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NONLINEAR STRONG ERGODIC THEOREMS FOR
COMMUTATIVE NONEXPANSIVE SEMIGROUPS ON STRICTLY

CONVEX BANACH SPACES1

SACHIKO ATSUSHIBA, ANTHONY TO-MING LAU AND WATARU TAKAHASHI

Abstract. In this paper, we study nonlinear ergodic properties for a commuta-
tive semigroup of nonexpansive mappings in a strictly convex Banach space E.
We prove that if S is a commutative semigroup, S = {T (t) : t ∈ S} is a nonex-
pansive semigroup on a nonempty closed convex subset X of E, K is a compact
subset of X such that T (t)(X) ⊂ K for all t ∈ S and {λα} is any bounded net
of linear functionals on the Banach space of all bounded real-valued functions
on S such that limα λα(1) = 1 and limα ‖λα − r∗sλα‖ = 0 for every s ∈ S, thenR

T (h + t)xdλα(t) converges strongly to a common fixed point of T (t), t ∈ S
uniformly in h ∈ S. Various applications of our main theorems will be given.

1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E. Then a
mapping T : C → C is called nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.
We denote by F (T ) the set of fixed points of T. We also denote by N(C) the set of
all nonexpansive mappings of C into itself. For any x ∈ C, the ω-limit set of x is
defined by

ω(x) = {z ∈ C : z = lim
i→∞

Tnix with ni →∞ as i →∞}.

Edelstein [12] obtained the following nonlinear ergodic theorem for nonexpansive
mappings with compact domains in a strictly convex Banach space: Let C be a
nonempty compact convex subset of a strictly convex Banach space and let T be a
nonexpansive mapping of C into itself. Let x ∈ C. Then, for any ξ ∈ coω(x), the
Cesàro mean Sn(ξ) = (1/n)

∑n−1
k=0 T kξ converges strongly to a fixed point of T, where

coA is the closure of the convex hull of A. See also Dafermos and Slemrod [10] for a
one-parameter nonexpansive semigroup in a strictly convex Banach space. The first
nonlinear ergodic theorem for nonexpansive mappings with bounded domains was
established in the framework of a Hilbert space by Baillon [4]: Let C be a nonempty
bounded closed convex subset of a Hilbert space and let T be a nonexpansive map-
ping of C into itself. Then, for any x ∈ C, the Cesàro mean Sn(x) = (1/n)

∑n−1
k=0 T kx

converges weakly to a fixed point of T . Bruck [7] extended Baillon’s theorem in [4]
to a uniformly convex Banach space whose norm is Fréchet differentiable. Brézis
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and Browder [5] also proved a nonlinear strong ergodic theorem for nonexpansive
mappings of odd-type in a Hilbert space (see also Reich [19]).

Recently, the first and third authors [2] improved Edelstein’s theorem in [12] by
using Bruck [7, 8] and [1]: For any x ∈ C, the Cesàro mean Sn(x) converges strongly
to a fixed point of T . Furthermore, they [3] also obtained a nonlinear strong ergodic
theorem for a one-parameter nonexpansive semigroup on a compact convex subset
of a strictly convex Banach space.

In this paper, we shall study nonlinear strong ergodic properties for a commuta-
tive semigroup of nonexpansive mappings in a strictly convex Banach space E. Our
main theorem (Theorem 4.2) implies that if S = {T (t) : t ∈ S} is a commutative
semigroup of nonexpansive mappings on a nonempty closed convex subset X of E
and K is a compact subset of X such that T (t)(X) ⊂ K for each t ∈ S, then there
is a nonexpansive mapping Q from X onto F (S), the fixed point set of S, such that
QT (t) = T (t)Q = Q for each t ∈ S and Qx ∈ co{T (s)x : s ∈ S} for each x ∈ X.
Furthermore, Qx is the strong limit of

∫
T (h + t)xdλα(t), where {λα} is a strongly

regular net of functionals on B(S), the space of all bounded real-valued functions
on S. Various applications (including sumability method with respect to a strongly
regular matrix due to Lorentz [18]) will be given in Section 5. This improves the
results of Atsushiba and Takahashi in [2, 3].

2. Preliminaries

Throughout this paper, we assume that a Banach space E is real and S is a
commutative semigroup with identity unless other specified. In this case, (S,≤) is
a directed system when the binary relation ≤ on S is defined by a ≤ b if and only
if there is c ∈ S with a + c = b.

We denote by E∗ the dual space of E and by N the set of all positive integers. In
addition, we denote by R+ and Z+ the sets of all nonnegative real numbers and all
nonnegative integers, respectively. We also denote by 〈y, x∗〉 the value of x∗ ∈ E∗
at y ∈ E. For a subset A of E, coA and coA mean the convex hull of A and the
closure of convex hull of A, respectively. We denote by S1(E) the unit sphere in E
with center 0. Let B(S) be the Banach space of all bounded real-valued functions
on S with the supremum norm. Then, for each s ∈ S and f ∈ B(S), we can define
rsf ∈ B(S) by (rsf)(t) = f(t + s) for all t ∈ S. We also denote by r∗s the conjugate
operator of rs. Let D be a subspace of B(S) and let µ be an element of D∗. Then,
we denote by µ(f) the value of µ at f ∈ D. Sometimes, µ(f) will be also denoted
by µt(f(t)) or

∫
f(t)dµ(t). When D contains 1, a linear functional µ on D is called

a mean on D if ‖µ‖ = µ(1) = 1. Further, let D be rs-invariant, i.e., rs(D) ⊂ D for
every s ∈ S. Then, a mean µ on D is invariant if µ(rsf) = µ(f) for all s ∈ S and
f ∈ D. For s ∈ S, we can define the point evaluation δs by δs(f) = f(s) for every
f ∈ B(S). A convex combination of point evaluations is called a finite mean on S.
A finite mean µ on S is also a mean on any subspace D of B(S) containing 1.

The following definition which was introduced by Takahashi [22] is crucial in the
nonlinear ergodic theory for abstract semigroups (see also [15]). Let f be a function
of S into E such that the weak closure of {f(t) : t ∈ S} is weakly compact. Let D
be a subspace of B(S) containing 1 and rs-invariant for every s ∈ S. Assume that
for each x∗ ∈ E∗, the function t 7→ 〈f(t), x∗〉 is in D. Then, for any µ ∈ D∗ there
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exists a unique element fµ ∈ E such that

〈fµ, x∗〉 =
∫
〈f(t), x∗〉dµ(t)

for all x∗ ∈ E∗. If µ is a mean on D, then fµ is contained in co{f(t) : t ∈ S} (for
example, see [16, 17, 22]). Sometimes, fµ will be denoted by

∫
f(t)dµ(t).

Let C be a subset of a Banach space E. Then, a family S = {T (s) : s ∈ S} of
mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the
following conditions:

(i) T (s + t) = T (s)T (t) for all s, t ∈ S;
(ii) ‖T (s)x− T (s)y‖ ≤ ‖x− y‖ for all x, y ∈ C and s ∈ S.

We denote by F (S) the set of common fixed points of T (t), t ∈ S, that is, F (S) =⋂

t∈S

F
(
T (t)

)
. If C is a compact convex subset of a strictly convex Banach space E

and S is commutative, then we know that F (S) is nonempty.
Let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C such that for each

x ∈ C, {T (t)x : t ∈ S} is contained in a weakly compact, convex subset of E.
Let D be a subspace of B(S) containing 1 with the property that the function
t 7→ 〈T (t)x, x∗〉 is an element of D for each x ∈ C and x∗ ∈ E∗, and let µ be a
mean on D. Following [20], we also write Tµx instead of

∫
T (t)x dµ(t) for x ∈ C.

We remark that Tµx = x for each x ∈ F (S).
For a mapping T of C into itself and ε > 0, we define the set Fε(T ) to be

Fε(T ) = {x ∈ C : ‖Tx− x‖ ≤ ε}.
A Banach space E is said to be strictly convex if ‖x+ y‖/2 < 1 for x, y ∈ E with

‖x‖ = ‖y‖ = 1 and x 6= y. In a strictly convex Banach space, we have that if

‖x‖ = ‖y‖ = ‖(1− λ)x + λy‖
for x, y ∈ E and λ ∈ (0, 1), then x = y.

3. Some Lemmas

The following lemma was proved by Bruck [7, Remark] and [8, Lemma 2.1](see
also [2]).

Lemma 3.1 (Bruck). Let E be a strictly convex Banach space and let C be a
nonempty compact convex subset of E. Then, for any n ∈ N, there exists a strictly
increasing continuous, convex function γn : R+ → R+ such that γ(0) = 0 and

γn

(∥∥∥∥
n∑

i=1

λiTyi − T

( n∑

i=1

λiyi

)∥∥∥∥
)
≤ max

1≤i,j≤n

(‖yi − yj‖ − ‖Tyi − Tyj‖
)

(1)

for every T in N(C), {λi}n
i=1 in R+ with

∑n
i=1 λi = 1 and {yi}n

i=1 in C.

The following two lemmas will be useful for us (see also [13, 15] and [1, Lemma
3.1]).
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Lemma 3.2. Let C be a nonempty compact convex subset of a strictly convex
Banach space E and let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C. Let
x ∈ C. Then, for any finite mean µ on S and ε > 0, there exists w0 = w0(µ, ε) ∈ S
such that ∥∥∥∥

∫
T (h + s + w)xdµ(s)− T (h)

(∫
T (s + w)xdµ(s)

)∥∥∥∥ < ε

for every h ∈ S and w ≥ w0.

Proof. Let µ be a finite mean on S and suppose

µ =
n∑

i=1

aiδsi (ai ≥ 0,
n∑

i=1

ai = 1).

From Lemma 3.1, for each n ∈ N, there exists a strictly increasing continuous,
convex function γn from R+ into R+ with γn(0) = 0 which satisfies (1). Let ε > 0.
Since γ−1

n is continuous and γ−1
n (0) = 0, there exists δ > 0 with γ−1

n (δ) < ε. Since

‖T (h + t + si)x− T (h + t + sj)x‖ ≤ ‖T (t + si)x− T (t + sj)x‖,
for every h, t ∈ S, the limt→∞ ‖T (t + si)x − T (t + sj)x‖ exists for every i, j ∈
{1, 2, . . . , n}. Then, there exists t1 = t1(ε, i, j) ∈ S such that

0 ≤ ‖T (t + si)x− T (t + sj)x‖ − ‖T (h + t + si)x− T (h + t + sj)x‖ < δ

for every t ≥ t1 and h ∈ S. Let w0 ∈ S such that w0 ≥ t1(ε, i, j) for all i, j ∈
{1, 2, . . . , n}. So, it follows from Lemma 3.1 that
∥∥∥∥∥

n∑

i=1

aiT (h)T (w + si)x− T (h)
( n∑

i=1

aiT (w + si)x
)∥∥∥∥∥

≤γ−1
n

(
max

1≤i,j≤n

(‖T (w + si)x− T (w + sj)x‖ − ‖T (h)T (w + si)x− T (h)T (w + sj)x‖
))

< γ−1
n (δ) < ε

for every h ∈ S and w ≥ w0. ¤

Lemma 3.3. Let C be a nonempty compact convex subset of a strictly convex
Banach space E. Let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C, let
x ∈ C and let {µα : α ∈ I} and {λβ : β ∈ J} be nets of finite means on S such that

lim
α
‖µα − r∗t µα‖ = 0 and lim

β
‖λβ − r∗t λβ‖ = 0 for every t ∈ S. (∗)

Then, there exist nets {pα : α ∈ I} and {qβ : β ∈ J} in S such that for any
z ∈ F (S),

lim
α

∥∥∥∥
∫

T (pα + t)xdµα(t)− z

∥∥∥∥ = lim
β

∥∥∥∥
∫

T (qβ + t)xdλβ(t)− z

∥∥∥∥. (2)

Proof. Let ε > 0. From Lemma 3.2, for α ∈ I and β ∈ J, there exist pα, qβ ∈ S such
that

sup
h∈S

∥∥∥∥
∫

T (h)T (w + pα + t)xdµα(t)− T (h)
(∫

T (w + pα + t)xdµα(t)
)∥∥∥∥ < ε
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and

sup
h∈S

∥∥∥∥
∫

T (h)T (w + qβ + s)xdλβ(s)− T (h)
(∫

T (w + qβ + s)xdλβ(s)
)∥∥∥∥ < ε

for every w ∈ S. Fix z ∈ F (S) and consider

L =
∥∥∥∥
∫

T (pα + t)xdµα(t)− z

∥∥∥∥,

I1 =
∥∥∥∥
∫

T (pα + t)xdµα(t)−
∫∫

T (pα + t + qβ + s)xdλβ(s)dµα(t)
∥∥∥∥,

I2 =
∥∥∥∥
∫∫

T (pα + t + qβ + s)xdλβ(s)dµα(t)− z

∥∥∥∥,

J
(2)
1 =

∥∥∥∥
∫∫

T (pα+t+qβ+s)xdλβ(s)dµα(t)−
∫

T (pα+t)
(∫

T (qβ+s)xdλβ(s)
)

dµα(t)
∥∥∥∥

and

J
(2)
2 =

∥∥∥∥
∫

T (pα+t)
(∫

T (qβ+s)xdλβ(s)
)

dµα(t)− z

∥∥∥∥.

Then, we have L ≤ I1 + I2 and I2 ≤ J
(2)
1 + J

(2)
2 . Suppose

µα =
n∑

i=1

aiδti (ai ≥ 0,
n∑

i=1

ai = 1) and λβ =
m∑

j=1

bjδsj (bj ≥ 0,
m∑

j=1

bj = 1).

(3)
Then, we have

J
(2)
1 ≤

n∑

i=1

ai

∥∥∥∥
∫

T (pα + ti)T (qβ + s)xdλβ(s)− T (pα + ti)
(∫

T (qβ + s)xdλβ(s)
)∥∥∥∥

≤ sup
h∈S

∥∥∥∥
∫

T (h)T (qβ + s)xdλβ(s)− T (h)
(∫

T (qβ + s)xdλβ(s)
)∥∥∥∥ < ε.

Since z ∈ F (S), we obtain

J
(2)
2 ≤

n∑

i=1

ai

∥∥∥∥T (pα + ti)
(∫

T (qβ + s)xdλβ(s)
)
− z

∥∥∥∥

≤
∥∥∥∥
∫

T (qβ + s)xdλβ(s)− z

∥∥∥∥.

Then, we have

I2 ≤ J
(2)
1 + J

(2)
2 < ε +

∥∥∥∥
∫

T (qβ + s)xdλβ(s)− z

∥∥∥∥.

On the other hand, from (3), we obtain

I1 =
∥∥∥∥
∫

T (pα + t)xdµα(t)−
m∑

j=1

bj

∫
T (pα + t + qβ + sj)xdµα(t)

∥∥∥∥
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≤
m∑

j=1

bj

∥∥∥∥
∫

T (pα + t)xdµα(t)−
∫

T (pα + t)xd(r∗qβ+sj
µα)(t)

∥∥∥∥

≤
m∑

j=1

bj sup
g∈S

‖T (g)x‖ ‖µα − r∗qβ+sj
µα‖.

Therefore, from lim
α

I1 = 0, we have

lim
α

∥∥∥∥
∫

T (pα + t)xdµα(t)− z

∥∥∥∥ = lim
α

L ≤ lim
α

(I1 + I2)

≤ ε +
∥∥∥∥
∫

T (qβ + s)xdλβ(s)− z

∥∥∥∥.

Then, we have

lim
α

∥∥∥∥
∫

T (pα + t)xdµα(t)− z

∥∥∥∥ ≤ ε + lim
β

∥∥∥∥
∫

T (qβ + s)xdλβ(s)− z

∥∥∥∥.

Since ε > 0 is arbitrary, we obtain

lim
α

∥∥∥∥
∫

T (pα + t)xdµα(t)− z

∥∥∥∥ ≤ lim
β

∥∥∥∥
∫

T (qβ + s)xdλβ(s)− z

∥∥∥∥.

Similarly, we have

lim
β

∥∥∥∥
∫

T (qβ + s)xdλβ(s)− z

∥∥∥∥ ≤ lim
α

∥∥∥∥
∫

T (pα + t)xdµα(t)− z

∥∥∥∥.

Therefore, we have

lim
α

∥∥∥∥
∫

T (pα + t)xdµα(t)− z

∥∥∥∥ = lim
β

∥∥∥∥
∫

T (qβ + t)xdλβ(t)− z

∥∥∥∥. ¤

Repeating the above argument, we have the following.

Remark 3.4. In Lemma 3.3, take nets {pα
′} and {qβ

′} in S such that pα
′ ≥ pα

and qβ
′ ≥ qβ . Then, we can see

lim
α

∥∥∥∥
∫

T (pα
′ + t)xdµα(t)− z

∥∥∥∥ = lim
β

∥∥∥∥
∫

T (qβ
′ + t)xdλβ(t)− z

∥∥∥∥
for every z ∈ F (S).

From [2, 7, 8], we have the following lemmas.

Lemma 3.5. Let E be a strictly convex Banach space and let C be a nonempty
compact convex subset of E. For any ε > 0, there exists δ > 0 such that for any T
in N(C),

coFδ(T ) ⊂ Fε(T ).

Lemma 3.6. Let E be a strictly convex Banach space and let C be a nonempty
compact convex subset of E. Then,

lim
n→∞ sup

y∈C
T∈N(C)

∥∥∥∥∥
1
n

n∑

i=1

T iy − T

(
1
n

n∑

i=1

T iy

)∥∥∥∥∥ = 0.
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Using Lemmas 3.5 and 3.6, we have the following lemma (see also [2, 8, 15, 21]).

Lemma 3.7. Let C be a nonempty compact convex subset of a strictly convex
Banach space E, let S = {T (t) : t ∈ S} be a nonexpansive semigroup on C and let
x ∈ C. Let {µα : α ∈ I} be a net of finite means on S such that

lim
α
‖µα − r∗t µα‖ = 0 for every t ∈ S. (∗)

Then, for any ε > 0 and t ∈ S, there exists α0(ε, t) ∈ I such that
∥∥∥∥
∫

T (s + p)xdµα(s)− T (t)
(∫

T (s + p)xdµα(s)
)∥∥∥∥ < ε

for all α ≥ α0(ε, t) and p ∈ S.

Proof. Let ε > 0 and t ∈ S. From Lemma 3.5, there exists δ > 0 such that

coFδ(U) ⊂ Fε/3(U) (4)

for every U in N(C). From Lemma 3.6, there exits n1 ∈ N such that

sup
s∈S

∥∥∥∥∥
1
n

n∑

i=1

T (it + s)x− T (t)
(

1
n

n∑

i=1

T (it + s)x
)∥∥∥∥∥

= sup
s∈S

∥∥∥∥∥
1
n

n∑

i=1

(
T (t)

)i
T (s)x− T (t)

(
1
n

n∑

i=1

(
T (t)

)i
T (s)x

)∥∥∥∥∥ < δ

for every n ≥ n1. So, it follows

1
n

n∑

i=1

T (it + s)x ∈ Fδ(T (t)) ⊂ coFδ(T (t)) (5)

for every s ∈ S and n ≥ n1. Let n ≥ n1. Then, we have, for p ∈ S and α ∈ I,∥∥∥∥
∫

T (s + p)xdµα(s)− T (t)
∫

T (s + p)xdµα(s)
∥∥∥∥

≤
∥∥∥∥∥
∫

T (s + p)xdµα(s)−
∫

1
n

n∑

i=1

T (it + s + p)xdµα(s)

∥∥∥∥∥

+

∥∥∥∥∥
∫

1
n

n∑

i=1

T (it + s + p)xdµα(s)− T (t)
(∫

1
n

n∑

i=1

T (it + s + p)xdµα(s)
)∥∥∥∥∥

+

∥∥∥∥∥T (t)
(∫

1
n

n∑

i=1

T (it + s + p)xdµα(s)
)
− T (t)

(∫
T (s + p)xdµα(s)

)∥∥∥∥∥

≤ 2

∥∥∥∥∥
∫

T (s + p)xdµα(s)−
∫

1
n

n∑

i=1

T (it + s + p)xdµα(s)

∥∥∥∥∥

+

∥∥∥∥∥
∫

1
n

n∑

i=1

T (it + s + p)xdµα(s)− T (t)
(∫

1
n

n∑

i=1

T (it + s + p)xdµα(s)
)∥∥∥∥∥

= 2I1 + I2,
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and

I1 =

∥∥∥∥∥
∫

T (s + p)xdµα(s)−
∫

1
n

n∑

i=1

T (it + s + p)xdµα(s)

∥∥∥∥∥

≤ 1
n

n∑

i=1

∥∥∥∥
∫

T (s + p)xdµα(s)−
∫

T (it + s + p)xdµα(s)
∥∥∥∥

=
1
n

n∑

i=1

∥∥∥∥
∫

T (s + p)xd(µα − r∗itµα)(s)
∥∥∥∥

≤ 1
n

n∑

i=1

sup
z∈C

‖z‖‖µα − r∗itµα‖.

From the assumption of the net {µα : α ∈ I}, there exists α1 ∈ I such that
‖µα − r∗itµα‖ <

ε

3 supz∈C ‖z‖
for every α ≥ α1 and i ∈ {1, 2, . . . n}. So, I1 < ε/3

for every α ≥ α1 and p ∈ S. Next we prove that there exists α2 ∈ I such that∫
(1/n)

∑n
i=1 T (it + s + p)xdµα(s) ∈ coFδ(T (t)) for every p ∈ S and α ≥ α2. If not,

we have, for each α2 ∈ I,
∫

1
n

n∑

i=1

T (it + s + p′)xdµα′(s) /∈ coFδ

(
T (t)

)
.

for some p′ ∈ S and α′ ≥ α2. From the separation theorem, there exists y∗0 ∈ E∗
such that

∫ 〈 1
n

n∑

i=1

T (it + s + p′)x, y∗0
〉
dµα′(s) < inf{〈z, y∗0〉 : z ∈ coFδ

(
T (t)

)}.

Then, from (5), we obtain

inf{〈z, y∗0〉 : z ∈ coFδ(T (t))} ≤ inf
s∈S

〈 1
n

n∑

i=1

T (it + s + p′)x, y∗0
〉

≤
∫ 〈 1

n

n∑

i=1

T (it + s + p′)x, y∗0
〉
dµα′(s)

< inf{〈z, y∗0〉 : z ∈ coFδ(T (t))}.
This is a contradiction. Hence, from (4), there exists α2 ∈ I such that

∫
1
n

n∑

i=1

T (it + s + p)xdµα(s) ∈ coFδ(T (t)) ⊂ Fε/3(T (t)) (6)

for every p ∈ S and α ≥ α2. Then, from (6), we obtain I2 < ε/3 for every p ∈ S
and α ≥ α2. Let α0 ∈ I with α0 ≥ α1 and α0 ≥ α2. Then, we obtain

∥∥∥∥
∫

T (s + p)xdµα(s)− T (t)
(∫

T (s + p)xdµα(s)
)∥∥∥∥ ≤ 2I1 + I2 < ε

for every α ≥ α0 and p ∈ S. This completes the proof. ¤
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4. Nonlinear strong ergodic theorems

In this section, we establish our main strong mean ergodic theorem in a strictly
convex Banach space. Using Lemmas 3.3 and 3.7, we can show the following lemma
which is crucial to prove the main theorem (Theorem 4.2).

Lemma 4.1. Let E be a strictly convex Banach space, let X be a nonempty closed
convex subset of E and let S = {T (t) : t ∈ S} be a nonexpansive semigroup on
X. Assume

⋃
t∈S T (t)(X) ⊂ K for some compact subset K of X. Let D be a

subspace of B(S) such that 1 ∈ D, D is rs-invariant for each s ∈ S and the function
t 7→ 〈T (t)x, x∗〉 is an element of D for each x ∈ X and x∗ ∈ E∗. Let {µα : α ∈ I}
be a net of finite means on S such that

lim
α
‖µα − r∗sµα‖ = 0 for every s ∈ S.

Then, for any x ∈ X,
∫

T (p+ t)xdµα(t) converges strongly to a common fixed point
y0 of T (t), t ∈ S uniformly in p ∈ S. Furthermore, y0 is independent of {µα : α ∈ I}
and for any invariant mean µ on D, y0 = Tµx =

∫
T (t)xdµ(t).

Proof. Let x ∈ X. From Mazur’s theorem, C = co
({x} ∪⋃

t∈S T (t)(X)
)

is a com-
pact subset of X. We see that C = co

({x} ∪⋃
t∈S T (t)(X)

)
is convex and invariant

under T (t), t ∈ S. Thus, we may assume that S = {T (t) : t ∈ S} is a nonexpansive
semigroup on a compact convex subset of X.

Let {µα : α ∈ I} and {λβ : β ∈ J} be nets of finite means on S such that

lim
α
‖µα − r∗t µα‖ = 0 and lim

β
‖λβ − r∗t λβ‖ = 0 (∗)

for each t ∈ S. It follows from Lemma 3.7 that for each h ∈ S,

lim
α

sup
p

∥∥∥∥
∫

T (p + t)xdµα(t)− T (h)
(∫

T (p + t)xdµα(t)
)∥∥∥∥ = 0. (7)

Further, by Lemma 3.3, we can take a net {pα} in S such that for any z ∈ F (S),

lim
α

∥∥∥∥
∫

T (pα + t)xdµα(t)− z

∥∥∥∥ (8)

exists. Let {Φα} =
{∫

T (pα + t)xdµα(t) : α ∈ I
}
. Then, we first prove that Φα

converges strongly to a common fixed point of T (t), t ∈ S. From the compactness,
{Φα} must contain a subnet which converges strongly to a point in C. So, let {Φαγ}
be a subnet of {Φα} such that limγ Φαγ = y0 ∈ C. From (7), we have, for any
h ∈ S,

0 = lim
α
‖Φα − T (h)Φα‖ = lim

γ
‖Φαγ − T (h)Φαγ‖

= ‖y0 − T (h)y0‖
and hence y0 is a common fixed points of T (t), t ∈ S. So, from (8), we have

lim
α
‖Φα − y0‖ = lim

γ
‖Φαγ − y0‖ = 0.

This implies that Φα → y0. Next we prove that
∫

T (h+t)xdµα(t) converges strongly
to y0 ∈ F (S) uniformly in h. In the above argument, take a net {pα

′ : α ∈ I} in
S such that pα

′ ≥ pα for each α ∈ I. Then, repeating the above argument, we see
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that Φα
′ =

∫
T (pα

′ + t)xdµα(t) converges strongly to a common fixed point y1 of
T (t), t ∈ S. We show y0 = y1. From Lemma 3.3 and Remark 3.4, we know

lim
α

∥∥∥∥
∫

T (pα
′ + t)xdµα(t)− z

∥∥∥∥ = lim
α

∥∥∥∥
∫

T (pα + t)xdµα(t)− z

∥∥∥∥ (9)

for every z ∈ F (S). Suppose y0 6= y1. Then, Φα does not converge strongly to y1.
Since y0 and y1 are common fixed points of T (t), t ∈ S, from (9), we have

0 ≤ lim
α
‖Φα − y1‖ = lim

α
‖Φα

′ − y1‖ = 0

and hence Φα → y1. This is a contradiction. So, we have y0 = y1 ∈ F (S). Since
{pα

′} is an arbitrary net in S such that pα
′ ≥ pα for each α ∈ I, we have that∫

T (h + pα + t)xdµα(t) converges strongly to y0 uniformly in h ∈ S. Let ε > 0.
Then, there exists α0 ∈ I such that

∥∥∥∥
∫

T (h + pα + s)xdµα(s)− y0

∥∥∥∥ <
ε

2
(10)

for every α ≥ α0 and h ∈ S. Suppose

µα0 =
m∑

k=1

bkδsk
(bk ≥ 0,

m∑

k=1

bk = 1).

Put µ0 = µα0 and p0 = pα0 . From (10), we have
∥∥∥∥
∫∫

T (h + t + p0 + s)xdµ0(s)dλβ(t)− y0

∥∥∥∥

=
∥∥∥∥
∫∫

T (h + t + p0 + s)xdµ0(s)dλβ(t)−
∫

y0dλβ(t)
∥∥∥∥

≤ sup
t,h∈S

∥∥∥∥
∫

T (h + t + p0 + s)xdµ0(s)− y0

∥∥∥∥ <
ε

2

for every h ∈ S and β ∈ J. Since {λβ} satisfies (∗), there exists β1 such that

‖λβ − r∗p0+sk
λβ‖ <

ε

2 max{1,M}
for every k ∈ {1, 2, . . . , m} and β ≥ β1, where M = sup

g∈S
‖T (g)x‖. Then, we have

∥∥∥∥
∫

T (h + t)xdλβ(t)−
∫∫

T (h + t + p0 + s)xdµ0(s)dλβ(t)
∥∥∥∥

=

∥∥∥∥∥
∫

T (h + t)xdλβ(t)−
m∑

k=1

bk

∫
T (h + t + p0 + sk)xdλβ(t)

∥∥∥∥∥

≤
m∑

k=1

bk

∥∥∥∥
∫

T (h + t)xdλβ(t)−
∫

T (h + t)d(r∗p0+sk
λβ)(t)

∥∥∥∥

≤
m∑

k=1

bk M ‖λβ − r∗p0+sk
λβ‖ <

ε

2
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for every β ≥ β1 and h ∈ S. Therefore,
∥∥∥∥
∫

T (h + t)xdλβ(t)− y0

∥∥∥∥

≤
∥∥∥∥
∫

T (h + t)xdλβ(t)−
∫∫

T (h + t + p0 + s)xdµ0(s)dλβ(t)
∥∥∥∥

+
∥∥∥∥
∫∫

T (h + t + p0 + s)xdµ0(s)dλβ(t)− y0

∥∥∥∥
<

ε

2
+

ε

2
= ε

for every β ≥ β1 and h ∈ S. Hence,
∫

T (h + t)xdλβ(t) converges strongly to y0

uniformly in h ∈ S. Since {λβ : β ∈ J} and {µα : α ∈ I} are arbitrary nets of finite
means on S such that

lim
β
‖λβ − r∗t λβ‖ = 0 and lim

β
‖µα − r∗t µα‖ = 0,

for every t ∈ S, we see that such an element y0 of F (S) is independent of {λβ :
β ∈ J} and {µα : α ∈ I}. Finally, we prove that for any invariant mean µ on D,
y0 = Tµx.

Let AP (S) denote the space of all almost periodic functions on S, i.e., all
f ∈ B(S) such that RO(f) = {rsf : s ∈ S} is relatively compact in the supre-
mum norm topology of B(S). Then, AP (S) is a closed subalgebra of B(S) invari-
ant under translations. Since S is commutative, B(S), and hence AP (S) has an
invariant mean. In fact, AP (S) has a unique invariant mean m. To see this,
let Σ denote the spectrum of the Banach algebra AP (S), i.e., the set of non-
zero multiplicative linear functionals on AP (S) with the relative weak∗-topology
from AP (S)∗. Then, Σ is a compact Hausdorff space, {δs : s ∈ S} is dense in
Σ and Σ is a commutative compact topological semigroup with multiplications
〈θ1 + θ2, f〉 =

∫∫
f(s + t)dθ1(s)dθ2(t), θ1, θ2 ∈ Σ. Furthermore, the Banach

algebras AP (S) and C(Σ) (bounded continuous real-valued functions on Σ) are
isometrically isomorphic via the Gelfand transform σ : f 7→ f̂ , and m is an invari-
ant mean on AP (S) if and only if (σ−1)∗m = m̂ is an invariant mean on C(Σ). It
follows from [9, Corollary 2.5, p.23] that C(Σ) has a unique invariant mean. Hence
AP (S) also has a unique invariant mean.

We next show that for each x ∈ X and x∗ ∈ E∗, the function f(t) = 〈T (t)x, x∗〉
is in AP (S). Indeed, let Y be the norm closure of {T (t)x : t ∈ S}. Then, Y is
compact. For each y ∈ Y , let hy(t) = 〈T (t)y, x∗〉. Then, for a ∈ S, raf(t) =
f(t + a) = 〈T (t)T (a)x, x∗〉 and hence {raf : a ∈ S} ⊂ {hy : y ∈ Y }. Now, the map
y 7→ hy is continuous from Y into B(S) by nonexpansiveness of each T (t), t ∈ S.
Hence f ∈ AP (S).

Let {µβ} be a net of finite means on S such that limβ ‖µβ − r∗sµβ‖ = 0 for all
s ∈ S. Such a net always exists since S is commutative (see [11]). Now let µ be
a weak∗-cluster point of {µβ} in D∗. Then, µ is an invariant mean on D. Let
x ∈ X, x∗ ∈ E∗, and f(t) = 〈T (t)x, x∗〉. We will show that 〈µ, f〉 = 〈m, f〉, where
m is the unique invariant mean on AP (S). If 〈µ, f〉 6= 〈m, f〉, by Hahn-Banach
extension theorem, there is a mean µ̃ on B(S) such that µ̃ extends µ. Let ν be any
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invariant mean on B(S), ν ¯ µ̃ ∈ B(S)∗ be defined by 〈ν ¯ µ̃, h〉 = 〈ν, µ̃ · h〉, where
(µ̃ · h)(t) = 〈µ̃, rth〉, t ∈ S. Then, as readily checked ν ¯ µ̃ is also an invariant mean
on B(S), and 〈ν ¯ µ̃, f〉 = 〈µ̃, f〉 = 〈µ, f〉 6= 〈m, f〉. Consequently, the restriction of
ν ¯ µ̃ to AP (S) is an invariant mean on AP (S) different from m, which contradict
the uniqueness of m on AP (S). So, 〈µ, f〉 = 〈m, f〉. Consequently we have∫

〈T (t)x, x∗〉dµβ(t) → 〈µ, f〉 =
∫
〈T (t)x, x∗〉dµ(t) = 〈Tµx, x∗〉.

On the other hand, we obtain∫
T (t)xdµβ(t) → y0.

Hence, we obtain y0 = Tµx. ¤

Let D be a subspace of B(S) containing 1 and rs-invariant for every s ∈ S.
Then, a net {µα : α ∈ I} of linear functionals on D is called strongly regular [15] if
it satisfies the following conditions:
(a) sup

α
‖µα‖ < +∞;

(b) lim
α

µα(1) = 1;

(c) lim
α
‖µα − r∗sµα‖ = 0 for every s ∈ S.

A remarkable result of Day [11] shows that for any commutative semigroup S,
there is always a strongly regular net of finite means on B(S) and hence on D.

Theorem 4.2. Let E be a strictly convex Banach space, let X be a nonempty a
closed convex subset of E and let S = {T (t) : t ∈ S} be a nonexpansive semigroup
on X. Assume

⋃
t∈S T (t)(X) ⊂ K for some compact subset K of X. Let D be a

subspace of B(S) such that 1 ∈ D, D is rs-invariant for each s ∈ S and the function
t 7→ 〈T (t)x, x∗〉 is an element of D for each x ∈ X and x∗ ∈ E∗. Let {λα : α ∈ A} be
a strongly regular net of continuous linear functionals on D and let x ∈ X. Then,∫

T (h + t)xdλα(t) converges strongly to a common fixed point y0 of T (t), t ∈ S
uniformly in h ∈ S. Further, such an element y0 of F (S) is independent of {λα}
and for any invariant mean µ on D, y0 = Tµx =

∫
T (t)xdµ(t). In this case, putting

Qx = limα

∫
T (t)xdλα(t) for each x ∈ X, Q is a nonexpansive mapping of X onto

F (S) such that QT (t) = T (t)Q = Q for every t ∈ S and Qx ∈ co{T (s)x : s ∈ S}
for every x ∈ X.

Proof. Let {λα : α ∈ A} be a strongly regular net of continuous linear functionals
on D and let {µβ : β ∈ B} be a net of finite means on S such that

lim
β
‖µβ − r∗t µβ‖ = 0 for every t ∈ S. (∗)

From Lemma 4.1, we have that
∫

T (h + t)xdµβ(t) converges strongly to a common
fixed point y0 of T (t), t ∈ S uniformly in h ∈ S. Let ε > 0 and let µ be an invariant
mean on D. From Lemma 4.1, we also know y0 = Tµx. Further, there exists β1

such that ∥∥∥∥
∫

T (h + t)xdµβ(t)− Tµx

∥∥∥∥ <
ε

sup
α
‖λα‖
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for all β ≥ β1 and h ∈ S. Suppose

µβ1 =
n∑

i=1

biδti (bi ≥ 0,
n∑

i=1

bi = 1) (11)

and put µ1 = µβ1 . Then, we have∥∥∥∥
∫

T (h + t)xdµ1(t)− Tµx

∥∥∥∥ <
ε

supα ‖λα‖ (12)

for every h ∈ S. Since {λα} is strongly regular, there exists α0 such that

|1− λα(1)| < ε

max{1, ‖Tµx‖}
and

‖λα − r∗tiλα‖ <
ε

max{1,M} (13)

for every i ∈ {1, 2, · · · , n} and α ≥ α0, where M = sup
g∈S

‖T (g)x‖. Then, we have

∥∥∥∥Tµx−
∫

Tµxdλα(s)
∥∥∥∥ = sup

x∗∈S1(E∗)

∣∣∣∣〈Tµx, x∗〉 −
∫
〈Tµx, x∗〉dλα(s)

∣∣∣∣

≤ sup
x∗∈S1(E∗)

∣∣∣∣〈Tµx, x∗〉
∣∣∣∣ · |1− λα(1)| < ε

for every α ≥ α0 and from (12),∥∥∥∥
∫∫

T (h + s + t)xdµ1(t)dλα(s)−
∫

Tµxdλα(s)
∥∥∥∥

≤ ‖λα‖ · sup
s,h∈S

∥∥∥∥
∫

T (h + s + t)xdµ1(t)− Tµx

∥∥∥∥ < ε

for every h ∈ S and α ∈ A. Thus, we obtain∥∥∥∥
∫∫

T (h + s + t)xdµ1(t)dλα(s)− Tµx

∥∥∥∥ < ε + ε = 2ε

for every h ∈ S and gα ≥ α0. On the other hand, from (11) and (13), we have∥∥∥∥
∫

T (h + s)xdλα(s)−
∫∫

T (h + s + t)xdµ1(t)dλα(s)
∥∥∥∥

=
∥∥∥∥
∫

T (h + s)xdλα(s)−
n∑

i=1

bi

∫
T (h + s + ti)xdλα(s)

∥∥∥∥

≤
n∑

i=1

bi

∥∥∥∥
∫

T (h + s)xdλα(s)−
∫

T (h + s + ti)xdλα(s)
∥∥∥∥

=
n∑

i=1

bi

∥∥∥∥
∫

T (h + s)xd(λα − r∗tiλα)(s)
∥∥∥∥

≤
n∑

i=1

bi‖λα − r∗tiλα‖ ·M < ε
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for every h ∈ S and α ≥ α0. Therefore, we obtain
∥∥∥∥
∫

T (h + s)xdλα(s)− Tµx

∥∥∥∥

≤
∥∥∥∥
∫

T (h + s)xdλα(s)−
∫∫

T (h + s + t)xdµ1(t)dλα(s)
∥∥∥∥

+
∥∥∥∥
∫∫

T (h + s + t)xdµ1(t)dλα(s)− Tµx

∥∥∥∥
< ε + 2ε = 3ε

for every h ∈ S and α ≥ α0. Then,
∫

T (h + t)xdλα(t) converges strongly to a
common fixed point y0 of T (t), t ∈ S uniformly in h. Further, such an element y0

is independent of {λα} and y0 = Tµx for any invariant mean µ on D. If Qx =
limα

∫
T (t)xdλα(t) for each x ∈ X, then Q is a nonexpansive mapping of X onto

F (S) such that QT (t) = T (t)Q = Q for every t ∈ S and Qx ∈ co{T (s)x : s ∈ S}
for every x ∈ X. ¤

Using Lemma 4.1, we also have the following result.

Theorem 4.3. Let E, X,D and S = {T (t) : t ∈ S} be as in Theorem 4.2. As-
sume

⋃
t∈S T (t)(X) ⊂ K for some compact subset K of X. Then, T (t)x is strongly

convergent if and only if

T (s + t)x− T (t)x → 0 for every s ∈ S. (14)

In this case, the limit point of {T (t)x : t ∈ S} is a common fixed point of T (t), t ∈ S.

Proof. It is trivial to show the “only if ” part. Let {µα : α ∈ A} be a net of finite
means on S such that

lim
α
‖µα − r∗t µα‖ = 0 for every t ∈ S. (∗)

Then, from Lemma 4.1, limα

∫
T (h + t)xdµα(t) converges strongly to y0 ∈ F (S)

uniformly in h ∈ S. Let ε > 0. Then, there exists α0 such that
∥∥∫

T (h+ t)xdµα(t)−
y0

∥∥ < ε/2 for every α ≥ α0 and h ∈ S. Put µα0 =
∑n

i=1 aiδsi (ai ≥ 0,
∑n

i=1 ai =
1). From (14), there exists t0 ∈ S such that ‖T (t + si)x − T (t)x‖ < ε/2 for every
t ≥ t0 and i = 1, 2, . . . , n. Then, we obtain

‖T (t)x− y0‖ =
∥∥∥∥
∫

T (t)xdµα0(s)− y0

∥∥∥∥

≤
∥∥∥∥
∫

T (t + s)xdµα0(s)− y0

∥∥∥∥ +
∥∥∥∥
∫

[T (t + s)x− T (t)x ]xdµα0(s)
∥∥∥∥

<
ε

2
+

n∑

i=1

ai

∥∥∥∥T (t + si)x− T (t)x
∥∥∥∥ < ε

for every t ≥ t0. This implies that limt T (t)x = y0 ∈ F (S). ¤
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5. Applications

We now apply Theorem 4.2 to obtain other strong nonlinear ergodic theorems
with compact domains (for related results, see [2, 3]).

Theorem 5.1 ([2]). Let X be a nonempty closed convex subset of a strictly convex
Banach space E. Let T be a nonexpansive mapping of X into itself such that T (X)
is relatively compact. Then, for any x ∈ X, (1/n)

∑n−1
i=0 T i+kx converges strongly

to some y ∈ F (T ), as n →∞, uniformly in k ∈ Z+.

Proof. Let S = Z+,S = {T i : i ∈ S}, D = B(S) and λn(f) = (1/n)
∑n−1

i=0 f(i) for
all n ∈ N and f ∈ D. Then, {λn : n ∈ N} is a sequence of means. Further, we have

‖λn − r∗1λn‖ = sup
‖f‖≤1

|(λn − r∗1λn)(f)|

=
1
n

sup
‖f‖≤1

|f(0)− f(n)| ≤ 2
n
→ 0,

as n →∞ and hence for k ≥ 2,

‖λn − r∗kλn‖ ≤ ‖r∗kλn − r∗k−1λn‖+ · · ·+ ‖r∗1λn − λn‖
≤ k‖λn − r∗1λn‖ → 0,

as n →∞. Therefore, we obtain Theorem 5.1 by using Theorem 4.2. ¤

Theorem 5.2. Let E, X, T be as in Theorem 5.1. Then, for each x ∈ X, (1 −
s)

∑∞
i=0 siT i+kx converges strongly to some y ∈ F (T ), as s ↑ 1, uniformly in k ∈ Z+.

Proof. Let S = Z+,S = {T i : i ∈ S}, D = B(S) and λs(f) = (1 − s)
∑∞

i=0 sif(i)
for every s ∈ (0, 1) and f ∈ D. Then, {λs : s ∈ (0, 1)} is a net of means. Further,
we have, ‖λs − r∗kλs‖ → 0 for every k ∈ Z+. Indeed, we have, for any k ≥ 2,

‖λs − r∗kλs‖ = sup
‖f‖≤1

|(λs − r∗kλs)(f)|

= sup
‖f‖≤1

∣∣∣∣∣(1− s)
k−1∑

i=0

sif(i) + (1− s)
∞∑

i=k

sif(i)− (1− s)
∞∑

i=0

sif(i + k)

∣∣∣∣∣

= sup
‖f‖≤1

∣∣∣∣∣(1− s)
k−1∑

i=0

sif(i) + (1− s)
∞∑

i=0

si+kf(i + k)

−(1− s)
∞∑

i=0

sif(i + k)

∣∣∣∣∣

≤ (1− s)
k−1∑

i=0

si‖f‖+ (1− s)
∞∑

i=0

si|sk − 1|‖f‖

= 2(1− sk)‖f‖ → 0,

as s → 1. Therefore, we obtain Theorem 5.2 by using Theorem 4.2. ¤

Let Q = {qn,m}n,m∈Z+ be a matrix satisfying the following conditions:
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(a) sup
n∈Z+

∞∑

m=0

|qn,m| < ∞;

(b) lim
n→∞

∞∑

m=0

qn,m = 1;

(c) lim
n→∞

∞∑

m=0

|qn,m+1 − qn,m| = 0.

Then, according to Lorentz [18], Q is called a strongly regular matrix. If Q is a
strongly regular matrix, then for each m ∈ Z+, we have that |qn,m| → 0, as n →∞
(see also [15]).

Theorem 5.3. Let E, X and T be as in Theorem 5.1. Let Q = {qn,m}n,m∈Z+ be a
strongly regular matrix. Then, for any x ∈ X,

∑∞
m=0 qn,mTm+kx converges strongly

to some y ∈ F (T ), as n →∞, uniformly in k ∈ Z+.

Proof. Let S = Z+,S = {T i : i ∈ S}, D = B(S) and λn(f) =
∑∞

m=0 qn,mf(m) for
each n ∈ N and f ∈ D. Then, {λn : n ∈ N} is a sequence of means. Further, we
have ‖λn − r∗kλn‖ → 0 for every k ∈ Z+. Indeed, we have that

‖λn − r∗1λn‖ = sup
‖f‖≤1

|(λn − r∗1λn)(f)|

= sup
‖f‖≤1

∣∣∣∣∣
∞∑

m=0

qn,m{f(m)− f(m + 1)}
∣∣∣∣∣

= sup
‖f‖≤1

∣∣∣∣∣qn,0f(0) +
∞∑

m=0

qn,m+1f(m + 1)−
∞∑

m=0

qn,mf(m + 1)

∣∣∣∣∣

≤
∞∑

m=0

|qn,m+1 − qn,m|+ |qn,0| → 0,

as n →∞ and hence for k ≥ 2,

‖λn − r∗kλn‖ ≤ ‖r∗kλn − r∗k−1λn‖+ · · ·+ ‖r∗1λn − λn‖
≤ k‖λn − r∗1λn‖ → 0,

as n →∞. So, using Theorem 4.2, we obtain Theorem 5.3. ¤

Theorem 5.4. Let X be a nonempty closed convex subset of a strictly convex
Banach space E. Let U and T be nonexpansive mappings of X into itself with
UT = TU . Assume

(
U(X)∪T (X)

) ⊂ K for some compact subset K of X. Then, for
each x ∈ X, (1/n2)

∑n−1
i,j=0 U i+kT j+hx converges strongly to some y ∈ F (U)∩F (T ),

as n →∞, uniformly in k, h ∈ Z+.

Proof. Let S = Z+ × Z+,S = {U iT j : (i, j) ∈ S}, D = B(S) and λn(f) =
(1/n2)

∑n−1
i,j=0 f(i, j) for each n ∈ N and f ∈ D. Then, {λn : n ∈ N} is a sequence

of means. Further, we have that for each (l, m) ∈ S,

‖λn − r∗(l,m)λn‖ = sup
‖f‖≤1

|(λn − r∗(l,m)λn)(f)|
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= sup
‖f‖≤1

∣∣∣∣∣∣
1
n2

n−1∑

i,j=0

f(i, j)− 1
n2

n−1∑

i,j=0

f(i + l, j + m)

∣∣∣∣∣∣

≤ 1
n2
{l · n + m(n− l) + l · n + m(n− l)}

=
1
n2
{2n(l + m)− 2ml} → 0,

as n →∞. Therefore, using Theorem 4.2, we obtain Theorem 5.4. ¤
Let X be a closed convex subset of a Banach space E and let S = {T (t) : t ∈ R+}

be a family of nonexpansive mappings of X into itself. Then, S is called a one-
parameter nonexpansive semigroup on X if it satisfies the following conditions:
T (0) = I, T (t + s) = T (t)T (s) for all t, s ∈ R+ and T (t)x is continuous in t ∈ R+

for each x ∈ X.

Theorem 5.5 ([3]). Let X be a nonempty compact convex subset of a strictly con-
vex Banach space E and let S = {T (t) : t ∈ R+} be a one-parameter nonexpansive
semigroup on X. Then, for any x ∈ X, (1/s)

∫ s
0 T (t + k)xdt converges strongly to

some y ∈ F (S), as s →∞, uniformly in k ∈ R+.

Proof. Let S = R+, S = {T (t) : t ∈ R+} and let D be the Banach space C(S) of
all bounded continuous functions on S with the supremum norm. Define λs(f) =
(1/s)

∫ s
0 f(t)dt for every s > 0 and f ∈ D. Then, {λs : 0 < s < ∞} is a net of

means. Further, we obtain that for any k with 0 < k < ∞,

‖λs − r∗kλs‖ = sup
‖f‖≤1

∣∣∣∣
1
s

∫ s

0
f(t)dt− 1

s

∫ s

0
f(t + k)dt

∣∣∣∣

=
1
s

sup
‖f‖≤1

∣∣∣∣
∫ s

0
f(t)dt−

∫ s+k

k
f(t)dt

∣∣∣∣

=
1
s

sup
‖f‖≤1

∣∣∣∣
∫ k

0
f(t)dt−

∫ s+k

s
f(t)dt

∣∣∣∣

≤ 1
s

sup
‖f‖≤1

(∫ k

0
|f(t)|dt +

∫ s+k

s
|f(t)|dt

)

=
2k

s
→ 0,

as s →∞. Therefore, using Theorem 4.2, we obtain Theorem 5.5. ¤
Theorem 5.6. Let E, X,S = {T (t) : t ∈ R+} be as in Theorem 5.5. Then, for
any x ∈ X, r

∫∞
0 e−rtT (t + k)xdt converges strongly to some y ∈ F (S), as r ↓ 0,

uniformly in k ∈ R+.

Proof. Let S = R+, S = {T (t) : t ∈ R+} and D = C(S). Define λr(f) =
r
∫∞
0 e−rtf(t)dt for each r > 0 and f ∈ D. Then, {λr : 0 < r < ∞} is a net of

means. Further, we have that for each s with 0 < s < ∞,

‖λr − r∗sλr‖ = sup
‖f‖≤1

∣∣∣∣r
∫ ∞

0
e−rtf(t)dt− r

∫ ∞

0
e−rtf(s + t)dt

∣∣∣∣
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= sup
‖f‖≤1

∣∣∣∣r
∫ s

0
e−rtf(t)dt + r (1− ers)

∫ ∞

s
e−rtf(t)dt

∣∣∣∣
≤ rs + |1− ers| → 0,

as r ↓ 0. Therefore, using Theorem 4.2, we obtain Theorem 5.6. ¤

Let Q = R+ × R+ → R be a function satisfying the following conditions:

(a) sup
s∈R+

∫ ∞

0
|Q(s, t)|dt < ∞;

(b) lim
s→∞

∫ ∞

0
Q(s, t)dt = 1;

(c) lim
s→∞

∫ ∞

0
|Q(s, t + h)−Q(s, t)|dt = 0 for every h ∈ R+.

Then, Q is called a strongly regular kernel.

Theorem 5.7. Let E, X,S = {T (t) : t ∈ R+} be as in Theorem 5.5. Let Q : R+×
R+ → R be a strongly regular kernel. Then, for any x ∈ X,

∫∞
0 Q(s, t)T (t + h)xdt

converges strongly to some y ∈ F (S), as s →∞, uniformly in h ∈ R+.

Proof. Let S = R+, S = {T (t) : t ∈ R+} and D = C(S). Define λs(f) =∫∞
0 Q(s, t)f(t)dt for every s > 0 and f ∈ D. Then, {λs : 0 < s < ∞} is a net of

means. Further, we have that for each h with 0 < h < ∞,

‖λs − r∗hλs‖ = sup
‖f‖≤1

|(λs − r∗hλs)(f)|

= sup
‖f‖≤1

∣∣∣∣
∫ ∞

0
Q(s, t)f(t)dt−

∫ ∞

0
Q(s, t)f(t + h)dt

∣∣∣∣

= sup
‖f‖≤1

∣∣∣∣
∫ h

0
Q(s, t)f(t)dt +

∫ ∞

0
Q(s, t + h)f(t + h)dt

−
∫ ∞

0
Q(s, t)f(t + h)dt

∣∣∣∣

≤
∣∣∣∣
∫ h

0
Q(s, t)dt

∣∣∣∣ +
∣∣∣∣
∫ ∞

0
|Q(s, t + h)−Q(s, t)| dt

∣∣∣∣ → 0,

as s →∞. Therefore, using Theorem 4.2, we obtain Theorem 5.7. ¤
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