Journal of Nonlinear and Convex Analysis Volume 1, Number 2, 2000, 213–231

NONLINEAR STRONG ERGODIC THEOREMS FOR COMMUTATIVE NONEXPANSIVE SEMIGROUPS ON STRICTLY CONVEX BANACH SPACES¹

SACHIKO ATSUSHIBA, ANTHONY TO-MING LAU AND WATARU TAKAHASHI

ABSTRACT. In this paper, we study nonlinear ergodic properties for a commutative semigroup of nonexpansive mappings in a strictly convex Banach space E. We prove that if S is a commutative semigroup, $S = \{T(t) : t \in S\}$ is a nonexpansive semigroup on a nonempty closed convex subset X of E, K is a compact subset of X such that $T(t)(X) \subset K$ for all $t \in S$ and $\{\lambda_{\alpha}\}$ is any bounded net of linear functionals on the Banach space of all bounded real-valued functions on S such that $\lim_{\alpha} \lambda_{\alpha}(1) = 1$ and $\lim_{\alpha} \|\lambda_{\alpha} - r_s^*\lambda_{\alpha}\| = 0$ for every $s \in S$, then $\int T(h+t)xd\lambda_{\alpha}(t)$ converges strongly to a common fixed point of $T(t), t \in S$ uniformly in $h \in S$. Various applications of our main theorems will be given.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Banach space E. Then a mapping $T: C \to C$ is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. We denote by F(T) the set of fixed points of T. We also denote by N(C) the set of all nonexpansive mappings of C into itself. For any $x \in C$, the ω -limit set of x is defined by

$$\omega(x) = \{ z \in C : z = \lim_{i \to \infty} T^{n_i} x \text{ with } n_i \to \infty \text{ as } i \to \infty \}.$$

Edelstein [12] obtained the following nonlinear ergodic theorem for nonexpansive mappings with compact domains in a strictly convex Banach space: Let C be a nonempty compact convex subset of a strictly convex Banach space and let T be a nonexpansive mapping of C into itself. Let $x \in C$. Then, for any $\xi \in \overline{co}\omega(x)$, the Cesàro mean $S_n(\xi) = (1/n) \sum_{k=0}^{n-1} T^k \xi$ converges strongly to a fixed point of T, where $\overline{co}A$ is the closure of the convex hull of A. See also Dafermos and Slemrod [10] for a one-parameter nonexpansive semigroup in a strictly convex Banach space. The first nonlinear ergodic theorem for nonexpansive mappings with bounded domains was established in the framework of a Hilbert space by Baillon [4]: Let C be a nonempty bounded closed convex subset of a Hilbert space and let T be a nonexpansive mapping of C into itself. Then, for any $x \in C$, the Cesàro mean $S_n(x) = (1/n) \sum_{k=0}^{n-1} T^k x$ converges weakly to a fixed point of T. Bruck [7] extended Baillon's theorem in [4] to a uniformly convex Banach space whose norm is Fréchet differentiable. Brézis

Copyright C Yokohama Publishers

¹This research is supported by an NSERC-grant and by Grant-in-Aid for General Scientific Research No. 12640157, the Ministry of Education, Science, Sports and Culture, Japan.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H09, 49M05.

Key words and phrases. Fixed point, iteration, nonexpansive mapping, nonexpansive semigroup, strong convergence.

and Browder [5] also proved a nonlinear strong ergodic theorem for nonexpansive mappings of odd-type in a Hilbert space (see also Reich [19]).

Recently, the first and third authors [2] improved Edelstein's theorem in [12] by using Bruck [7, 8] and [1]: For any $x \in C$, the Cesàro mean $S_n(x)$ converges strongly to a fixed point of T. Furthermore, they [3] also obtained a nonlinear strong ergodic theorem for a one-parameter nonexpansive semigroup on a compact convex subset of a strictly convex Banach space.

In this paper, we shall study nonlinear strong ergodic properties for a commutative semigroup of nonexpansive mappings in a strictly convex Banach space E. Our main theorem (Theorem 4.2) implies that if $S = \{T(t) : t \in S\}$ is a commutative semigroup of nonexpansive mappings on a nonempty closed convex subset X of Eand K is a compact subset of X such that $T(t)(X) \subset K$ for each $t \in S$, then there is a nonexpansive mapping Q from X onto F(S), the fixed point set of S, such that QT(t) = T(t)Q = Q for each $t \in S$ and $Qx \in \overline{co}\{T(s)x : s \in S\}$ for each $x \in X$. Furthermore, Qx is the strong limit of $\int T(h+t)xd\lambda_{\alpha}(t)$, where $\{\lambda_{\alpha}\}$ is a strongly regular net of functionals on B(S), the space of all bounded real-valued functions on S. Various applications (including sumability method with respect to a strongly regular matrix due to Lorentz [18]) will be given in Section 5. This improves the results of Atsushiba and Takahashi in [2, 3].

2. Preliminaries

Throughout this paper, we assume that a Banach space E is real and S is a commutative semigroup with identity unless other specified. In this case, (S, \leq) is a directed system when the binary relation \leq on S is defined by $a \leq b$ if and only if there is $c \in S$ with a + c = b.

We denote by E^* the dual space of E and by N the set of all positive integers. In addition, we denote by \mathbb{R}^+ and \mathbb{Z}^+ the sets of all nonnegative real numbers and all nonnegative integers, respectively. We also denote by $\langle y, x^* \rangle$ the value of $x^* \in E^*$ at $y \in E$. For a subset A of E, coA and $\overline{co}A$ mean the convex hull of A and the closure of convex hull of A, respectively. We denote by $S_1(E)$ the unit sphere in E with center 0. Let B(S) be the Banach space of all bounded real-valued functions on S with the supremum norm. Then, for each $s \in S$ and $f \in B(S)$, we can define $r_s f \in B(S)$ by $(r_s f)(t) = f(t+s)$ for all $t \in S$. We also denote by r_s^* the conjugate operator of r_s . Let D be a subspace of B(S) and let μ be an element of D^* . Then, we denote by $\mu(f)$ the value of μ at $f \in D$. Sometimes, $\mu(f)$ will be also denoted by $\mu_t(f(t))$ or $\int f(t)d\mu(t)$. When D contains 1, a linear functional μ on D is called a mean on D if $\|\mu\| = \mu(1) = 1$. Further, let D be r_s -invariant, i.e., $r_s(D) \subset D$ for every $s \in S$. Then, a mean μ on D is invariant if $\mu(r_s f) = \mu(f)$ for all $s \in S$ and $f \in D$. For $s \in S$, we can define the point evaluation δ_s by $\delta_s(f) = f(s)$ for every $f \in B(S)$. A convex combination of point evaluations is called a finite mean on S. A finite mean μ on S is also a mean on any subspace D of B(S) containing 1.

The following definition which was introduced by Takahashi [22] is crucial in the nonlinear ergodic theory for abstract semigroups (see also [15]). Let f be a function of S into E such that the weak closure of $\{f(t) : t \in S\}$ is weakly compact. Let Dbe a subspace of B(S) containing 1 and r_s -invariant for every $s \in S$. Assume that for each $x^* \in E^*$, the function $t \mapsto \langle f(t), x^* \rangle$ is in D. Then, for any $\mu \in D^*$ there exists a unique element $f_{\mu} \in E$ such that

$$\langle f_{\mu}, x^* \rangle = \int \langle f(t), x^* \rangle d\mu(t)$$

for all $x^* \in E^*$. If μ is a mean on D, then f_{μ} is contained in $\overline{co}\{f(t) : t \in S\}$ (for example, see [16, 17, 22]). Sometimes, f_{μ} will be denoted by $\int f(t)d\mu(t)$.

Let C be a subset of a Banach space E. Then, a family $S = \{T(s) : s \in S\}$ of mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:

(i)
$$T(s+t) = T(s)T(t)$$
 for all $s, t \in S$;

(ii) $||T(s)x - T(s)y|| \le ||x - y||$ for all $x, y \in C$ and $s \in S$.

We denote by F(S) the set of common fixed points of $T(t), t \in S$, that is, $F(S) = \bigcap_{t \in S} F(T(t))$. If C is a compact convex subset of a strictly convex Banach space E

and S is commutative, then we know that F(S) is nonempty.

Let $S = \{T(t) : t \in S\}$ be a nonexpansive semigroup on C such that for each $x \in C$, $\{T(t)x : t \in S\}$ is contained in a weakly compact, convex subset of E. Let D be a subspace of B(S) containing 1 with the property that the function $t \mapsto \langle T(t)x, x^* \rangle$ is an element of D for each $x \in C$ and $x^* \in E^*$, and let μ be a mean on D. Following [20], we also write $T_{\mu}x$ instead of $\int T(t)x d\mu(t)$ for $x \in C$. We remark that $T_{\mu}x = x$ for each $x \in F(S)$.

For a mapping T of C into itself and $\varepsilon > 0$, we define the set $F_{\varepsilon}(T)$ to be

$$F_{\varepsilon}(T) = \{ x \in C : \|Tx - x\| \le \varepsilon \}.$$

A Banach space E is said to be strictly convex if ||x + y||/2 < 1 for $x, y \in E$ with ||x|| = ||y|| = 1 and $x \neq y$. In a strictly convex Banach space, we have that if

$$||x|| = ||y|| = ||(1 - \lambda)x + \lambda y||$$

for $x, y \in E$ and $\lambda \in (0, 1)$, then x = y.

3. Some Lemmas

The following lemma was proved by Bruck [7, Remark] and [8, Lemma 2.1](see also [2]).

Lemma 3.1 (Bruck). Let *E* be a strictly convex Banach space and let *C* be a nonempty compact convex subset of *E*. Then, for any $n \in \mathbb{N}$, there exists a strictly increasing continuous, convex function $\gamma_n : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\gamma(0) = 0$ and

$$\gamma_n\left(\left\|\sum_{i=1}^n \lambda_i Ty_i - T\left(\sum_{i=1}^n \lambda_i y_i\right)\right\|\right) \le \max_{1\le i,j\le n} \left(\|y_i - y_j\| - \|Ty_i - Ty_j\|\right)$$
(1)

for every T in N(C), $\{\lambda_i\}_{i=1}^n$ in \mathbb{R}^+ with $\sum_{i=1}^n \lambda_i = 1$ and $\{y_i\}_{i=1}^n$ in C.

The following two lemmas will be useful for us (see also [13, 15] and [1, Lemma 3.1]).

Lemma 3.2. Let *C* be a nonempty compact convex subset of a strictly convex Banach space *E* and let $S = \{T(t) : t \in S\}$ be a nonexpansive semigroup on *C*. Let $x \in C$. Then, for any finite mean μ on *S* and $\varepsilon > 0$, there exists $w_0 = w_0(\mu, \varepsilon) \in S$ such that

$$\left\|\int T(h+s+w)xd\mu(s) - T(h)\left(\int T(s+w)xd\mu(s)\right)\right\| < \varepsilon$$

for every $h \in S$ and $w \ge w_0$.

Proof. Let μ be a finite mean on S and suppose

$$\mu = \sum_{i=1}^{n} a_i \delta_{s_i} \quad (a_i \ge 0, \ \sum_{i=1}^{n} a_i = 1).$$

From Lemma 3.1, for each $n \in \mathbb{N}$, there exists a strictly increasing continuous, convex function γ_n from \mathbb{R}^+ into \mathbb{R}^+ with $\gamma_n(0) = 0$ which satisfies (1). Let $\varepsilon > 0$. Since γ_n^{-1} is continuous and $\gamma_n^{-1}(0) = 0$, there exists $\delta > 0$ with $\gamma_n^{-1}(\delta) < \varepsilon$. Since

$$||T(h+t+s_i)x - T(h+t+s_j)x|| \le ||T(t+s_i)x - T(t+s_j)x||,$$

for every $h, t \in S$, the $\lim_{t\to\infty} ||T(t+s_i)x - T(t+s_j)x||$ exists for every $i, j \in \{1, 2, \ldots, n\}$. Then, there exists $t_1 = t_1(\varepsilon, i, j) \in S$ such that

$$0 \le \|T(t+s_i)x - T(t+s_j)x\| - \|T(h+t+s_i)x - T(h+t+s_j)x\| < \delta$$

for every $t \ge t_1$ and $h \in S$. Let $w_0 \in S$ such that $w_0 \ge t_1(\varepsilon, i, j)$ for all $i, j \in \{1, 2, ..., n\}$. So, it follows from Lemma 3.1 that

$$\begin{split} \left\| \sum_{i=1}^{n} a_{i}T(h)T(w+s_{i})x - T(h) \left(\sum_{i=1}^{n} a_{i}T(w+s_{i})x \right) \right\| \\ &\leq \gamma_{n}^{-1} \Big(\max_{1 \leq i,j \leq n} \left(\|T(w+s_{i})x - T(w+s_{j})x\| - \|T(h)T(w+s_{i})x - T(h)T(w+s_{j})x\| \right) \Big) \\ &< \gamma_{n}^{-1}(\delta) < \varepsilon \end{split}$$

for every $h \in S$ and $w \ge w_0$.

Lemma 3.3. Let *C* be a nonempty compact convex subset of a strictly convex Banach space *E*. Let $S = \{T(t) : t \in S\}$ be a nonexpansive semigroup on *C*, let $x \in C$ and let $\{\mu_{\alpha} : \alpha \in I\}$ and $\{\lambda_{\beta} : \beta \in J\}$ be nets of finite means on *S* such that

$$\lim_{\alpha} \|\mu_{\alpha} - r_t^* \mu_{\alpha}\| = 0 \quad \text{and} \quad \lim_{\beta} \|\lambda_{\beta} - r_t^* \lambda_{\beta}\| = 0 \quad \text{for every } t \in S.$$
(*)

Then, there exist nets $\{p_{\alpha} : \alpha \in I\}$ and $\{q_{\beta} : \beta \in J\}$ in S such that for any $z \in F(S)$,

$$\lim_{\alpha} \left\| \int T(p_{\alpha}+t) x d\mu_{\alpha}(t) - z \right\| = \lim_{\beta} \left\| \int T(q_{\beta}+t) x d\lambda_{\beta}(t) - z \right\|.$$
(2)

Proof. Let $\varepsilon > 0$. From Lemma 3.2, for $\alpha \in I$ and $\beta \in J$, there exist $p_{\alpha}, q_{\beta} \in S$ such that

$$\sup_{h \in S} \left\| \int T(h)T(w+p_{\alpha}+t)xd\mu_{\alpha}(t) - T(h) \left(\int T(w+p_{\alpha}+t)xd\mu_{\alpha}(t) \right) \right\| < \varepsilon$$

and

$$\sup_{h \in S} \left\| \int T(h)T(w + q_{\beta} + s)xd\lambda_{\beta}(s) - T(h) \left(\int T(w + q_{\beta} + s)xd\lambda_{\beta}(s) \right) \right\| < \varepsilon$$

for every $w \in S$. Fix $z \in F(S)$ and consider

$$L = \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - z \right\|,$$

$$I_{1} = \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - \iint T(p_{\alpha} + t + q_{\beta} + s) x d\lambda_{\beta}(s) d\mu_{\alpha}(t) \right\|,$$

$$I_{2} = \left\| \iint T(p_{\alpha} + t + q_{\beta} + s) x d\lambda_{\beta}(s) d\mu_{\alpha}(t) - z \right\|,$$

$$J_{1}^{(2)} = \left\| \iint T(p_{\alpha} + t + q_{\beta} + s) x d\lambda_{\beta}(s) d\mu_{\alpha}(t) - \int T(p_{\alpha} + t) \left(\int T(q_{\beta} + s) x d\lambda_{\beta}(s) d\mu_{\alpha}(t) \right) \right\|$$
and

and

$$J_2^{(2)} = \left\| \int T(p_\alpha + t) \left(\int T(q_\beta + s) x d\lambda_\beta(s) \right) d\mu_\alpha(t) - z \right\|.$$

Then, we have $L \le I_1 + I_2$ and $I_2 \le J_1^{(2)} + J_2^{(2)}$. Suppose

$$\mu_{\alpha} = \sum_{i=1}^{n} a_i \delta_{t_i} \quad (a_i \ge 0, \ \sum_{i=1}^{n} a_i = 1) \quad \text{and} \quad \lambda_{\beta} = \sum_{j=1}^{m} b_j \delta_{s_j} \quad (b_j \ge 0, \ \sum_{j=1}^{m} b_j = 1).$$
(3)

Then, we have

$$\begin{aligned} J_1^{(2)} &\leq \sum_{i=1}^n a_i \bigg\| \int T(p_{\alpha} + t_i) T(q_{\beta} + s) x d\lambda_{\beta}(s) - T(p_{\alpha} + t_i) \bigg(\int T(q_{\beta} + s) x d\lambda_{\beta}(s) \bigg) \bigg\| \\ &\leq \sup_{h \in S} \bigg\| \int T(h) T(q_{\beta} + s) x d\lambda_{\beta}(s) - T(h) \bigg(\int T(q_{\beta} + s) x d\lambda_{\beta}(s) \bigg) \bigg\| < \varepsilon. \end{aligned}$$

Since $z \in F(\mathcal{S})$, we obtain

$$J_2^{(2)} \le \sum_{i=1}^n a_i \left\| T(p_\alpha + t_i) \left(\int T(q_\beta + s) x d\lambda_\beta(s) \right) - z \right\|$$
$$\le \left\| \int T(q_\beta + s) x d\lambda_\beta(s) - z \right\|.$$

Then, we have

$$I_2 \le J_1^{(2)} + J_2^{(2)} < \varepsilon + \left\| \int T(q_\beta + s) x d\lambda_\beta(s) - z \right\|.$$

On the other hand, from (3), we obtain

$$I_1 = \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - \sum_{j=1}^m b_j \int T(p_{\alpha} + t + q_{\beta} + s_j) x d\mu_{\alpha}(t) \right\|$$

$$\leq \sum_{j=1}^{m} b_{j} \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - \int T(p_{\alpha} + t) x d(r_{q_{\beta} + s_{j}}^{*} \mu_{\alpha})(t) \right\|$$

$$\leq \sum_{j=1}^{m} b_{j} \sup_{g \in S} \|T(g)x\| \|\mu_{\alpha} - r_{q_{\beta} + s_{j}}^{*} \mu_{\alpha}\|.$$

Therefore, from $\lim_{\alpha} I_1 = 0$, we have

$$\overline{\lim_{\alpha}} \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - z \right\| = \overline{\lim_{\alpha}} L \leq \overline{\lim_{\alpha}} (I_1 + I_2)$$
$$\leq \varepsilon + \left\| \int T(q_{\beta} + s) x d\lambda_{\beta}(s) - z \right\|.$$

Then, we have

$$\overline{\lim_{\alpha}} \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - z \right\| \leq \varepsilon + \underline{\lim_{\beta}} \left\| \int T(q_{\beta} + s) x d\lambda_{\beta}(s) - z \right\|.$$

Since $\varepsilon > 0$ is arbitrary, we obtain

$$\overline{\lim_{\alpha}} \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - z \right\| \leq \underline{\lim_{\beta}} \left\| \int T(q_{\beta} + s) x d\lambda_{\beta}(s) - z \right\|.$$

Similarly, we have

$$\overline{\lim_{\beta}} \left\| \int T(q_{\beta} + s) x d\lambda_{\beta}(s) - z \right\| \leq \underline{\lim_{\alpha}} \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - z \right\|.$$

Therefore, we have

$$\lim_{\alpha} \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - z \right\| = \lim_{\beta} \left\| \int T(q_{\beta} + t) x d\lambda_{\beta}(t) - z \right\|. \qquad \Box$$

Repeating the above argument, we have the following.

Remark 3.4. In Lemma 3.3, take nets $\{p_{\alpha}'\}$ and $\{q_{\beta}'\}$ in S such that $p_{\alpha}' \ge p_{\alpha}$ and $q_{\beta}' \ge q_{\beta}$. Then, we can see

$$\lim_{\alpha} \left\| \int T(p_{\alpha}' + t) x d\mu_{\alpha}(t) - z \right\| = \lim_{\beta} \left\| \int T(q_{\beta}' + t) x d\lambda_{\beta}(t) - z \right\|$$

for every $z \in F(\mathcal{S})$.

From [2, 7, 8], we have the following lemmas.

Lemma 3.5. Let *E* be a strictly convex Banach space and let *C* be a nonempty compact convex subset of *E*. For any $\varepsilon > 0$, there exists $\delta > 0$ such that for any *T* in N(C),

$$\overline{\operatorname{co}}F_{\delta}(T) \subset F_{\varepsilon}(T).$$

Lemma 3.6. Let E be a strictly convex Banach space and let C be a nonempty compact convex subset of E. Then,

$$\lim_{n \to \infty} \sup_{\substack{y \in C \\ T \in N(C)}} \left\| \frac{1}{n} \sum_{i=1}^n T^i y - T\left(\frac{1}{n} \sum_{i=1}^n T^i y\right) \right\| = 0.$$

Using Lemmas 3.5 and 3.6, we have the following lemma (see also [2, 8, 15, 21]).

Lemma 3.7. Let *C* be a nonempty compact convex subset of a strictly convex Banach space *E*, let $S = \{T(t) : t \in S\}$ be a nonexpansive semigroup on *C* and let $x \in C$. Let $\{\mu_{\alpha} : \alpha \in I\}$ be a net of finite means on *S* such that

$$\lim_{\alpha} \|\mu_{\alpha} - r_t^* \mu_{\alpha}\| = 0 \quad \text{for every} \quad t \in S.$$
 (*)

Then, for any $\varepsilon > 0$ and $t \in S$, there exists $\alpha_0(\varepsilon, t) \in I$ such that

$$\left\|\int T(s+p)xd\mu_{\alpha}(s) - T(t)\left(\int T(s+p)xd\mu_{\alpha}(s)\right)\right\| < \varepsilon$$

for all $\alpha \geq \alpha_0(\varepsilon, t)$ and $p \in S$.

Proof. Let $\varepsilon > 0$ and $t \in S$. From Lemma 3.5, there exists $\delta > 0$ such that

$$\overline{\operatorname{co}}F_{\delta}(U) \subset F_{\varepsilon/3}(U) \tag{4}$$

for every U in N(C). From Lemma 3.6, there exits $n_1 \in \mathbb{N}$ such that

$$\sup_{s \in S} \left\| \frac{1}{n} \sum_{i=1}^{n} T(it+s)x - T(t) \left(\frac{1}{n} \sum_{i=1}^{n} T(it+s)x \right) \right\|$$

=
$$\sup_{s \in S} \left\| \frac{1}{n} \sum_{i=1}^{n} (T(t))^{i} T(s)x - T(t) \left(\frac{1}{n} \sum_{i=1}^{n} (T(t))^{i} T(s)x \right) \right\| < \delta$$

for every $n \ge n_1$. So, it follows

$$\frac{1}{n}\sum_{i=1}^{n}T(it+s)x \in F_{\delta}(T(t)) \subset \overline{\operatorname{co}}F_{\delta}(T(t))$$
(5)

for every $s \in S$ and $n \ge n_1$. Let $n \ge n_1$. Then, we have, for $p \in S$ and $\alpha \in I$,

$$\begin{aligned} \left\| \int T(s+p)xd\mu_{\alpha}(s) - T(t) \int T(s+p)xd\mu_{\alpha}(s) \right\| \\ &\leq \left\| \int T(s+p)xd\mu_{\alpha}(s) - \int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p)xd\mu_{\alpha}(s) \right\| \\ &+ \left\| \int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p)xd\mu_{\alpha}(s) - T(t) \left(\int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p)xd\mu_{\alpha}(s) \right) \right\| \\ &+ \left\| T(t) \left(\int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p)xd\mu_{\alpha}(s) \right) - T(t) \left(\int T(s+p)xd\mu_{\alpha}(s) \right) \right\| \\ &\leq 2 \left\| \int T(s+p)xd\mu_{\alpha}(s) - \int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p)xd\mu_{\alpha}(s) \right\| \\ &+ \left\| \int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p)xd\mu_{\alpha}(s) - T(t) \left(\int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p)xd\mu_{\alpha}(s) \right) \right\| \\ &= 2I_{1} + I_{2}, \end{aligned}$$

and

$$I_{1} = \left\| \int T(s+p)xd\mu_{\alpha}(s) - \int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p)xd\mu_{\alpha}(s) \right\|$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \left\| \int T(s+p)xd\mu_{\alpha}(s) - \int T(it+s+p)xd\mu_{\alpha}(s) \right\|$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left\| \int T(s+p)xd(\mu_{\alpha} - r_{it}^{*}\mu_{\alpha})(s) \right\|$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \sup_{z \in C} \|z\| \|\mu_{\alpha} - r_{it}^{*}\mu_{\alpha}\|.$$

From the assumption of the net $\{\mu_{\alpha} : \alpha \in I\}$, there exists $\alpha_1 \in I$ such that $\|\mu_{\alpha} - r_{it}^*\mu_{\alpha}\| < \frac{\varepsilon}{3\sup_{z \in C} \|z\|}$ for every $\alpha \geq \alpha_1$ and $i \in \{1, 2, \dots n\}$. So, $I_1 < \varepsilon/3$ for every $\alpha \geq \alpha_1$ and $p \in S$. Next we prove that there exists $\alpha_2 \in I$ such that $\int (1/n) \sum_{i=1}^n T(it+s+p) x d\mu_{\alpha}(s) \in \overline{\operatorname{co}} F_{\delta}(T(t))$ for every $p \in S$ and $\alpha \geq \alpha_2$. If not, we have, for each $\alpha_2 \in I$,

$$\int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p') x d\mu_{\alpha'}(s) \notin \overline{\operatorname{co}} F_{\delta}(T(t)).$$

for some $p' \in S$ and $\alpha' \geq \alpha_2$. From the separation theorem, there exists $y_0^* \in E^*$ such that

$$\int \left\langle \frac{1}{n} \sum_{i=1}^{n} T(it+s+p')x, y_0^* \right\rangle d\mu_{\alpha'}(s) < \inf\{\langle z, y_0^* \rangle : z \in \overline{\mathrm{co}} F_{\delta}(T(t))\}.$$

Then, from (5), we obtain

$$\inf\{\langle z, y_0^* \rangle : z \in \overline{\operatorname{co}} F_{\delta}(T(t))\} \leq \inf_{s \in S} \left\langle \frac{1}{n} \sum_{i=1}^n T(it+s+p')x, y_0^* \right\rangle$$
$$\leq \int \left\langle \frac{1}{n} \sum_{i=1}^n T(it+s+p')x, y_0^* \right\rangle d\mu_{\alpha'}(s)$$
$$< \inf\{\langle z, y_0^* \rangle : z \in \overline{\operatorname{co}} F_{\delta}(T(t))\}.$$

This is a contradiction. Hence, from (4), there exists $\alpha_2 \in I$ such that

$$\int \frac{1}{n} \sum_{i=1}^{n} T(it+s+p) x d\mu_{\alpha}(s) \in \overline{\operatorname{co}} F_{\delta}(T(t)) \subset F_{\varepsilon/3}(T(t))$$
(6)

for every $p \in S$ and $\alpha \geq \alpha_2$. Then, from (6), we obtain $I_2 < \varepsilon/3$ for every $p \in S$ and $\alpha \geq \alpha_2$. Let $\alpha_0 \in I$ with $\alpha_0 \geq \alpha_1$ and $\alpha_0 \geq \alpha_2$. Then, we obtain

$$\left\|\int T(s+p)xd\mu_{\alpha}(s) - T(t)\left(\int T(s+p)xd\mu_{\alpha}(s)\right)\right\| \le 2I_1 + I_2 < \varepsilon$$

for every $\alpha \geq \alpha_0$ and $p \in S$. This completes the proof.

4. Nonlinear strong ergodic theorems

In this section, we establish our main strong mean ergodic theorem in a strictly convex Banach space. Using Lemmas 3.3 and 3.7, we can show the following lemma which is crucial to prove the main theorem (Theorem 4.2).

Lemma 4.1. Let E be a strictly convex Banach space, let X be a nonempty closed convex subset of E and let $S = \{T(t) : t \in S\}$ be a nonexpansive semigroup on X. Assume $\bigcup_{t \in S} T(t)(X) \subset K$ for some compact subset K of X. Let D be a subspace of B(S) such that $1 \in D$, D is r_s -invariant for each $s \in S$ and the function $t \mapsto \langle T(t)x, x^* \rangle$ is an element of D for each $x \in X$ and $x^* \in E^*$. Let $\{\mu_{\alpha} : \alpha \in I\}$ be a net of finite means on S such that

$$\lim \|\mu_{\alpha} - r_s^* \mu_{\alpha}\| = 0 \quad \text{for every } s \in S.$$

Then, for any $x \in X$, $\int T(p+t)xd\mu_{\alpha}(t)$ converges strongly to a common fixed point y_0 of $T(t), t \in S$ uniformly in $p \in S$. Furthermore, y_0 is independent of $\{\mu_{\alpha} : \alpha \in I\}$ and for any invariant mean μ on D, $y_0 = T_{\mu}x = \int T(t)xd\mu(t)$.

Proof. Let $x \in X$. From Mazur's theorem, $C = \overline{\operatorname{co}}(\{x\} \cup \bigcup_{t \in S} T(t)(X))$ is a compact subset of X. We see that $C = \overline{\operatorname{co}}(\{x\} \cup \bigcup_{t \in S} T(t)(X))$ is convex and invariant under $T(t), t \in S$. Thus, we may assume that $S = \{T(t) : t \in S\}$ is a nonexpansive semigroup on a compact convex subset of X.

Let $\{\mu_{\alpha} : \alpha \in I\}$ and $\{\lambda_{\beta} : \beta \in J\}$ be nets of finite means on S such that

$$\lim_{\alpha} \|\mu_{\alpha} - r_t^* \mu_{\alpha}\| = 0 \quad \text{and} \quad \lim_{\beta} \|\lambda_{\beta} - r_t^* \lambda_{\beta}\| = 0 \tag{(*)}$$

for each $t \in S$. It follows from Lemma 3.7 that for each $h \in S$,

$$\lim_{\alpha} \sup_{p} \left\| \int T(p+t) x d\mu_{\alpha}(t) - T(h) \left(\int T(p+t) x d\mu_{\alpha}(t) \right) \right\| = 0.$$
(7)

Further, by Lemma 3.3, we can take a net $\{p_{\alpha}\}$ in S such that for any $z \in F(S)$,

$$\lim_{\alpha} \left\| \int T(p_{\alpha} + t) x d\mu_{\alpha}(t) - z \right\|$$
(8)

exists. Let $\{\Phi_{\alpha}\} = \{\int T(p_{\alpha} + t)xd\mu_{\alpha}(t) : \alpha \in I\}$. Then, we first prove that Φ_{α} converges strongly to a common fixed point of $T(t), t \in S$. From the compactness, $\{\Phi_{\alpha}\}$ must contain a subnet which converges strongly to a point in C. So, let $\{\Phi_{\alpha_{\gamma}}\}$ be a subnet of $\{\Phi_{\alpha}\}$ such that $\lim_{\gamma} \Phi_{\alpha_{\gamma}} = y_0 \in C$. From (7), we have, for any $h \in S$,

$$0 = \lim_{\alpha} \|\Phi_{\alpha} - T(h)\Phi_{\alpha}\| = \lim_{\gamma} \|\Phi_{\alpha_{\gamma}} - T(h)\Phi_{\alpha_{\gamma}}\|$$
$$= \|y_0 - T(h)y_0\|$$

and hence y_0 is a common fixed points of $T(t), t \in S$. So, from (8), we have

$$\lim_{\alpha} \|\Phi_{\alpha} - y_0\| = \lim_{\gamma} \|\Phi_{\alpha_{\gamma}} - y_0\| = 0$$

This implies that $\Phi_{\alpha} \to y_0$. Next we prove that $\int T(h+t)xd\mu_{\alpha}(t)$ converges strongly to $y_0 \in F(\mathcal{S})$ uniformly in h. In the above argument, take a net $\{p_{\alpha}' : \alpha \in I\}$ in S such that $p_{\alpha}' \geq p_{\alpha}$ for each $\alpha \in I$. Then, repeating the above argument, we see that $\Phi_{\alpha}' = \int T(p_{\alpha}' + t) x d\mu_{\alpha}(t)$ converges strongly to a common fixed point y_1 of $T(t), t \in S$. We show $y_0 = y_1$. From Lemma 3.3 and Remark 3.4, we know

$$\lim_{\alpha} \left\| \int T(p_{\alpha}'+t) x d\mu_{\alpha}(t) - z \right\| = \lim_{\alpha} \left\| \int T(p_{\alpha}+t) x d\mu_{\alpha}(t) - z \right\|$$
(9)

for every $z \in F(S)$. Suppose $y_0 \neq y_1$. Then, Φ_{α} does not converge strongly to y_1 . Since y_0 and y_1 are common fixed points of $T(t), t \in S$, from (9), we have

$$0 \le \lim_{\alpha} \|\Phi_{\alpha} - y_1\| = \lim_{\alpha} \|\Phi_{\alpha}' - y_1\| = 0$$

and hence $\Phi_{\alpha} \to y_1$. This is a contradiction. So, we have $y_0 = y_1 \in F(S)$. Since $\{p_{\alpha}'\}$ is an arbitrary net in S such that $p_{\alpha}' \geq p_{\alpha}$ for each $\alpha \in I$, we have that $\int T(h + p_{\alpha} + t)xd\mu_{\alpha}(t)$ converges strongly to y_0 uniformly in $h \in S$. Let $\varepsilon > 0$. Then, there exists $\alpha_0 \in I$ such that

$$\left|\int T(h+p_{\alpha}+s)xd\mu_{\alpha}(s)-y_{0}\right\|<\frac{\varepsilon}{2}$$
(10)

for every $\alpha \geq \alpha_0$ and $h \in S$. Suppose

$$\mu_{\alpha_0} = \sum_{k=1}^m b_k \delta_{s_k} \quad (b_k \ge 0, \ \sum_{k=1}^m b_k = 1).$$

Put $\mu_0 = \mu_{\alpha_0}$ and $p_0 = p_{\alpha_0}$. From (10), we have

$$\begin{aligned} \left\| \iint T(h+t+p_0+s)xd\mu_0(s)d\lambda_\beta(t) - y_0 \right\| \\ &= \left\| \iint T(h+t+p_0+s)xd\mu_0(s)d\lambda_\beta(t) - \int y_0 d\lambda_\beta(t) \right| \\ &\leq \sup_{t,h\in S} \left\| \int T(h+t+p_0+s)xd\mu_0(s) - y_0 \right\| < \frac{\varepsilon}{2} \end{aligned}$$

for every $h \in S$ and $\beta \in J$. Since $\{\lambda_{\beta}\}$ satisfies (*), there exists β_1 such that

$$\|\lambda_{\beta} - r_{p_0 + s_k}^* \lambda_{\beta}\| < \frac{\varepsilon}{2 \max\{1, M\}}$$

for every $k \in \{1, 2, ..., m\}$ and $\beta \ge \beta_1$, where $M = \sup_{g \in S} ||T(g)x||$. Then, we have

$$\left\| \int T(h+t)xd\lambda_{\beta}(t) - \iint T(h+t+p_{0}+s)xd\mu_{0}(s)d\lambda_{\beta}(t) \right\|$$
$$= \left\| \int T(h+t)xd\lambda_{\beta}(t) - \sum_{k=1}^{m} b_{k} \int T(h+t+p_{0}+s_{k})xd\lambda_{\beta}(t) \right\|$$
$$\leq \sum_{k=1}^{m} b_{k} \left\| \int T(h+t)xd\lambda_{\beta}(t) - \int T(h+t)d(r_{p_{0}+s_{k}}^{*}\lambda_{\beta})(t) \right\|$$
$$\leq \sum_{k=1}^{m} b_{k} M \left\| \lambda_{\beta} - r_{p_{0}+s_{k}}^{*}\lambda_{\beta} \right\| < \frac{\varepsilon}{2}$$

for every $\beta \geq \beta_1$ and $h \in S$. Therefore,

$$\begin{split} \left\| \int T(h+t)xd\lambda_{\beta}(t) - y_{0} \right\| \\ &\leq \left\| \int T(h+t)xd\lambda_{\beta}(t) - \iint T(h+t+p_{0}+s)xd\mu_{0}(s)d\lambda_{\beta}(t) \right\| \\ &\quad + \left\| \iint T(h+t+p_{0}+s)xd\mu_{0}(s)d\lambda_{\beta}(t) - y_{0} \right\| \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

for every $\beta \geq \beta_1$ and $h \in S$. Hence, $\int T(h+t)xd\lambda_{\beta}(t)$ converges strongly to y_0 uniformly in $h \in S$. Since $\{\lambda_{\beta} : \beta \in J\}$ and $\{\mu_{\alpha} : \alpha \in I\}$ are arbitrary nets of finite means on S such that

$$\lim_{\beta} \|\lambda_{\beta} - r_t^* \lambda_{\beta}\| = 0 \quad \text{and} \quad \lim_{\beta} \|\mu_{\alpha} - r_t^* \mu_{\alpha}\| = 0,$$

for every $t \in S$, we see that such an element y_0 of F(S) is independent of $\{\lambda_\beta : \beta \in J\}$ and $\{\mu_\alpha : \alpha \in I\}$. Finally, we prove that for any invariant mean μ on D, $y_0 = T_\mu x$.

Let AP(S) denote the space of all almost periodic functions on S, i.e., all $f \in B(S)$ such that $RO(f) = \{r_s f : s \in S\}$ is relatively compact in the supremum norm topology of B(S). Then, AP(S) is a closed subalgebra of B(S) invariant under translations. Since S is commutative, B(S), and hence AP(S) has an invariant mean. In fact, AP(S) has a unique invariant mean m. To see this, let Σ denote the spectrum of the Banach algebra AP(S), i.e., the set of non-zero multiplicative linear functionals on AP(S) with the relative weak*-topology from $AP(S)^*$. Then, Σ is a compact Hausdorff space, $\{\delta_s : s \in S\}$ is dense in Σ and Σ is a commutative compact topological semigroup with multiplications $\langle \theta_1 + \theta_2, f \rangle = \iint f(s + t)d\theta_1(s)d\theta_2(t), \quad \theta_1, \theta_2 \in \Sigma$. Furthermore, the Banach algebras AP(S) and $C(\Sigma)$ (bounded continuous real-valued functions on Σ) are isometrically isomorphic via the Gelfand transform $\sigma : f \mapsto \hat{f}$, and m is an invariant mean on AP(S) if and only if $(\sigma^{-1})^*m = \hat{m}$ is an invariant mean on $C(\Sigma)$. It follows from [9, Corollary 2.5, p.23] that $C(\Sigma)$ has a unique invariant mean.

We next show that for each $x \in X$ and $x^* \in E^*$, the function $f(t) = \langle T(t)x, x^* \rangle$ is in AP(S). Indeed, let Y be the norm closure of $\{T(t)x : t \in S\}$. Then, Y is compact. For each $y \in Y$, let $h_y(t) = \langle T(t)y, x^* \rangle$. Then, for $a \in S$, $r_af(t) =$ $f(t+a) = \langle T(t)T(a)x, x^* \rangle$ and hence $\{r_af : a \in S\} \subset \{h_y : y \in Y\}$. Now, the map $y \mapsto h_y$ is continuous from Y into B(S) by nonexpansiveness of each $T(t), t \in S$. Hence $f \in AP(S)$.

Let $\{\mu_{\beta}\}$ be a net of finite means on S such that $\lim_{\beta} \|\mu_{\beta} - r_s^*\mu_{\beta}\| = 0$ for all $s \in S$. Such a net always exists since S is commutative (see [11]). Now let μ be a weak*-cluster point of $\{\mu_{\beta}\}$ in D^* . Then, μ is an invariant mean on D. Let $x \in X, x^* \in E^*$, and $f(t) = \langle T(t)x, x^* \rangle$. We will show that $\langle \mu, f \rangle = \langle m, f \rangle$, where m is the unique invariant mean on AP(S). If $\langle \mu, f \rangle \neq \langle m, f \rangle$, by Hahn-Banach extension theorem, there is a mean $\tilde{\mu}$ on B(S) such that $\tilde{\mu}$ extends μ . Let ν be any

invariant mean on B(S), $\nu \odot \tilde{\mu} \in B(S)^*$ be defined by $\langle \nu \odot \tilde{\mu}, h \rangle = \langle \nu, \tilde{\mu} \cdot h \rangle$, where $(\tilde{\mu} \cdot h)(t) = \langle \tilde{\mu}, r_t h \rangle, t \in S$. Then, as readily checked $\nu \odot \tilde{\mu}$ is also an invariant mean on B(S), and $\langle \nu \odot \tilde{\mu}, f \rangle = \langle \tilde{\mu}, f \rangle = \langle \mu, f \rangle \neq \langle m, f \rangle$. Consequently, the restriction of $\nu \odot \tilde{\mu}$ to AP(S) is an invariant mean on AP(S) different from m, which contradict the uniqueness of m on AP(S). So, $\langle \mu, f \rangle = \langle m, f \rangle$. Consequently we have

$$\int \langle T(t)x, x^* \rangle d\mu_\beta(t) \to \langle \mu, f \rangle = \int \langle T(t)x, x^* \rangle d\mu(t) = \langle T_\mu x, x^* \rangle.$$

On the other hand, we obtain

$$\int T(t) x d\mu_{\beta}(t) \to y_0$$

Hence, we obtain $y_0 = T_\mu x$.

Let D be a subspace of B(S) containing 1 and r_s -invariant for every $s \in S$. Then, a net $\{\mu_{\alpha} : \alpha \in I\}$ of linear functionals on D is called strongly regular [15] if it satisfies the following conditions:

(a) $\sup \|\mu_{\alpha}\| < +\infty;$

(b)
$$\lim \mu_{\alpha}(1) = 1$$

(b) $\lim_{\alpha} \mu_{\alpha}(1) = 1;$ (c) $\lim_{\alpha} \|\mu_{\alpha} - r_s^* \mu_{\alpha}\| = 0$ for every $s \in S$.

A remarkable result of Day [11] shows that for any commutative semigroup S, there is always a strongly regular net of finite means on B(S) and hence on D.

Theorem 4.2. Let E be a strictly convex Banach space, let X be a nonempty a closed convex subset of E and let $S = \{T(t) : t \in S\}$ be a nonexpansive semigroup on X. Assume $\bigcup_{t \in S} T(t)(X) \subset K$ for some compact subset K of X. Let D be a subspace of B(S) such that $1 \in D$, D is r_s -invariant for each $s \in S$ and the function $t \mapsto \langle T(t)x, x^* \rangle$ is an element of D for each $x \in X$ and $x^* \in E^*$. Let $\{\lambda_\alpha : \alpha \in A\}$ be a strongly regular net of continuous linear functionals on D and let $x \in X$. Then, $\int T(h+t)xd\lambda_{\alpha}(t)$ converges strongly to a common fixed point y_0 of $T(t), t \in S$ uniformly in $h \in S$. Further, such an element y_0 of $F(\mathcal{S})$ is independent of $\{\lambda_{\alpha}\}$ and for any invariant mean μ on D, $y_0 = T_{\mu}x = \int T(t)xd\mu(t)$. In this case, putting $Qx = \lim_{\alpha} \int T(t) x d\lambda_{\alpha}(t)$ for each $x \in X, Q$ is a nonexpansive mapping of X onto $F(\mathcal{S})$ such that QT(t) = T(t)Q = Q for every $t \in S$ and $Qx \in \overline{co}\{T(s)x : s \in S\}$ for every $x \in X$.

Proof. Let $\{\lambda_{\alpha} : \alpha \in A\}$ be a strongly regular net of continuous linear functionals on D and let $\{\mu_{\beta} : \beta \in B\}$ be a net of finite means on S such that

$$\lim_{\beta} \|\mu_{\beta} - r_t^* \mu_{\beta}\| = 0 \quad \text{for every } t \in S.$$
 (*)

From Lemma 4.1, we have that $\int T(h+t)xd\mu_{\beta}(t)$ converges strongly to a common fixed point y_0 of $T(t), t \in S$ uniformly in $h \in S$. Let $\varepsilon > 0$ and let μ be an invariant mean on D. From Lemma 4.1, we also know $y_0 = T_{\mu}x$. Further, there exists β_1 such that

$$\left\|\int T(h+t)xd\mu_{\beta}(t) - T_{\mu}x\right\| < \frac{\varepsilon}{\sup_{\alpha} \|\lambda_{\alpha}\|}$$

for all $\beta \geq \beta_1$ and $h \in S$. Suppose

$$\mu_{\beta_1} = \sum_{i=1}^n b_i \delta_{t_i} \quad (b_i \ge 0, \ \sum_{i=1}^n b_i = 1)$$
(11)

and put $\mu_1 = \mu_{\beta_1}$. Then, we have

$$\left\|\int T(h+t)xd\mu_1(t) - T_{\mu}x\right\| < \frac{\varepsilon}{\sup_{\alpha} \|\lambda_{\alpha}\|}$$
(12)

for every $h \in S$. Since $\{\lambda_{\alpha}\}$ is strongly regular, there exists α_0 such that

$$|1 - \lambda_{\alpha}(1)| < \frac{\varepsilon}{\max\{1, \|T_{\mu}x\|\}}$$
$$\|\lambda_{\alpha} - r_{t_{i}}^{*}\lambda_{\alpha}\| < \frac{\varepsilon}{\max\{1, M\}}$$
(13)

and

for every $i \in \{1, 2, \dots, n\}$ and $\alpha \ge \alpha_0$, where $M = \sup_{g \in S} ||T(g)x||$. Then, we have

$$\left\| T_{\mu}x - \int T_{\mu}x d\lambda_{\alpha}(s) \right\| = \sup_{x^{*} \in S_{1}(E^{*})} \left| \langle T_{\mu}x, x^{*} \rangle - \int \langle T_{\mu}x, x^{*} \rangle d\lambda_{\alpha}(s) \right| \\ \leq \sup_{x^{*} \in S_{1}(E^{*})} \left| \langle T_{\mu}x, x^{*} \rangle \right| \cdot |1 - \lambda_{\alpha}(1)| < \varepsilon$$

for every $\alpha \geq \alpha_0$ and from (12),

$$\left\| \iint T(h+s+t)xd\mu_1(t)d\lambda_{\alpha}(s) - \int T_{\mu}xd\lambda_{\alpha}(s) \right\|$$

$$\leq \|\lambda_{\alpha}\| \cdot \sup_{s,h\in S} \left\| \int T(h+s+t)xd\mu_1(t) - T_{\mu}x \right\| < \varepsilon$$

for every $h \in S$ and $\alpha \in A$. Thus, we obtain

$$\left\| \iint T(h+s+t)xd\mu_1(t)d\lambda_\alpha(s) - T_\mu x \right\| < \varepsilon + \varepsilon = 2\varepsilon$$

for every $h \in S$ and $g\alpha \ge \alpha_0$. On the other hand, from (11) and (13), we have

$$\begin{split} \left\| \int T(h+s)xd\lambda_{\alpha}(s) - \iint T(h+s+t)xd\mu_{1}(t)d\lambda_{\alpha}(s) \right\| \\ &= \left\| \int T(h+s)xd\lambda_{\alpha}(s) - \sum_{i=1}^{n} b_{i} \int T(h+s+t_{i})xd\lambda_{\alpha}(s) \right| \\ &\leq \sum_{i=1}^{n} b_{i} \left\| \int T(h+s)xd\lambda_{\alpha}(s) - \int T(h+s+t_{i})xd\lambda_{\alpha}(s) \right\| \\ &= \sum_{i=1}^{n} b_{i} \left\| \int T(h+s)xd(\lambda_{\alpha} - r_{t_{i}}^{*}\lambda_{\alpha})(s) \right\| \\ &\leq \sum_{i=1}^{n} b_{i} \left\| \lambda_{\alpha} - r_{t_{i}}^{*}\lambda_{\alpha} \right\| \cdot M < \varepsilon \end{split}$$

for every $h \in S$ and $\alpha \geq \alpha_0$. Therefore, we obtain

$$\begin{split} \left\| \int T(h+s)xd\lambda_{\alpha}(s) - T_{\mu}x \right\| \\ &\leq \left\| \int T(h+s)xd\lambda_{\alpha}(s) - \iint T(h+s+t)xd\mu_{1}(t)d\lambda_{\alpha}(s) \right\| \\ &\quad + \left\| \iint T(h+s+t)xd\mu_{1}(t)d\lambda_{\alpha}(s) - T_{\mu}x \right\| \\ &< \varepsilon + 2\varepsilon = 3\varepsilon \end{split}$$

for every $h \in S$ and $\alpha \geq \alpha_0$. Then, $\int T(h+t)xd\lambda_{\alpha}(t)$ converges strongly to a common fixed point y_0 of $T(t), t \in S$ uniformly in h. Further, such an element y_0 is independent of $\{\lambda_{\alpha}\}$ and $y_0 = T_{\mu}x$ for any invariant mean μ on D. If $Qx = \lim_{\alpha} \int T(t)xd\lambda_{\alpha}(t)$ for each $x \in X$, then Q is a nonexpansive mapping of X onto F(S) such that QT(t) = T(t)Q = Q for every $t \in S$ and $Qx \in \overline{co}\{T(s)x : s \in S\}$ for every $x \in X$.

Using Lemma 4.1, we also have the following result.

Theorem 4.3. Let E, X, D and $S = \{T(t) : t \in S\}$ be as in Theorem 4.2. Assume $\bigcup_{t \in S} T(t)(X) \subset K$ for some compact subset K of X. Then, T(t)x is strongly convergent if and only if

$$T(s+t)x - T(t)x \to 0 \quad \text{for every } s \in S.$$
 (14)

In this case, the limit point of $\{T(t)x : t \in S\}$ is a common fixed point of $T(t), t \in S$.

Proof. It is trivial to show the "only if" part. Let $\{\mu_{\alpha} : \alpha \in A\}$ be a net of finite means on S such that

$$\lim_{\alpha} \|\mu_{\alpha} - r_t^* \mu_{\alpha}\| = 0 \quad \text{for every } t \in S.$$
 (*)

Then, from Lemma 4.1, $\lim_{\alpha} \int T(h+t)xd\mu_{\alpha}(t)$ converges strongly to $y_0 \in F(S)$ uniformly in $h \in S$. Let $\varepsilon > 0$. Then, there exists α_0 such that $\left\|\int T(h+t)xd\mu_{\alpha}(t) - y_0\right\| < \varepsilon/2$ for every $\alpha \ge \alpha_0$ and $h \in S$. Put $\mu_{\alpha_0} = \sum_{i=1}^n a_i \delta_{s_i}$ $(a_i \ge 0, \sum_{i=1}^n a_i = 1)$. From (14), there exists $t_0 \in S$ such that $\|T(t+s_i)x - T(t)x\| < \varepsilon/2$ for every $t \ge t_0$ and i = 1, 2, ..., n. Then, we obtain

$$\begin{aligned} \|T(t)x - y_0\| &= \left\| \int T(t)x d\mu_{\alpha_0}(s) - y_0 \right\| \\ &\leq \left\| \int T(t+s)x d\mu_{\alpha_0}(s) - y_0 \right\| + \left\| \int \left[T(t+s)x - T(t)x \right] x d\mu_{\alpha_0}(s) \right\| \\ &< \frac{\varepsilon}{2} + \sum_{i=1}^n a_i \left\| T(t+s_i)x - T(t)x \right\| < \varepsilon \end{aligned}$$

for every $t \ge t_0$. This implies that $\lim_t T(t)x = y_0 \in F(\mathcal{S})$.

5. Applications

We now apply Theorem 4.2 to obtain other strong nonlinear ergodic theorems with compact domains (for related results, see [2, 3]).

Theorem 5.1 ([2]). Let X be a nonempty closed convex subset of a strictly convex Banach space E. Let T be a nonexpansive mapping of X into itself such that T(X)is relatively compact. Then, for any $x \in X$, $(1/n) \sum_{i=0}^{n-1} T^{i+k}x$ converges strongly to some $y \in F(T)$, as $n \to \infty$, uniformly in $k \in \mathbb{Z}^+$.

Proof. Let $S = \mathbb{Z}^+, S = \{T^i : i \in S\}$, D = B(S) and $\lambda_n(f) = (1/n) \sum_{i=0}^{n-1} f(i)$ for all $n \in \mathbb{N}$ and $f \in D$. Then, $\{\lambda_n : n \in \mathbb{N}\}$ is a sequence of means. Further, we have

$$\begin{aligned} |\lambda_n - r_1^* \lambda_n|| &= \sup_{\|f\| \le 1} |(\lambda_n - r_1^* \lambda_n)(f)| \\ &= \frac{1}{n} \sup_{\|f\| \le 1} |f(0) - f(n)| \le \frac{2}{n} \to 0, \end{aligned}$$

as $n \to \infty$ and hence for $k \ge 2$,

$$\begin{aligned} \|\lambda_n - r_k^* \lambda_n\| &\leq \|r_k^* \lambda_n - r_{k-1}^* \lambda_n\| + \dots + \|r_1^* \lambda_n - \lambda_n\| \\ &\leq k \|\lambda_n - r_1^* \lambda_n\| \to 0, \end{aligned}$$

as $n \to \infty$. Therefore, we obtain Theorem 5.1 by using Theorem 4.2.

Theorem 5.2. Let E, X, T be as in Theorem 5.1. Then, for each $x \in X$, $(1 - s) \sum_{i=0}^{\infty} s^i T^{i+k} x$ converges strongly to some $y \in F(T)$, as $s \uparrow 1$, uniformly in $k \in \mathbb{Z}^+$.

Proof. Let $S = \mathbb{Z}^+, S = \{T^i : i \in S\}, D = B(S) \text{ and } \lambda_s(f) = (1-s) \sum_{i=0}^{\infty} s^i f(i)$ for every $s \in (0,1)$ and $f \in D$. Then, $\{\lambda_s : s \in (0,1)\}$ is a net of means. Further, we have, $\|\lambda_s - r_k^*\lambda_s\| \to 0$ for every $k \in \mathbb{Z}^+$. Indeed, we have, for any $k \ge 2$,

$$\begin{split} \|\lambda_s - r_k^* \lambda_s\| &= \sup_{\|f\| \le 1} |(\lambda_s - r_k^* \lambda_s)(f)| \\ &= \sup_{\|f\| \le 1} \left| (1-s) \sum_{i=0}^{k-1} s^i f(i) + (1-s) \sum_{i=k}^{\infty} s^i f(i) - (1-s) \sum_{i=0}^{\infty} s^i f(i+k) \right| \\ &= \sup_{\|f\| \le 1} \left| (1-s) \sum_{i=0}^{k-1} s^i f(i) + (1-s) \sum_{i=0}^{\infty} s^{i+k} f(i+k) \right| \\ &- (1-s) \sum_{i=0}^{\infty} s^i f(i+k) \right| \\ &\leq (1-s) \sum_{i=0}^{k-1} s^i \|f\| + (1-s) \sum_{i=0}^{\infty} s^i |s^k - 1| \|f\| \\ &= 2(1-s^k) \|f\| \to 0, \end{split}$$

as $s \to 1$. Therefore, we obtain Theorem 5.2 by using Theorem 4.2.

Let $Q = \{q_{n,m}\}_{n,m\in\mathbb{Z}^+}$ be a matrix satisfying the following conditions:

(a)
$$\sup_{n \in \mathbb{Z}^+} \sum_{m=0}^{\infty} |q_{n,m}| < \infty;$$

(b)
$$\lim_{n \to \infty} \sum_{m=0}^{\infty} q_{n,m} = 1;$$

(c)
$$\lim_{n \to \infty} \sum_{m=0}^{\infty} |q_{n,m+1} - q_{n,m}| = 0.$$

Then, according to Lorentz [18], Q is called a strongly regular matrix. If Q is a strongly regular matrix, then for each $m \in \mathbb{Z}^+$, we have that $|q_{n,m}| \to 0$, as $n \to \infty$ (see also [15]).

Theorem 5.3. Let E, X and T be as in Theorem 5.1. Let $Q = \{q_{n,m}\}_{n,m\in\mathbb{Z}^+}$ be a strongly regular matrix. Then, for any $x \in X$, $\sum_{m=0}^{\infty} q_{n,m}T^{m+k}x$ converges strongly to some $y \in F(T)$, as $n \to \infty$, uniformly in $k \in \mathbb{Z}^+$.

Proof. Let $S = \mathbb{Z}^+, S = \{T^i : i \in S\}, D = B(S) \text{ and } \lambda_n(f) = \sum_{m=0}^{\infty} q_{n,m}f(m) \text{ for each } n \in \mathbb{N} \text{ and } f \in D.$ Then, $\{\lambda_n : n \in \mathbb{N}\}$ is a sequence of means. Further, we have $\|\lambda_n - r_k^*\lambda_n\| \to 0$ for every $k \in \mathbb{Z}^+$. Indeed, we have that

$$\begin{aligned} \|\lambda_n - r_1^* \lambda_n\| &= \sup_{\|f\| \le 1} \left| (\lambda_n - r_1^* \lambda_n)(f) \right| \\ &= \sup_{\|f\| \le 1} \left| \sum_{m=0}^{\infty} q_{n,m} \{f(m) - f(m+1)\} \right| \\ &= \sup_{\|f\| \le 1} \left| q_{n,0} f(0) + \sum_{m=0}^{\infty} q_{n,m+1} f(m+1) - \sum_{m=0}^{\infty} q_{n,m} f(m+1) \right| \\ &\le \sum_{m=0}^{\infty} |q_{n,m+1} - q_{n,m}| + |q_{n,0}| \to 0, \end{aligned}$$

as $n \to \infty$ and hence for $k \ge 2$,

$$\begin{aligned} \|\lambda_n - r_k^* \lambda_n\| &\leq \|r_k^* \lambda_n - r_{k-1}^* \lambda_n\| + \dots + \|r_1^* \lambda_n - \lambda_n\| \\ &\leq k \|\lambda_n - r_1^* \lambda_n\| \to 0, \end{aligned}$$

as $n \to \infty$. So, using Theorem 4.2, we obtain Theorem 5.3.

Theorem 5.4. Let X be a nonempty closed convex subset of a strictly convex Banach space E. Let U and T be nonexpansive mappings of X into itself with UT = TU. Assume $(U(X) \cup T(X)) \subset K$ for some compact subset K of X. Then, for each $x \in X$, $(1/n^2) \sum_{i,j=0}^{n-1} U^{i+k} T^{j+h} x$ converges strongly to some $y \in F(U) \cap F(T)$, as $n \to \infty$, uniformly in $k, h \in \mathbb{Z}^+$.

Proof. Let $S = \mathbb{Z}^+ \times \mathbb{Z}^+, S = \{U^i T^j : (i, j) \in S\}, D = B(S) \text{ and } \lambda_n(f) = (1/n^2) \sum_{i,j=0}^{n-1} f(i,j) \text{ for each } n \in \mathbb{N} \text{ and } f \in D. \text{ Then, } \{\lambda_n : n \in \mathbb{N}\} \text{ is a sequence of means. Further, we have that for each } (l, m) \in S,$

$$\|\lambda_n - r^*_{(l,m)}\lambda_n\| = \sup_{\|f\| \le 1} |(\lambda_n - r^*_{(l,m)}\lambda_n)(f)|$$

$$= \sup_{\|f\| \le 1} \left| \frac{1}{n^2} \sum_{i,j=0}^{n-1} f(i,j) - \frac{1}{n^2} \sum_{i,j=0}^{n-1} f(i+l,j+m) \right|$$

$$\leq \frac{1}{n^2} \{l \cdot n + m(n-l) + l \cdot n + m(n-l)\}$$

$$= \frac{1}{n^2} \{2n(l+m) - 2ml\} \to 0,$$

as $n \to \infty$. Therefore, using Theorem 4.2, we obtain Theorem 5.4.

Let X be a closed convex subset of a Banach space E and let $S = \{T(t) : t \in \mathbb{R}^+\}$ be a family of nonexpansive mappings of X into itself. Then, S is called a oneparameter nonexpansive semigroup on X if it satisfies the following conditions: T(0) = I, T(t+s) = T(t)T(s) for all $t, s \in \mathbb{R}^+$ and T(t)x is continuous in $t \in \mathbb{R}^+$ for each $x \in X$.

Theorem 5.5 ([3]). Let X be a nonempty compact convex subset of a strictly convex Banach space E and let $S = \{T(t) : t \in \mathbb{R}^+\}$ be a one-parameter nonexpansive semigroup on X. Then, for any $x \in X$, $(1/s) \int_0^s T(t+k)xdt$ converges strongly to some $y \in F(S)$, as $s \to \infty$, uniformly in $k \in \mathbb{R}^+$.

Proof. Let $S = \mathbb{R}^+$, $S = \{T(t) : t \in \mathbb{R}^+\}$ and let D be the Banach space C(S) of all bounded continuous functions on S with the supremum norm. Define $\lambda_s(f) = (1/s) \int_0^s f(t) dt$ for every s > 0 and $f \in D$. Then, $\{\lambda_s : 0 < s < \infty\}$ is a net of means. Further, we obtain that for any k with $0 < k < \infty$,

$$\begin{aligned} \|\lambda_{s} - r_{k}^{*}\lambda_{s}\| &= \sup_{\|f\| \leq 1} \left| \frac{1}{s} \int_{0}^{s} f(t)dt - \frac{1}{s} \int_{0}^{s} f(t+k)dt \right| \\ &= \frac{1}{s} \sup_{\|f\| \leq 1} \left| \int_{0}^{s} f(t)dt - \int_{k}^{s+k} f(t)dt \right| \\ &= \frac{1}{s} \sup_{\|f\| \leq 1} \left| \int_{0}^{k} f(t)dt - \int_{s}^{s+k} f(t)dt \right| \\ &\leq \frac{1}{s} \sup_{\|f\| \leq 1} \left(\int_{0}^{k} |f(t)|dt + \int_{s}^{s+k} |f(t)|dt \right) \\ &= \frac{2k}{s} \to 0, \end{aligned}$$

as $s \to \infty$. Therefore, using Theorem 4.2, we obtain Theorem 5.5.

Theorem 5.6. Let $E, X, \mathcal{S} = \{T(t) : t \in \mathbb{R}^+\}$ be as in Theorem 5.5. Then, for any $x \in X$, $r \int_0^\infty e^{-rt} T(t+k) x dt$ converges strongly to some $y \in F(\mathcal{S})$, as $r \downarrow 0$, uniformly in $k \in \mathbb{R}^+$.

Proof. Let $S = \mathbb{R}^+$, $S = \{T(t) : t \in \mathbb{R}^+\}$ and D = C(S). Define $\lambda_r(f) = r \int_0^\infty e^{-rt} f(t) dt$ for each r > 0 and $f \in D$. Then, $\{\lambda_r : 0 < r < \infty\}$ is a net of means. Further, we have that for each s with $0 < s < \infty$,

$$\|\lambda_r - r_s^* \lambda_r\| = \sup_{\|f\| \le 1} \left| r \int_0^\infty e^{-rt} f(t) dt - r \int_0^\infty e^{-rt} f(s+t) dt \right|$$

229

 \square

S. ATSUSHIBA, A. T. LAU AND W. TAKAHASHI

$$= \sup_{\|f\| \le 1} \left| r \int_0^s e^{-rt} f(t) dt + r \left(1 - e^{rs} \right) \int_s^\infty e^{-rt} f(t) dt \right|$$

$$\le rs + |1 - e^{rs}| \to 0,$$

as $r \downarrow 0$. Therefore, using Theorem 4.2, we obtain Theorem 5.6.

Let $Q = \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ be a function satisfying the following conditions:

- (a) $\sup_{s \in \mathbb{R}^+} \int_0^\infty |Q(s,t)| dt < \infty;$ (b) $\lim_{s \to \infty} \int_0^\infty Q(s,t) dt = 1;$ (c) $\lim_{s \to \infty} \int_0^\infty |Q(s,t+h) Q(s,t)| dt = 0 \quad \text{for every} \quad h \in \mathbb{R}^+.$ Then, Q is called a strongly regular kernel.

Theorem 5.7. Let $E, X, \mathcal{S} = \{T(t) : t \in \mathbb{R}^+\}$ be as in Theorem 5.5. Let $Q : \mathbb{R}^+ \times$ $\mathbb{R}^+ \to \mathbb{R}$ be a strongly regular kernel. Then, for any $x \in X$, $\int_0^\infty Q(s,t)T(t+h)xdt$ converges strongly to some $y \in F(\mathcal{S})$, as $s \to \infty$, uniformly in $h \in \mathbb{R}^+$.

Proof. Let $S = \mathbb{R}^+$, $S = \{T(t) : t \in \mathbb{R}^+\}$ and D = C(S). Define $\lambda_s(f) =$ $\int_0^\infty Q(s,t)f(t)dt$ for every s > 0 and $f \in D$. Then, $\{\lambda_s : 0 < s < \infty\}$ is a net of means. Further, we have that for each h with $0 < h < \infty$,

$$\begin{aligned} \|\lambda_s - r_h^* \lambda_s\| &= \sup_{\|f\| \le 1} \left| (\lambda_s - r_h^* \lambda_s)(f) \right| \\ &= \sup_{\|f\| \le 1} \left| \int_0^\infty Q(s,t) f(t) dt - \int_0^\infty Q(s,t) f(t+h) dt \right| \\ &= \sup_{\|f\| \le 1} \left| \int_0^h Q(s,t) f(t) dt + \int_0^\infty Q(s,t+h) f(t+h) dt \right| \\ &- \int_0^\infty Q(s,t) f(t+h) dt \right| \\ &\leq \left| \int_0^h Q(s,t) dt \right| + \left| \int_0^\infty |Q(s,t+h) - Q(s,t)| dt \right| \to 0, \end{aligned}$$

as $s \to \infty$. Therefore, using Theorem 4.2, we obtain Theorem 5.7.

References

- [1] S. Atsushiba and W. Takahashi, Nonlinear ergodic theorems in a Banach space satisfying Opial's condition, Tokyo J. Math., 21 (1998), 61-81.
- [2] S. Atsushiba and W. Takahashi, A nonlinear strong ergodic theorem for nonexpansive mappings with compact domains, to appear in Math. Japon..
- [3] S. Atsushiba and W. Takahashi, Strong convergence theorems for one-parameter nonexpansive semigroups with compact domains, to appear in Nonlinear Analysis and Its Applications (S.P. Singh and Bruce Watson, Eds), Marcel Dekker Inc..
- [4] J. B. Baillon, Quelques propriétés de convergence asymptotique pour les semigroups de contractions impaires, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), 75-78.
- [5] H. Brézis and F. E. Browder, Nonlinear ergodic theorems, Bull. Amer. Math. Soc., 82 (1976), 959-961.

230

 \square

- [6] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044.
- [7] R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., 32 (1979), 107-116.
- [8] R. E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304-314.
- [9] R.B. Burkel, Weakly almost periodic functions on semigroups, Gordon and Breach, 1970.
- [10] C.M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, J. Funct. Anal., 13 (1973), 97–106.
- [11] M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544.
- [12] M Edelstein, On non-expansive mappings of Banach spaces, Proc. Camb. Phil. Soc., 60 (1964), 439–447.
- [13] N. Hirano, Nonlinear ergodic theorems and weak convergence theorems, J. Math. Soc. Japan 34 (1982), 35–46.
- [14] N. Hirano, K. Kido and W. Takahashi, Asymptotic behavior of commutative semigroups of nonexpansive mappings in Banach Spaces, Nonlinear Anal. 10 (1986), 229–249.
- [15] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Analysis, 12 (1988), 1269-1281.
- [16] K. Kido and W. Takahashi, Mean ergodic theorems for semigroups of linear continuous operators in Banach spaces, J. Math. Anal. Appl. 103 (1984), 387–394.
- [17] K. Kido and W. Takahashi, Means on commutative semigroups and nonlinear ergodic theorems, J. Math. Anal. Appl. 111 (1985), 585–605.
- [18] G. G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80 (1948), 167-190.
- [19] S. Reich, Almost convergence and nonlinear ergodic theorems, J. Approx. Theory 24 (1978), 269-272.
- [20] G. Rodé, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl. 85 (1982), 172-178.
- [21] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Banach spaces, J. Nonlinear and Convex Anal., 1 (2000), 73–87.
- [22] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.

Manuscript received March 25, 2000 revised August 2, 2000

S. Atsushiba

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

Current address: Department of Mathematics, Shibaura Institute of Technology, Fukasaku, Omiya 330–8570, Japan

 $E\text{-}mail\ address: \verb+atusiba@sic.shibaura-it.ac.jp$

A. T. LAU

Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1

E-mail address: tlau@math.ualberta.ca

W. TAKAHASHI

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address: wataru@is.titech.ac.jp