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CONDITIONAL EXPECTATION AND ERGODIC THEOREM FOR
A POSITIVE INTEGRAND

MICHEL VALADIER

Abstract. An historical account of difficuties raised by the conditional expec-
tation of an integrand is given. Then the Birkhoff ergodic therem for integrands,
as initiated by C. Castaing and F. Ezzaki in 1992, is improved.
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1. Introduction

The conditional expectation of random variables is a classical tool. When a param-
eter comes into play, that is when one handles an integrand, the situation is more
involved. This has been studied in the seventies with a seminal paper by Bismut
[6]. A related problem is raised by the conditional expectation of a multifunction.
We will give an historical account in Section 3.

In 1992 C. Castaing and F. Ezzaki wrote a paper [10] giving several statements
about the Birkhoff ergodic therem for integrands. Moreover, in the same time,
C. Licht and G. Michaille [31–32] studying homogenization problems were also in-
terested by an extension of the ergodic theorem (note that this started with papers
of Dal Maso-Modica [15–16]; see my survey [46] for some comments about the dif-
ference between stationarity and ergodicity). The hypotheses of [10] are sometimes
restrictive and some proofs can be made more direct. We will improve their results.
A first result about the ergodic theorem for multifunctions is in Hess [21]. In the
same direction we must mention researches by Choirat-Hess-Seri [12] and Korf-Wets
[28–29].

Note that the strong law of large numbers for multifunctions was firstly studied
by Hess [21] and Artstein-Hart [2], but received a general treatment in 1985: Hess
[22] and Hiai [24]. For integrands see Attouch-Wets [4].

I thank C. Castaing and G. Michaille for their acute reading of some preliminary
versions.
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2. Background on classical conditional expectation and difficulties
raised by a parameter

Let (Ω,F , P ) be a probability space and I a sub-σ-algebra of F . The conditional
expectation operator EI : L1(Ω,F , P ) → L1(Ω, I, P ) characterized by

∀B ∈ I,

∫

B
(EIX) dP =

∫

B
X dP

is studied in most Probability textbooks. We wrote L1, not L1, because the
good spaces are the quotient ones whose elements are equivalence classes of ran-
dom variables (r.v.) with respect to equality a.s. As starting value one can take
X ∈ L1(Ω,F , P ) without any difficulty. On the contrary the value EIX is really
a class. Usually one writes (EIX)(ω), which supposes that a version of EIX has
been chosen. As a precaution one could write ”a.s.” above = as in the following

Y (ω) a.s.= (EIX)(ω) . (1)

When the r.v. X is ≥ 0 (the value +∞ being possible) it does not need to be
integrable: see Neveu [35] (even X ∈ L0(Ω,F , P ) is possible as soon as the negative
part X− is integrable). In all cases uniqueness holds up to equality a.s. (see
Theorem 1 below for a more difficult result).

Now E is a ”good” topological space, for example a Polish space or a metrizable
Suslin space: we need a separable metrizable space in which the von Neumann-
Aumann-Sainte-Beuve theorem applies. If f is a real ≥ 0 function (we will say an
integrand) on Ω × E which is (F ⊗ B(E))-measurable, one wish defining EIf and
showing its existence under general hypotheses. But one cannot only say: for each
fixed x we take a version of EIf(., x), which gives ω 7→ (

EIf(., x)
)
(ω) and then

(ω, x) 7→ (
EIf(., x)

)
(ω) which would be EIf . Indeed one has to get the (I⊗B(E))-

measurability of EIf ; and when for all (or almost all) ω, f(ω, .) is Lipschitz or lower
semi-continuous, one expects the same property of EIf . So the problem is to choose
in a consistent way (or to prove the possibility of such a choice) versions of the classes
EIf(., x).

Look at the definition of g := EIf . The minimum properties should be: g is
(I ⊗ B(E))-measurable and ∀B ∈ I, ∀x ∈ E,∫

B
g(ω, x) dP (ω) =

∫

B
f(ω, x) dP (ω) .

But the good definition (due to Bismut [6]) is: for any u ∈ L0(Ω, I, P ;E), ω 7→
g(ω, u(ω)) is a version of EIf(., u(.)) or, more precisely of EI(f̂(u)) where f̂ denotes
the Nemickii operator associated to f :

f̂
∣∣∣L

0(Ω, I, P ;E) → L0(Ω,F , P ; [0,+∞])

u 7→ [ω 7→ f(ω, u(ω))]

that is
[
f̂(u)

]
(ω) = f(ω, u(ω)). In other words the good characterization of ”the”

conditional expectation g of the integrand f is:

∀u ∈ L0(Ω, I, P ;E), ∀B ∈ I,

∫

B
g(ω, u(ω)) dP (ω) =

∫

B
f(ω, u(ω)) dP (ω) (2)
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or ∀u ∈ L0(Ω, I, P ;E), EI(f̂u) = ĝ(u). So we are able to write

∀u ∈ L0(Ω, I, P ;E), EI(f̂u) = ÊIf(u) . (2’)

Now uniqueness of EIf is to be understood in the indistinguishability sense:
two versions are indistinguishable if they coincide except on N × E where N is
P -negligible. We prove uniqueness below. The analogous of formula (1) could be:

g(ω, x) indist.= (EIf)(ω, x) . (3)

Theorem 1. With the foregoing notations, if g1 et g2 are two ≥ 0 integrands which
are conditional expectations of f (i.e. (I ⊗ B(E))-measurable and satisfying (2)),
they are indistinguishable.

Proof. Let prΩ denote the projection of Ω × E on Ω. Temporarily we will use the
P -completion Î of I. We will show that prΩ({g1 < g2}) is negligible, which implies
that {g1 < g2} is contained in a set as N0×E where N0 is negligible. By symmetry
the same holds for {g1 > g2}, hence {g1 6= g2} is contained is a set of the form N×E
where N is negligible. Thanks to the von Neumann-Aumann-Sainte-Beuve theorem
([37], [11, Th.III-23]), B0 := prΩ({g1 < g2}) belongs to Î. Suppose P (B0) > 0. Still
by the von Neumann-Aumann-Sainte-Beuve theorem ([37], [11, Th.III-22]) there
exists ū : B0 → E measurable relatively to Î (but modifying it on a negligible, one
can get I-measurability) such that on B0, g1(ω, ū(ω))

a.s.
< g2(ω, ū(ω)). Changing if

necessary B0 by a subset of the form B = {ω ∈ B0 : g1(ω, ū(ω)) ≤ n}, one can
suppose that, keeping P (B) > 0, g1(ω, ū(ω)) is ≤ to a finite constant on B. It
remain to set, x0 being a fixed point in E,

u(ω) =

{
ū(ω), if ω ∈ B,
x0 , if ω ∈ Ω\B

to get the contradiction
∫
B g1(ω, u(ω)) dP (ω) <

∫
B g2(ω, u(ω)) dP (ω). ¤

The existence for l.s.c. integrands has been proved using Lipschitz approxima-
tions (see Section 5 for the definition) by Castaing and Thibault, and using a lifting
of L∞ by Bismut. For general measurable integrands the existence has been proved
by Evstigneev (see also [10]). For some references and a partial result (Theorem 2)
see Section 3 and 4.

Remarks. 1) The difficulty of choosing a non countable family of versions of classes
in a consistent way arise also in the disintegration problem (see Section 4).

2) In state of integrands one can also consider multifunctions (alias random sets)
and look for their conditional expectation. This is the geometrical side of the
problem. See next Section.

3. Geometrical versus analytical points of view and short historical
review

When E is a locally convex topological vector space (in short l.c.t.v.s.), studying the
conditional expectations of a convex l.s.c. integrand or of a closed convex random
set is almost the same problem (see below).
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The conditional expectation of a r.v. X can be defined as the Radon-Nikodým
derivative, with respect to P|I , of the measure B 7→ ∫

B X dP considered on I. In
this line, the multivalued Radon-Nikodým theorem has been stated and generalized
several times: Valadier [40–41] in finite dimension, Castaing [7–8] in infinite dimen-
sion, Debreu-Schmeidler [17] in finite dimension but with non boundedness (their
motivation coming from mathematical economics), then Costé-Pallu de La Barrière
[13–14].

Bismut [6] is a basic text (after reading it I wrote [42]). The Lipschitz approxi-
mation technique introduced by Castaing [9] has been used also by Thibault [38].
Hiai-Umegaki [25] dared handling non-convex multifunctions (they used the concept
of decomposable subsets of L1). In similar questions Klei [26] used my result about
the essential multivalued least upper bound. A. Truffert [39] wrote a very complete
paper, probably optimal about minorations and growth conditions.

Surprisingly, when everybody assumed lower semi-continuity in x, Evstigneev [20]
proved the existence of a good conditional expectation of any integrand f which is
≥ 0 and F ⊗ B(E)-measurable.

More recently Castaing-Ezzaki in their paper [10] began with a synthetic account
and then brought a lot of new results we will speak of later.

Assume that Γ is a multifunction (or random set) with closed convex values in
a l.c.t.v.s. V . Let V ∗ denote the topological dual of V . To Γ is associated the
integrand on Ω × V ∗, f(ω, x′) = δ∗(x′|Γ(ω)) where δ∗( . |C) denotes the support
function of C. Then one can recover the conditional expectation (in short c.e.) of
Γ from the c.e. of f and, vice-versa one can obtain the c.e. of f from the c.e. of
the multifunction ω 7→ epi(f∗(ω, .)) (recall f(ω, x) = δ∗

(
(x,−1)| epi(f∗ω, .)

)
).

But generally studying the conditional expectations of Γ and of f are not equiv-
alent problems. Indeed, in one direction, if Γ is not convex valued, the support
function loses information. And in the other direction one can consider an inte-
grand on Ω× E even if E is not a l.c.t.v.s.

Finally note that when E is a l.c.t.v.s. the polar of EIf is the conditional inf-
convolution of f∗. This notion has been studied by Bismut [6] and in Chapter 8 of
[11].

4. Disintegration and ergodic theorem for positive r.v.

Under very general hypotheses there exists a disintegration, that is a family of
probabilities (Qω)ω∈Ω on (Ω,F) depending I-measurably of ω and satisfying

∀A ∈ F , ∀B ∈ I, P (A ∩B) =
∫

B
Qω(A) dP (ω) . (4)

In other words the r.v. ω 7→ Qω(A) (A running through F) are a consistent
system of versions of the classes EI(1A). (Due to the same difficulty, liftings of L∞
has been used by Bismut [6].)

Classically for a real r.v. X (see for example Dudley [19, 10.2.5 p.272], Doob [18,
Th.9.1 p.27], Kolmogorov [27, ch.V (12) and (14)]):

∫

Ω
X(ω′) dQω(ω′) a.s.= (EIX)(ω) . (5)
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I extended this to non convex random sets in [45, 1980] (and wrote on the sub-
ject of disintegration: [43–44]; note that Bauer [5] clearly exposes the question of
conditional laws but does not give (5)).

More easy than [45] is the case of an integrand treated in the next theorem.
This theorem does not prove in general the existence de EIf since there exist
cases where there is not any disintegration. But I enjoy it and it can help in
suggesting conjectures and giving easy proofs under the hypothesis of existence of
a disintegration. For general proofs of existence see Castaing-Ezzaki [10]. Writing
this paper I rediscovered Theorem 2 forgetting that A. Truffert wrote it in 1991 [39,
Th.1.7 p.133–134]. But Evstigneev already indicated it in 1986 [20, p.516].

Theorem 2. If the family (Qω)ω∈Ω satisfies (4), the integrand g defined by:

g(ω, x) :=
∫

Ω
f(ω′, x) dQω(ω′)

is a conditional expectation of f . If the functions f(ω, .) are l.s.c., so are the g(ω, .);
if the functions f(ω, .) are k-Lipschitz, so are the g(ω, .).

Proof. 1) Let us show that g is (I ⊗ B(E))-measurable. The following arguments
occur in usual proofs of Fubini’s theorem. The set of all C ∈ F ⊗ B(E) such
that (ω, x) 7→ ∫

Ω 1C(ω′, x) dQω(ω′) is (I ⊗ B(E))-measurable constitute a Dynkin’s
system which contains A × U when A ∈ F and U ∈ B(E) (because then one gets
(ω, x) 7→ Qω(A)1U (x) ); hence it coincides with F ⊗ B(E). By linearity, for any
integrand f which is ≥ 0 and (F ⊗ B(E))-simple, g is (I ⊗ B(E))-measurable. By
monotone convergence this holds for any f .

2) Now we prove that g is a conditional expectation of f . Firstly (4) implies some
consequences: let R the image on (Ω2, I ⊗F) of P by the map ω 7→ (ω, ω). For any
B ∈ I and any A ∈ F ,

R(B ×A) = P (A ∩B)
(4)
=

∫

B
Qω(A) dP (ω) =

∫

Ω

[∫

Ω
1B(ω)1A(ω′) dQω(ω′)

]
dP (ω)

hence classically, for any ψ which is ≥ 0 on Ω2 and (I ⊗ F)-measurable,
∫

Ω2

ψ(ω, ω′) dR(ω, ω′) =
∫

Ω

[∫

Ω
ψ(ω, ω′) dQω(ω′)

]
dP (ω) . (6)

From the definition of R, the left-hand side of (6) equals
∫
Ω ψ(ω, ω) dP (ω). Let

u ∈ L0(Ω, I, P ;E). Applying the foregoing observation and (6) to

ψ(ω, ω′) := 1B(ω)f(ω′, u(ω)) ,

one gets:
∫

B
f(ω, u(ω)) dP (ω) =

∫

B

[∫

Ω
f(ω′, u(ω)) dQω(ω′)

]
dP (ω)

=
∫

B
g(ω, u(ω)) dP (ω) .

Thus we have proved that g is a conditional expectation of f .
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3) Suppose that f(ω, .) is l.s.c. and that xn converges to x̄. Then one has
∫

Ω
f(ω′, x̄) dQω(ω′) ≤

∫

Ω
lim

n→∞
f(ω′, xn) dQω(ω′)

Fatou≤ lim
n→∞

∫

Ω
f(ω′, xn) dQω(ω′) ,

hence the lower semi-continuity of g(ω, .).

4) Suppose that f(ω, .) is k-Lipschitz (with values < +∞). Then

|g(ω, x)− g(ω, y)| =
∣∣∣
∫

Ω

(
f(ω′, x)− f(ω′, y)

)
dQω(ω′)

∣∣∣

≤
∫

Ω

∣∣f(ω′, x)− f(ω′, y)
∣∣ dQω(ω′)

≤ k d(x, y) .

¤

Suppose T is a measurable map from Ω in itself preserving P (i.e. P ◦T−1 = P ),
and let I denote the σ-field of invariant sets (that is the set of all A ∈ F satisfying
T−1A = A).

Remark. The strong law of large numbers for ≥ 0 r.v. is easy: if the Xi are ≥ 0 and
i.i.d., 1

n

∑n
i=1 Xi(ω) converges almost surely to E(X1) even if E(X1) = +∞. This

is easy to prove with Proposition 4 below. Note that Dudley [19, Th.8.3.5 p.206]
proves, by a different method, better: if the Xi are real, i.i.d. and if E(|X1|) = +∞,
then almost surely 1

n

∑n
i=1 Xi(ω) does not converge in R. The following result is

more difficult to find in the literature.

Theorem 3 (Birkhoff’s ergodic theorem for a positive random variable). For any
≥ 0 random variable X (the value +∞ being allowed),

1
n

n−1∑

i=0

X(T iω) a.s.→ EI
(
X

)
(ω) .

Remark This is asserted without proof by L. Arnold [1, p.539]. This result is
easy to prove when T is ergodic thanks to the fact that in this case the right-
hand side is a not a function but a constant: see Proposition 4 and its application
below. One could reduce the general case to the ergodic one when an ergodic
decomposition exists (this goes back to J. von Neumann [33, 1932]; see also Kryloff
and Bogoliouboff [30, 1937] and my survey [46]). A correct, short proof seems given
by Choirat-Hess-Seri [12].

Proposition 4. Let r ∧ p denote inf(r, p). Let (ri)i∈N∗ be a sequence in [0,+∞].

Suppose that, for any p ∈ N,
1
n

n∑

i=1

(ri ∧ p) converges to `p ∈ [0,+∞] as n tends to

+∞. Then lim
n→∞

1
n

n∑

i=1

ri ≥ lim
p→∞ `p.
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Proof. Firstly (`p)p is increasing, hence ` := lim
p→∞ `p exists in [0,+∞]. And as, for

any p, lim
n→∞

1
n

n∑

i=1

ri ≥ `p , one has lim
n→∞

1
n

n∑

i=1

ri ≥ `. ¤

Consequence. Theorem 3 is easy to prove when T is ergodic (i.e. EI = E).

Proof. There is nothing new to prove when E(X) is finite. So assume E(X) = +∞.
For any p ∈ N, by the classical Birkhoff theorem

1
n

n−1∑

i=0

[X ∧ p](T iω) a.s.→ E(X ∧ p) .

By the monotone convergence theorem E(X ∧ p) ↗ E(X) = +∞. So the result
follows from Proposition 4. ¤

Example. This example shows that in general,
1
n

n∑

i=1

ri does not converge to `,

excepted if ` = +∞ (in other words a monotone convergence theorem for Cesàro’s
limits is lacking). Let

ri =

{
2j , if i has the form i = 2j ,
0 otherwise.

Then ∀p, `p = 0, lim
n→∞

1
n

n∑

i=1

ri = 1 and lim
n→∞

1
n

n∑

i=1

ri = 2.

5. Ergodic theorem for integrands

Besides the transformation T introduced in Section 4, we will consider E, a separable
metric Suslin space (note that separability is a consequence of Suslin) and f , a l.s.c.
≥ 0 integrand on Ω × E (this means: f is (F ⊗ B(E))-measurable and l.s.c. in
x). We will obtain, at least for almost all ω, the epi-graphical convergence of
1
n

∑n−1
i=0 f(T iω, .). Recall that, E being a metric space, the functions ϕn : E → R

epi-converge to ϕ if their epigraphs converge in the Painlevé-Kuratowski sense. This
allows some ”horizontal deformations” and is a fundamental concept in optimization
theory (see the books of Attouch [3] and Rockafellar-Wets [36]). This convergence

expresses without the epigraphs: ϕn
epi→ ϕ iff for any x ∈ E, both the following

properties hold
(i) for any sequence (xn)n converging to x, ϕ(x) ≤ lim

n→∞
ϕn(xn),

(ii) there exists a sequence (xn)n converging to x, such that ϕ(x) ≥ lim
n→∞ϕn(xn).

Notations. For any real function h on Ω × E, hn(ω, x) := 1
n

∑n−1
i=0 h(T i(ω), x).

And, assuming h ≥ 0, hk(ω, x) := inf{h(ω, y) + k d(y, x) : y ∈ E} which is the
k-Lipschitz approximation (Baire-Hausdorff approximation) in x.

Note that hk(ω, .) is finite valued as soon as h(ω, .) is not identically +∞. One
must differentiate (hn)k and (hk)n. It is easy to check (hn)k ≥ (hk)n [10, (5.3.2)].
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We will use several arguments of Castaing-Ezzaki [10]. This paper contains a
lot of results and very ingenious proofs. The following Lemma is more simple than
Lemma 5.1 and Proposition 5.2 of [10].

Lemma 5. Let h be a ≥ 0 integrand (that is a (F ⊗ B(E))-measurable function
from Ω× E to [0,+∞]) and u ∈ L0(Ω, I, P ;E). Then

1
n

n−1∑

i=0

h(T iω, u(ω)) a.s.→ (EIh)(ω, u(ω)) .

Proof. By Theorem 3 there exists a negligible set Nu such that, on Ω\Nu,

1
n

n−1∑

i=0

[
ĥ(u)

]
(T iω) −→

[
EI

(
ĥ(u)

)]
(ω) .

Observing that, for any i ∈ N, u ◦ T i = u and EI
(
ĥ(u)

)
=

(
ÊIh

)
(u) (cf. (2’)), one

gets
1
n

n−1∑

i=0

h(T iω, u(ω)) a.s.→ (EIh)(ω, u(ω)) .

¤
The following theorem corresponds to Theorem 5.3 and Lemma 5.4 of Castaing-

Ezzaki [10]. For a spatial sub-additive process see (under the ergodic hypothesis)
Theorem 4.1 in Licht-Michaille [31] or Theorem 5.1 of [32].

Theorem 6. Let (Ω,F , P ) be a probability space, T a measurable transformation
of Ω preserving P , I the σ-algebra of invariant sets, E a Suslin metric space, f a
l.s.c. ≥ 0 integrand on Ω× E. Then the following epi-convergence holds:

for P -almost all ω,
1
n

n−1∑

i=0

f(T iω, .)
epi→ (EIf)(ω, .) . (7)

Proof. 1) With the notation set above, (7) is equivalent to

fn(ω, .)
epi→ (EIf)(ω, .) .

In Hess [23, Prop.3.4 p.1304], an analogous of the Attouch theorem concerning
Moreau-Yosida approximation [3, Th.2.65 p.232] is given for the Lipschitz approxi-
mation. Thanks to this result it suffices to prove

sup
k∈N

[
lim

n→∞
(fn)k(ω, .)

]
≥ (EIf)(ω, .) (8)

and
sup
k∈N

[
lim

n→∞(fn)k(ω, .)
]
≤ (EIf)(ω, .) . (9)

2) Let us prove (8). Let (xp)p denote a dense sequence in E. By Lemma 5 there
exists a negligible set Nk,p such that,

∀ω ∈ Ω\Nk,p,
1
n

n−1∑

i=0

fk(T iω, xp) −→ (EIfk)(ω, xp) .
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Since the functions EIfk, (fn)k and (fk)n are k-Lipschitz in x, one has for any
ω /∈ Nk :=

⋃
p Nk,p and any x ∈ E,

lim
n→∞

(fn)k(ω, x) ≥ lim
n→∞

(fk)n(ω, x) = lim
n→∞

1
n

n−1∑

i=0

fk(T iω, x) = (EIfk)(ω, x) (10)

Recall that, when k → ∞, (EIfk)(ω, x) ↗ (EIf)(ω, x): there is a monotone
convergence theorem for conditional expectations [19, 10.1.7 p.266]. Taking sup
over k in both extreme terms of (10), we get (8) with the negligible set

⋃
k Nk.

3) Now we attack (9). Let g = EIf and let Φ be the multifunction ω 7→ epi g(ω, .).
We will restrict ourselves to Ω0 := {ω ∈ Ω : g(ω, .) 6≡ +∞} = {ω ∈ Ω : Φ(ω) 6=
∅}. Let

(
up(.), rp(.)

)
p

be a sequence of I-measurable functions which constitute a
Castaing representation of Φ (i.e. for all ω,

(
up(ω), rp(ω)

)
p

is dense in Φ(ω) ). Let
m ∈ N∗ be fixed for a time. For all k and p, the multifunction

Γk,p,m(ω) = {y ∈ E : g(ω, y) + k d(y, up(ω)) ≤ gk(ω, up(ω)) + m−1}
is non empty valued and its graph belongs to Î ⊗B(E) hence admits a Î-measurable
selection vk,p,m. Modifying it on a negligible set one can suppose it is I-measurable.
By its definition vk,p,m satisfies

g(ω, vk,p,m(ω)) + k d(vk,p,m(ω), up(ω)) ≤ gk(ω, up(ω)) + m−1 .

Thanks to Lemma 5 there exists a negligible set Nk,p,m outside of which the following
convergence holds:

fn(ω, vk,p,m(ω)) =
1
n

n−1∑

i=0

f(T iω, vk,p,m(ω)) −→ (EIf)(ω, vk,p,m(ω))

= g(ω, vk,p,m(ω)) .

Then, for ω ∈ Ω0\Nk,p,m

lim
n→∞(fn)k(ω, up(ω)) ≤ lim

n→∞
[
fn(ω, vk,p,m(ω)) + k d(vk,p,m(ω), up(ω))

]

= g(ω, vk,p,m(ω)) + k d(vk,p,m(ω), up(ω))

≤ gk(ω, up(ω)) + m−1 .

Taking sup over k in extreme terms one gets a negligible set Nm (=
⋃

k,p Nk,p,m)
such that for all k, p et ω ∈ Ω0\Nm,

sup
k∈N

[
lim

n→∞(fn)k(ω, up(ω))
]
≤ g(ω, up(ω)) + m−1 .

For ending let ω ∈ Ω0\
⋃

m Nm fixed. For any p,

sup
k∈N

[
lim

n→∞(fn)k(ω, up(ω))
]
≤ g(ω, up(ω)) . (11)

Let x ∈ E. If g(ω, x) = +∞, (9) is trivially satisfied. If g(ω, x) < +∞, there
exists a sequence (pj)j such that (x, g(ω, x)) = lim

j→∞
(upj (ω), rpj (ω)). One knows
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that
sup
k∈N

[
lim

n→∞(fn)k(ω, .)
]

is l.s.c. (for example, by [23, Prop.3.4 p.1304], it is the epigraphical limsup of the
sequence (fn(ω, .))n ), hence

sup
k∈N

[
lim

n→∞(fn)k(ω, x)
]
≤ lim

j→∞

[
sup
k∈N

[
lim

n→∞(fn)k(ω, upj (ω))
]]

(11)

≤ lim
j→∞

g(ω, upj (ω)) ≤ lim
j→∞

rpj (ω)) = g(ω, x) .

This proves (9). ¤
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Sér. A-B 273 (1971), A1265–A1267 (detailed version of Espérance conditionnelle d’un convexe
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