conditions of Theorem 2.2, and applying it, we obtain
the result.
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3. Definitions and auxiliary results

Further let E and Y be topological vector spaces and F, C : E → 2Y two mul-
tivalued mappings and let for every x ∈ E, C(x) be a closed convex cone with
nonempty interior. We introduce two types of cone-semicontinuity of set-valued
mappings, which are regarded as extensions of the ordinary lower semicontinuity
for real-valued functions; see [4].

Definition 3.1. Let x̂ ∈ E. The multifunction F is called C(x̂)-upper semicontin-
uous at x0, if for every y ∈ C(x̂) ∪ (−C(x̂)) such that F (x0) ⊂ y + intC(x̂), there
exists an open U 3 x0 such that F (x) ⊂ y + intC(x̂) for every x ∈ U .

Definition 3.2. Let x̂ ∈ E. The multifunction F is called C(x̂)-lower semicon-
tinuous at x0, if for every open V such that F (x0) ∩ V 6= ∅, there exists an open
U 3 x0 such that F (x) ∩ (V + intC(x0)) 6= ∅ for every x ∈ U .

Remark 3.1. In the two definitions above, the notions for single-valued functions
are equivalent to the ordinary notion of lower semicontinuity of real-valued ones,
whenever Y = R and C = [0,∞). When the cone C(x̂) consists only of the zero of
the space, the notion in Definition 3.2 coincides with that of lower semicontinuous
set-valued mapping. Moreover, it is equivalent to the cone-lower semicontinuity
defined in [4], based on the fact that V +intC(x̂) = V +C(x̂); see [7, Theorem 2.2].

Proposition 3.1. If for some x0 ∈ E, A ⊂ intC(x0) is a compact subset and
multivalued mapping W (·) := Y \ {intC(·)} has a closed graph, then there exists an
open set U 3 x0 such that A ⊂ C(x) for every x ∈ U . In particular C is lower
semicontinuous .

Proof. Assume the contrary. Then there exists a net {xi} converging to x0 such
that for every i there exists ai ∈ A \ C(xi). Since A is compact, we may assume
that ai → a ∈ A. Since W has a closed graph, it follows that a ∈ W (x0), which is
a contradiction.

Denote B(x) = (intC(x)) ∩ (2S \ S) (an open base of intC(x)), where S is a
neighborhood of 0 in Y , and define the functions

h(k, x, y) = inf{t : y ∈ tk − C(x)}.
Note that h(k, x, ·) is positively homogeneous and subadditive for every fixed x ∈ E
and k ∈ intC(x). Moreover, we use the following notations

h(k, y) = inf{t : y ∈ tk − C},
and B = intC ∩ (2S \ S), where C is a convex closed cone with nonempty interior
and S is a neighborhood of 0 in Y . Note again that h(k, ·) is positively homogeneous
and subadditive for every fixed k ∈ intC.

We shall say that (F, X), where X is a subset of E, has property (P ), if

(P ) for every x ∈ X there exists an open U 3 x such that the set F (U ∩X) is
precompact in Y , that is, F (U ∩X) is compact.
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Lemma 3.1. Suppose that multifunction W : E → 2Y defined as W (x) = Y \
intC(x) has a closed graph. If the multifunction F is (−C(x))-upper semicontinuous
at x for each x ∈ E, then the function ϕ1|X (the restriction of

ϕ1(x) := inf
k∈B(x)

sup
y∈F (x)

h(k, x, y).

to the set X) is upper semicontinuous, if (F, X) satisfies the property (P ). If the
mapping C is constant-valued, then ϕ1 is upper semicontinuous.

Proof. Assume that (F, X) has property (P ). Let ε > 0 and x0 ∈ X be given. By
the definition of ϕ1 there exists k0 ∈ B(x0) such that

sup
y∈F (x0)

h(k0, x0, y) < ϕ1(x0) + ε.

Since supy∈F (x0) h(k0, x0, y) = inf{t : F (x0) ⊂ tk0 − C(x0)}, we can take

inf{t : F (x0) ⊂ tk0 − C(x0)} < t0 < ϕ1(x0) + ε.

Since F is (−C(x0))-upper semicontinuous at x0, there exists an open U 3 x0 such
that

F (x) ⊂ t0k0 − intC(x0) for every x ∈ U.

By Proposition 3.1 and property (P ), for t0 < t′ < ϕ1(x0) + ε, there exists an open
U1 ⊂ U such that

F (x) ⊂ t′k0 − intC(x) and k0 ∈ B(x) for every x ∈ U1 ∩X.

Then

ϕ1(x) = inf
k∈B(x)

sup
y∈F (x)

h(k, x, y)

≤ sup
y∈t′k0−C(x)

h(k0, x, y)

= t′h(k0, x, k0) + sup
y∈−C(x)

h(k0, x, y)

≤ t′

≤ ϕ1(x0) + ε.

The proof of the second statement (when C is constant-valued) is similar, but in
this case there is no need to use Proposition 3.1 and property (P ).

Definition 3.3. The multivalued mapping F : E → 2Y is called C-properly quasi-
convex if for every two points x1, x2 ∈ X and every λ ∈ [0, 1] we have either

F (λx1 + (1− λ)x2) ⊂ F (x1)− C or
F (λx1 + (1− λ)x2) ⊂ F (x2)− C.

If −F is C-properly quasiconvex, then F is called C-properly quasiconcave, which
is equivalent to (−C)-properly quasiconvex mapping.

Remark 3.2. The above definition is exactly that of type (v) properly quasiconvex
mapping in [5, Definition 3.6] and that of C-quasiconvex-like multifunction in [1].
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Lemma 3.2. If the multifunction F : E → 2Y is C-properly quasiconvex, then the
function

ψ1(x) := inf
k∈B

sup
y∈F (x)

h(k, y)

is quasiconvex.

Proof. By definition, for every λ ∈ [0, 1] and every x1, x2 ∈ X we have: either

F (λx1 + (1− λ)x2) ⊂ F (x1)− C

or
F (λx1 + (1− λ)x2) ⊂ F (x2)− C.

Assume that F (λx1 + (1− λ)x2) ⊂ F (x1)− C. Then

ψ1(λx1 + (1− λ)x2) := inf
k∈B

sup{h(k, y) : y ∈ F (λx1 + (1− λ)x2)}
≤ inf

k∈B
sup{h(k, y) : y ∈ F (x1)− C}

= inf
k∈B

sup
y∈F (x1)

c∈C

h(k, y − c)

≤ inf
k∈B

sup
y∈F (x1)

c∈C

(h(k, y) + h(k,−c))
(by subadditivity of

h(k, ·)
)

≤ ψ1(x1)
≤ max{ψ1(x1), ψ1(x2)}.

Analogously we proceed in the second case, when F (λx1 + (1− λ)x2) ⊂ F (x2)−C.

Lemma 3.3. Suppose that the multifunction F is −C(x)-lower semicontinuous for
each x ∈ E and the multifunction W : E → 2Y defined by W (x) = Y \ intC(x) has
a closed graph. Then the function ϕ2|X (the restriction of

ϕ2(x) := inf
k∈B(x)

inf
y∈F (x)

h(k, x, y)

to the set X) is upper semicontinuous, if (F, X) satisfies the property (P ). If the
mapping C is constant-valued, then ϕ2 is upper semicontinuous.

Proof. Let ε > 0 and x0 ∈ E be given. By the definition of ϕ2, for t0 ∈
(ϕ2(x0), ϕ2(x0) + ε) there exists k0 ∈ B(x0), k0 ∈ intC(x0), and z0 ∈ F (x0) such
that z0 − t0k0 ∈ −intC(x0). By Proposition 3.1, there exists an open set U1 3 x0

such that

z0 − t0k0 ∈ −intC(x) and k0 ∈ intC(x) for every x ∈ U1.

Therefore

(3.1) h(k0, x, z0) ≤ t0 for every x ∈ U1.

Let γ < ε/2. By (−C(x0))-lower semicontinuity of F , there exists an open set
U2 ⊂ U1, x0 ∈ U2 such that

(3.2) G(x) := F (x) ∩ [z0 + γk0 − intC(x0)] 6= ∅ for every x ∈ U2.
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Hence
G(U2 ∩X) ⊂ z0 + γk0 − intC(x0)

and
G(U2 ∩X) ⊂ z0 + 2γk0 − intC(x0).

By Proposition 3.1 there exists an open U3 ⊂ U2, U3 3 x0 such that

G(U2 ∩X) ⊂ z0 + 2γk0 − intC(x) for every x ∈ U3.

This implies

F (x) ∩ (z0 + 2γk0 − intC(x)) 6= ∅ for every x ∈ U3 ∩X.

Take x ∈ U3∩X and yx ∈ F (x)∩(z0+2γk0−intC(x)). Therefore yx = z0+2γk0+cx,
where cx ∈ −intC(x). We obtain

ϕ2(x0) + ε ≥ t0

≥ h(k0, x, z0) (by (3.1))
= h(k0, x, y − 2γk0 − cx)

≥ h(k0, x, y)− h(k0, x, 2γk0)− h(k0, x, cx)
(by subadditivity of

h(k0, x, ·)
)

≥ h(k0, x, y)− 2γ

≥ ϕ2(x)− ε.

Hence
ϕ2(x0) + 2ε ≥ ϕ2(x) for every x ∈ U3 ∩X.

The proof of the second statement (when C is constant-valued) is similar, but in
this case there is no need to use Proposition 3.1 and property (P ).

Definition 3.4. The multifunction F : E → 2Y is called C-quasiconvex, if the set

{x ∈ E : F (x) ∩ (a− C) 6= ∅}
is convex for every a ∈ Y . If −F is C-quasiconvex, then F is called C-quasiconcave,
which is equivalent to (−C)-quasiconvex mapping.

Remark 3.3. The above definition is exactly that of Ferro type (−1)-quasiconvex
mapping in [5, Definition 3.5].

Lemma 3.4. If F is C-quasiconvex, then for every k ∈ B the function

ψ2(x; k) := inf{h(k, y) : y ∈ F (x)}
is quasiconvex.

Proof. By the definition of ψ2(· ; k), for every ε > 0 and x1, x2 ∈ E there exist
zi ∈ F (xi), ti ∈ R such that

(3.3) zi − tik ∈ −C,

and

(3.4) ti < ψ2(xi; k) + ε, i = 1, 2.
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Since s1k − C ⊂ s2k − C for s1 ≤ s2, by (3.3), we have

zi ∈ tik − C ⊂ max{t1, t2}k − C.

Hence, by the C-quasiconvexity of F , for every λ ∈ [0, 1] there exists y ∈ F (λx1 +
(1− λ)x2) such that y ∈ max{t1, t2}k − C, which means

h(k, y) ≤ max{t1, t2}
< max{ψ2(x1; k), ψ2(x2; k)}+ ε

by (3.4) and since, the definition, we have

ψ2(λx1 + (1− λ)x2; k) = inf{h(k, y) : y ∈ F (λx1 + (1− λ)x2)},
and ε > 0 is arbitrarily small, we obtain

ψ2(λx1 + (1− λ)x2; k) ≤ max{ψ2(x1; k), ψ2(x2; k)}.

4. Main results

Now we state the main results in this paper. The following theorem is a general-
ization of that one in [1] in the sense that condition (iii) is more general and allows
us to recover the classical Fan inequality, when Y is the real line. The result in [1]
recovers it only for continuous functions.

Theorem 4.1. Let K be a nonempty convex subset of a topological vector space E,
Y be a topological vector space. Let F : K ×K → 2Y be a multifunction. Assume
that

(i) C : K → 2Y is a multifunction such that for every x ∈ K, C(x) is a closed
convex cone in Y with intC(x) 6= ∅;

(ii) W : K → 2Y is a multifunction defined as W (x) = Y \ intC(x), and the
graph of W is closed in K × Y ;

(iii) for every x, y ∈ K, F (·, y) is C(x)-upper semicontinuous at x with closed
values on K and if the mapping C is not constant-valued, then the mapping
F (·, y) maps the compact subsets of K into precompact subsets of Y ;

(iv) there exists a multifunction G : K ×K → 2Y such that
(a) for every x ∈ K, G(x, x) 6⊂ intC(x),
(b) for every x, y ∈ K,F (x, y) ⊂ intC(x) implies G(x, y) ⊂ intC(x),
(c) G(x, ·) is C(x)-properly quasiconcave on K for every x ∈ X,
(d) G(x, y) is compact, if G(x, y) ⊂ intC(x);

(v) there exists a nonempty compact convex subset D of K such that for every
x ∈ K \D, there exists y ∈ D with F (x, y) ⊂ intC(x).

Then, the solutions set

S = {x ∈ K : F (x, y) 6⊂ intC(x), for all y ∈ K}
is a nonempty and compact subset of D.

Proof. Put

a(x, y) := − inf
k∈B(y)

sup
z∈−F (y,x)

h(k, y, z), b(x, y) := inf
k∈B(x)

sup
z∈−G(x,y)

h(k, x, z).
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It is easy to check that

a(x, y) > 0 if and only if F (y, x) ⊂ intC(y)

by using the compactness of F (x, y), and also

b(y, x) < 0 if G(y, x) ⊂ intC(y)

by using condition (d), and then

a(x, x) ≤ 0, b(x, x) ≥ 0.

Denote

(4.1) Sy := {x ∈ D : F (x, y) 6⊂ intC(x)}.
Since a(y, ·) is lower semicontinuous (by Lemma 3.1), the set Sy is closed. Let Y0

be a finite subset of K. Denote by Z the closed convex hull of Y0 ∪D. Obviously
Z is compact and convex. Lemmas 3.1, 3.2 and condition (iv) (b) show that the
conditions of Theorem 2.3 are satisfied.

Now we apply Theorem 2.3 and obtain a point z ∈ Z such that

a(y, z) ≤ 0 for every y ∈ Z

which means

(4.2) F (z, y) 6⊂ intC(z) for every y ∈ Z.

The conditions (v) and (4.2) imply that z ∈ D. Relation (4.1) implies that

∩{Sy : y ∈ Y0} 6= ∅.
So we proved that the family {Sy : y ∈ K} has finite intersection property. Since D
is compact,

∩{Sy : y ∈ K} 6= ∅,
which means that there exists x0 ∈ K such that

F (x0, y) 6⊂ intC(x0) for every y ∈ K.

So we proved that S is nonempty, and since S is a closed subset of D, the proof is
completed.

Theorem 4.2. Let K be a nonempty convex subset of a topological vector space E,
Y a topological vector space, and F : K ×K → 2Y a multifunction. Assume that

(i) C : K → 2Y is a multifunction such that for every x ∈ K, C(x) is a closed
convex cone in Y with intC(x) 6= ∅;

(ii) W : K → 2Y is a multifunction defined as W (x) = Y \ intC(x) and the
graph of W is closed in K × Y ;

(iii) for every x, y ∈ K, F (·, y) is C(x)-lower semicontinuous with closed values
on K and if the mapping C is not constant-valued, then the mapping F (·, y),
for every y ∈ K, maps the compact subsets of K into precompact subsets
of Y ;

(iv) there exists a multifunction G : K ×K → 2Y such that
(a) for every x ∈ K, G(x, x) ∩ intC(x) = ∅,
(b) for every x, y ∈ K, F (x, y)∩intC(x) 6= ∅ implies G(x, y)∩intC(x) 6= ∅,
(c) G(x, ·) is C(x)-quasiconcave on K for every x ∈ K;
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(v) there exists a nonempty compact convex subset D of K such that for every
x ∈ K \D, there exists y ∈ D with F (x, y) ∩ intC(x) 6= ∅.

Then, the solutions set

S = {x ∈ K : F (x, y) ∩ intC(x) = ∅, for all y ∈ K}

is a nonempty and compact subset of D.

Proof. Put

a(x, y) := − inf
k∈B(y)

inf
z∈−F (y,x)

h(k, y, z), b(x, y) := inf
z∈−G(x,y)

h(k(x), x, z),

where the function k is any fixed selection of the multivalued mapping x 7→ intC(x),
i.e., k(x) ∈ intC(x) for every x ∈ K.

It is easy to check that

a(x, y) > 0 if and only if F (y, x) ∩ (intC(y)) 6= ∅,

b(y, x) < 0 if and only if G(y, x) ∩ (intC(y)) 6= ∅,

a(x, x) ≤ 0, b(x, x) ≥ 0.

Lemmas 3.3, 3.4 and condition (iv) (b) show that the conditions of Theorem 2.3
are satisfied. Further the proof is the same as that of Theorem 4.1, but in this case

Sy := {x ∈ D : F (x, y) ∩ (intC(x)) = ∅}.

Remark 4.1. As a corollary from any of Theorems 4.1 and 4.2, when Y = R,
C = [0,∞), we obtain that any of Theorems 4.1 and 4.2 implies the scalar Fan
inequality (Theorem 2.1). Indeed, under the assumptions of Theorem 2.1, we apply
any of Theorems 4.1 and 4.2 to the function f−supz∈Z f(z, z). Since those theorems
are based on Theorem 2.3, we conclude that Theorem 2.3 is equivalent to the scalar
Fan inequality.
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