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EXPLICIT SOLUTIONS TO HAMILTON-JACOBI EQUATIONS
UNDER MILD CONTINUITY AND CONVEXITY ASSUMPTIONS

JEAN-PAUL PENOT AND MICHEL VOLLE

Abstract. The purpose of this paper is to extend the range of applicability of
the Hopf and Lax-Oleinik explicit formulas for solving the Hamilton-Jacobi equa-
tion. The continuity assumptions are very weak and the convexity assumptions
are rather mild; in particular, we do not assume that the data are finite-valued,
so that equations derived from attainability problems can be considered. Only
elementary facts from convex analysis, variational convergence and nonsmooth
analysis are required.

Dedicated to Roger Témam on the occasion of his sixtieth birthday

1. Introduction

Given a normed vector space X with dual space X∗ and functions g : X →
R∪{∞}, H : X∗ → R∪{∞}, the Hamilton-Jacobi equation is

∂u

∂t
(x, t) + H(Du(x, t)) = 0(1)

u(x, 0) = g(x)(2)

where u : X×R+ → R∪{+∞} is the unknown function, and Du (resp. ∂u
∂t ) denotes

the derivative of u with respect to its first (resp. second) variable. This equation
has been extensively studied during the last decades (see [9]-[27], [31]-[33], [39]-[44],
[52], [57], [58]-[61]...). In particular, existence and uniqueness questions have given
rise to the key notion of viscosity solution and to striking results ([21], [20], [18],
[10], [12]...)1. Since several books exist on the subject ([9], [7], [27], [43], [57]...), we
refer the reader to these monographs for more information and without tempting
to draw general views on such a large subject in this introduction.

It is the purpose of the present paper to show that the range of two known explicit
formulas for the solution of (1)-(2) can be extended to general semicontinuity as-
sumptions and mild convexity assumptions. In particular, we accept Hamiltonians
and initial value functions which may take the value ∞ or are discontinuous. For
existence results, our methods are elementary and involve not much more than sim-
ple definitions (which are recalled below) in nonsmooth analysis and in variational
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convergence and basic facts in convex analysis (given in [24], for instance). Com-
parison and uniqueness results involve deeper techniques centered around various
forms of the mean value theorem.

We make a strong use of duality techniques. Such methods have been in use in
this field since the works of Legendre, Hamilton, and Hopf and more recently in
[1], [11]-[14], [44], [60], [61]; nonetheless, we hope that our systematic use may shed
a new light on such equations which have been studied by many different means
([9]-[27], [56], [45]...).

Throughout, for a function f on X, we denote by f∗ its convex conjugate:

f∗(p) := sup
x∈X

(〈p, x〉 − f(x)) for p ∈ X∗.

Here 〈·, ·〉 stands for the canonical pairing between X and X∗. We also write p.x
instead of 〈p, x〉. When we take the conjugate of a function on X∗, it is with respect
with this duality, so that it is a function on X and not on X∗∗. The notion of solution
we use here is close to the notion of viscosity solution; in fact, it coincides with it in
finite dimensional spaces. It involves the Hadamard (or contingent) subdifferential
of a function. Recall that the lower (or contingent or lower Hadamard) derivative
of a function f on a normed space Z at z ∈ dom f := f−1(R) is given by

df(z, w) := lim inf
(s,u)→(0+,w)

1
s

(f(z + su)− f(z)) ∀w ∈ Z.

The Hadamard subdifferential (or contingent subdifferential) of f at z is the set
∂f(z) of z∗ ∈ Z∗ such that z∗(·) ≤ df(z, ·). It seems that these objects have been
first used for Hamilton-Jacobi equations in [39], [30]-[32], in the context of optimal
control theory; in finite dimensions and in spaces with smooth bump functions, they
do not differ from more classical notions. In fact, for any normed vector space Z,
∂f(z) contains the viscosity subdifferential of f at z which is the set of derivatives
at z of smooth functions ϕ such that f −ϕ attains its minimum at z; in spaces with
a smooth bump function, in particular in any Hilbert space, ∂f(z) coincides with
the viscosity subdifferential of f at z. The set ∂f(z) always contains the Fréchet
subdifferential ∂−f(z) which is the set of z∗ ∈ Z∗ such that

f(z + w) ≥ f(z) + 〈z∗, w〉 − ε(w) ‖w‖ ∀w ∈ Z

for some ε(·) with limit 0 at 0 and it always contains the Fenchel-Moreau subdif-
ferential ∂cf(z) of convex analysis given as the set of z∗ ∈ Z∗ such that z∗(·) ≤
f(·)−f(z)+〈z∗, z〉. When f is convex, it coincides with ∂cf(z). Let us note that the
larger the subdifferential one uses is, the stronger the existence results obtained with
this subdifferential are. On the other hand, the best uniqueness results are those
which are formulated with the smallest subdifferentials. For this reason, following
the classical line of ([18], [20], [15], [22]) one can use the viscosity subdifferential for
uniqueness results and the Hadamard subdifferential for existence results; in one
instance of our existence results, we turn to the Fréchet subdifferential in order to
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admit weaker assumptions. The reader which is just interested in the finite dimen-
sional case will not bother about the distinctions between the subdifferentials we
use.

Given a subdifferential ∂ one says that u is a supersolution (resp. subsolution)
to (1) if for each (x, t) ∈ X × P with P := (0,+∞) and each (p, q) ∈ ∂u(x, t) (resp.
(p, q) ∈ −∂(−u)(x, t)) one has q + H(p) ≥ 0 (resp. q + H(p) ≤ 0). We use the
term lower solution if for each (x, t) ∈ X × P and each (p, q) ∈ ∂u(x, t) one has
q + H(p) ≤ 0. We are tempted to consider functions which are at the same time
supersolutions and lower solutions as appropriate solutions. This viewpoint is close
to the notion of l.s.c. solution in the sense of Barron and Jensen ([12], see also [7])
and is supported by the uniqueness results of [12] and of our last section.

The initial condition (2) is considered separetely in section 4. In such a way, one
is able to distinguish assumptions required for (1) from assumptions used for (2).
We also hope that the separate study of the Hopf and the Lax formula will help in
the appropriate choice in the partially convex cases we consider. A hint is as follows:
since the Hopf formula involves g∗, hence gives the same solution when a function
g1 satisfying g∗∗ ≤ g1 ≤ g is substituted to g, it is natural to use it when g = g∗∗;
on the other hand, when H = H∗∗, the use of the Lax formula is commendable.

2. The Hopf-Lax formula

The following result does not require any assumption but

(3) domg 6= ∅, domg∗ ∩ domH 6= ∅,
which is made in all this section and is satisfied if H is everywhere finite and if g
is proper and bounded below by a continuous affine function. It involves the Hopf
(or Hopf-Lax) formula:

(4) v(x, t) := (g∗ + tH)∗(x) := sup
p∈domg∗∩domH

(〈p, x〉 − g∗(p)− tH(p)) ,

for (x, t) ∈ X × R+, where, for t = 0, the product tH(p) is interpreted as 0 if
H(p) < ∞, and +∞ if H(p) = +∞. We extend u (and any other function on
X ×R+) by +∞ on X ×R−. This formula shows that v is a closed convex function
of (x, t), as −∞ < v(·, 0) ≤ g∗∗ ≤ g. Note that without assumption (3) the function
v is identically −∞ on X × R, so that the following statement is trivial. In the
classical case, g is supposed to be Lipschitz and convex and H is supposed to
be finite and continuous ([33], [6], [44], [26], [27]...) or boundedness and uniform
continuity assumptions are made. Of course, since in the preceding formula g is
involved through g∗, there is no loss of generality in assuming that g is convex
and lower semicontinuous (l.s.c.) and one cannot expect to satisfy an initial data
which does not have such a property. However, regularity properties such as uniform
continuity or Lipschitz properties are not needed here, nor is convexity and finiteness
of H. Let us illustrate these observations by some examples. The fact that neither
g nor H is supposed to be finite allows to take indicator functions; recall that, for
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a subset S of X∗, the indicator function ιS of S is defined by ιS(p) = 0 for p ∈ S,
+∞ else.
Example 2.1. Let H be an arbitrary function with nonempty domain and let
g = 〈p, ·〉 with p ∈ dom H. Then v(x, t) = 〈p, x〉 − tH(p) is a linear solution to
(1)-(2) in the classical sense.
Example 2.2. More generally, let S be a subset of X∗ and let g be given by
g(x) := supp∈S〈p, x〉. Then v(x, t) = (tHC)∗(x), where C is the closed convex hull
of S and HC := H + ιC . In particular, if H = ιD + γ, with D ⊂ X∗, γ ∈ R, one
has v(x, t) = supC∩D〈p, x〉 − γt; here v(x, t) = −∞ when C ∩ D = ∅. Again, this
shows the usefulness of assumption (3). Moreover, we see that some compatibility
assumption has to be imposed in order to satisfy the initial condition (2).
Example 2.3. Let g = ι{a}, where a is a given point in X and let H be an arbitrary
function on X∗. Then v(x, t) = (tH)∗(x− a) for (x, t) ∈ X × R+

Example 2.4. Let g = min(‖·‖ , 1) and let H = c ‖·‖. Then v(x, t) = 0.
Example 2.5. Let g = c ‖·‖ , where c > 0, and let H(·) = min(‖·‖ , 1). Note
that g and H are Lipschitzian, but H is nonconvex. Then, for c ≤ 1 one has
v(x, t) = c(‖x‖ − t)+, where r+ = max(r, 0) for r ∈ R and for c > 1 one has
v(x, t) = (c ‖x‖ − t)+.
Example 2.6. Let g = c ‖·‖ , where c > 0, and let H be given by H(p) =

−
√

1− ‖p‖2 for p ∈ B∗, the closed unit ball of X∗, H(p) = +∞ for p ∈ X∗\B∗.
Then g∗ = ιcB∗ and for b := min(c, 1) one has

v(x, t) = b ‖x‖+ t(1− b2)1/2 for 0 ≤ t ≤ b−1(1− b2)1/2 ‖x‖ ,

v(x, t) = (‖x‖2 + t2)1/2 for t ≥ b−1(1− b2)1/2 ‖x‖ .

Proposition 2.1. Under assumption (3), the function v given by

v(x, t) := (g∗ + tH)∗(x)

is a supersolution to (1). Moreover, when X is complete, there exists a dense subset
D of dom v such that ∂v(x, t) 6= ∅ for each (x, t) ∈ D.

Let us note that ∂v(x, t) is nonempty whenever X is complete and (x, t) belongs
to int(dom v). The proof below is inspired by [44]; a more direct proof is given in
[51].

Proof. Let t ∈ P, x ∈ X and (p, q) ∈ ∂v(x, t) = ∂cv(x, t) since v is convex, so
that for any s ∈]0, t[, w ∈ X one has, with r := (g∗ + tH)∗ (x),

(g∗ + sH)∗ (w) ≥ r + 〈p, w − x〉+ q(s− t).

Taking the conjugates of both sides considered as functions of w and adding (t−s)H
we get

(g∗ + sH)∗∗ + (t− s)H ≤ −r + 〈p, x〉 − q(s− t) + ι{p} + (t− s)H,

where ι{p} is the indicator function of {p}. Taking again the conjugates of both
sides, using the relation

r = ((g∗ + sH)∗∗ + (t− s)H)∗ (x)
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deduced from the semi-group property satisfied by v (see [44]), and taking the values
of both sides at x we obtain

r ≥ r − 〈p, x〉+ q(s− t) +
(
ι{p} + (t− s)H

)∗ (x)

or
0 ≥ −〈p, x〉 − q(t− s) + (〈p, x〉 − (t− s)H(p)) .

Since t > s, it follows that q + H(p) ≥ 0.
The last assertion is a consequence of the classical Brøndsted-Rockafellar Theo-

rem (see [24] for instance). ¤
The following lemma, which will help to give conditions ensuring that v is a

subsolution, has an independent interest.

Lemma 2.2. Let t ∈ P, x ∈ X be such that the conjugate in the definition of v
is exact at x, i.e. there exists p ∈ domg∗ ∩ domH such that p is a maximizer of
〈·, x〉 − g∗ − tH. Then (p,−H(p)) ∈ ∂v(x, t) so that

inf{q + H(p) : (p, q) ∈ ∂v(x, t)} = 0.

Moreover, for any (p, q) ∈ ∂+v(x, t) := −∂(−v)(x, t) one has q + H(p) = 0 and v is
Gâteaux-differentiable at (x, t).

Proof. The assumption ensures that v(x, t) = 〈p, x〉 − g∗(p)− tH(p), so that, for
any (w, s) ∈ X × P, we have

v(w, s)− v(x, t) ≥ (〈p, w〉 − g∗(p)− sH(p))− (〈p, x〉 − g∗(p)− tH(p))
≥ 〈p, w − x〉 − (s− t)H(p).

Since v is convex, and since X × P is a neighborhood of (x, t), this inequality is
enough to ensure that (p,−H(p)) ∈ ∂v(x, t).

Since v is convex, whenever (p, q) ∈ −∂(−v)(x, t) the function v is Gâteaux-
differentiable at (x, t) and one has (p, q) = (p,−H(p)) . Thus p = p, q = −H(p) =
−H(p). ¤

Corollary 2.3. Suppose that (condition (3) holds and) for some (x, t) ∈ X × P
and some p ∈ ∂v(·, t)(x) one has H(p) = H∗∗(p). Then (p, q)) ∈ ∂v(x, t) if and
only if one has q + H(p) = 0. If moreover ∂+v(x, t) is nonempty then v is Gâteaux
differentiable at (x, t).

Proof. Since H(p) = H∗∗(p), and since condition (3) holds, the functions H∗∗
and g∗+tH∗∗ are closed proper convex. The assumption p ∈ ∂v(·, t)(x) is equivalent
to v(x, t) = 〈p, x〉 − (g∗ + tH)∗∗ (p). Since, for any function f, the greatest closed
convex function majorized by f is f∗∗, we have

(g∗ + tH) (p) ≥ (g∗ + tH)∗∗ (p) ≥ g∗(p) + tH∗∗(p)

and as H(p) = H∗∗(p), we have equality in these relations and the value of each
side is finite and equal to 〈p, x〉 − v(x, t), so that p ∈ dom g∗ ∩ dom H and, by the
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preceding proof, we get (p,−H(p)) ∈ ∂v(x, t). Let q be such that (p, q) ∈ ∂v(x, t).
Since for any (w, s) ∈ X × P we have

p.x + qt− v(x, t) ≥ −v(w, s) + 〈p, w〉+ qs,

taking the supremum over w ∈ X, we get

〈p, x〉+ qt− v(x, t) ≥ v∗(·, s)(p) + qs = (g∗ + sH)∗∗ (p) + qs = g∗(p) + sH(p) + qs.

Since s can be arbitrarily large, we obtain q + H(p) ≤ 0, hence q + H(p) = 0 by
Proposition 2.1.

The last conclusion follows from the preceding lemma. ¤
In order to deal with subsolutions, let us make the following two assumptions in

which l.s.c. means lower semicontinuous:
(A1) g is bounded above on bounded subsets of X;
(A2) H is weak∗ l.s.c. and there exist a ∈ R+, b ∈ R such that H ≥ b− a ‖·‖.
Let us note that assumption (A1) is satisfied whenever X is finite dimensional, g

is convex (or convex up to a power of the norm, in particular, when g is paraconvex
or semiconvex) and finite on X and assumption (A2) is satisfied whenever H is
weak∗ l.s.c. proper convex (or, more generally, when H is bounded below by a
continuous affine function). However, neither (A1) nor (A2) involve an explicit
convexity assumption. In particular, we note that certain integral functionals are
lower semicontinuous without being convex ([16], [28], [29], [36], [37], [47]).

Theorem 2.4. Suppose assumptions (A1), (A2) are satisfied. Then for each (x, t) ∈
X × P and each (p, q) ∈ ∂+v(x, t) := −∂(−v)(x, t) one has q + H(p) = 0 and v is
Gâteaux-differentiable at (x, t). In particular v is a subsolution to (1).

Proof. Let a ∈ R+, b ∈ R be such that H(·) ≥ b − a ‖·‖ . Then, for each
(x, t) ∈ X×P and each p ∈ X∗, taking r := ‖x‖+ta+1, m := sup{g(w) : ‖w‖ ≤ r},
we have

g∗(p) + tH(p) ≥ sup
w∈B(0,r)

(〈p, w〉 − g(w)) + tb− ta ‖p‖

≥ sup
w∈B(0,r)

〈p, w〉 −m + tb− ta ‖p‖

≥ (r − ta) ‖p‖ −m + tb,

hence

−〈p, x〉+ g∗(p) + tH(p) ≥ −‖x‖ ‖p‖+ (r − ta) ‖p‖ −m + tb

≥ ‖p‖ −m + tb.

Therefore the function p 7→ −〈p, x〉 + g∗(p) + tH(p) is weak∗ l.s.c. and coercive.
Thus it attains its infimum on X∗. Then, the preceding lemma yields the conclusion.

¤
Let us remark that the preceding proof shows that the following assumption
(A′1) g is bounded above on a ball centered at 0 in X with radius r > 0
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and (A2) ensure that for each (x, t) ∈ X × P with ‖x‖ + ta < r and each (p, q) ∈
∂+v(x, t) := −∂(−v)(x, t) one has q + H(p) = 0. On the other hand, it also shows
that assumption (A1) can be replaced by the assumption that g∗ is hyper-coercive
in the sense that lim‖p‖→∞ ‖p‖−1 g∗(p) = +∞.

3. The Lax-Oleinik solution

In the present section we consider the Lax-Oleinik formula defined with the help
of the infimal convolution operator ¤: for (x, t) ∈ X × P

u(x, t) := (g¤ht) (x)(5)

:= inf
w∈X

[g(x− w) + ht(w)] ,

where ht := (tH)∗ = th(t−1·) for t ∈ P, h := H∗ (considered as a function on X).
The value of u(·, 0) has no importance for the present section. For consistence, we
set u(·, 0) := g¤h0, where (0H)∗ ≤ h0 ≤ ι{0}, with 0H := ιdomH ; note that the
choice h0 = ι{0} yields u(·, 0) = g. In the sequel, we assume that g is proper and
H is bounded below by a (weak∗) continuous affine functional, or equivalently,

(6) domg 6= ∅, domH∗ 6= ∅.
In the classical case, H is supposed to be convex (or concave) and g is supposed to
be Lipschitz ([33], [43], [26], [6]...) or H is supposed to be Lipschitz, convex and g
is supposed to be continuous ([57]).
Example 3.1. Let H be an arbitrary function with nonempty domain and let
g = 〈p, ·〉 with p ∈ dom H∗∗.Then u(x, t) = 〈p, x〉− tH∗∗(p) is a linear supersolution
to (1)-(2).
Example 3.2. Let g be given by g(x) := supp∈C〈p, x〉 for a closed convex subset C
of X∗ and let H := ι{d}+γ for some d ∈ X∗, γ ∈ R. Then u(x, t) = 〈d, x〉−γt−ιC(d).
Example 3.3. Let g = ι{a}, with a ∈ X and let H be an arbitrary function on X∗.
Then u(x, t) = (tH)∗(x− a).
Example 3.4. Let g = min(‖·‖ , 1) and let H = c ‖·‖. Then u(x, t) = min((‖x‖ −
ct)+, 1).
Example 3.5. Let g = c ‖·‖ and let H(·) = min(‖·‖ , 1). Then u(x, t) = c ‖x‖ .
Example 3.6. Let g = c ‖·‖ , where c > 0, and let H be given by H(p) =

−
√

1− ‖p‖2 for p ∈ B∗, the closed unit ball of X∗, H(p) = +∞ for p ∈ X∗\B∗.
Then u = v, where v is as in Example 2.6.

We observe that since g∗ + tH∗∗ ≤ g∗ + tH for each t ∈ R+, we have

(7) u(·, t) = g¤ht ≥ (g¤ht)
∗∗ = (g∗ + tH∗∗)∗ ≥ (g∗ + tH)∗ = v(·, t).

In fact, for t > 0 one has

(u(·, t))∗∗ = (g¤ht)
∗∗ = (g∗ + tH∗∗)∗ ≥ (g∗ + tH)∗ = v(·, t),

with equality when H = H∗∗ and for t = 0 we have u(·, 0) ≤ g¤ι{0} = g,

u(·, 0) ≥ (g¤ι∗domH)∗∗ = (g∗ + ι∗∗domH)∗ ≥ (g∗ + ιdomH)∗ = v(·, 0).
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We also note the relation

(8) hr¤hs = hr+s

for any r, s > 0 : since h := H∗ is convex, for x ∈ X, t := r + s we have

ht(x) = th(t−1x) = rh(r−1rt−1x) + sh(s−1st−1x)
= hr(rt−1x) + hs(st−1x) ≥ (hr¤hs) (x)
≥ t inf

w∈X

(
t−1rh(r−1w) + t−1sh(s−1(x− w))

)

≥ t inf
w∈X

h(t−1w + t−1(x− w)) = ht(x).

In the following lemma we use the (possibly non convex) asymptotic function of g
given by

g∞(z) := lim inf
(w,t)→(z,∞)

t−1g(tw) for z ∈ X.

Here and in the sequel the convergence is taken in the weak topology (or the weak∗
topology when the function is defined on a dual space).

Proposition 3.1. If the inf-convolution in the definition of u is exact at (x, t) ∈
X × P, then for each (p, q) ∈ ∂u(x, t) one has q + H∗∗(p) ≥ 0 hence q + H(p) ≥ 0.

The function u is l.s.c. and exactness of the inf-convolution occurs at any (x, t) ∈
X × P when one of the following conditions is satisfied:
(a) X is reflexive, g is weakly l.s.c., bounded below by b − c ‖·‖ for some b, c ∈ R,
and H is bounded above on some ball with center 0 and radius r > c;
(b) X is reflexive, g is weakly l.s.c., bounded below, and H is bounded above around
0;
(c) X is finite dimensional, g is l.s.c., and h∞(v) > −g∞(−v) for any unit vector
v in X.

In fact, in conditions (a) and (b) one could suppose X is a dual space instead of
a reflexive space, g is weak∗ l.s.c and H is the conjugate of a weak∗ closed proper
convex function on X.

Proof. Let us suppose that the inf-convolution in the definition of u is exact at
(x, t) : there exists some z ∈ X such that

u(x, t) = g(x− z) + th(t−1z).

Then, for any s ∈]0, t[, we have

u(x− st−1z, t− s) = (ht−s¤g)(x− st−1z)
≤ ht−s(z − st−1z) + g(x− z)
≤ (t− s)h(t−1z) + g(x− z)
≤ u(x, t)− sh(t−1z).

It follows that

lim sup
s→0+

1
s

(
u(x− st−1z, t− s)− u(x, t)

) ≤ −h(t−1z)
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and for each (p, q) ∈ ∂u(x, t) we get

〈p,−t−1z〉+ q(−1) ≤ −h(t−1z).

Therefore

q + H∗∗(p) = q + sup
w∈X

(〈p, w〉 − h(w)) ≥ q + 〈p, t−1z〉 − h(t−1z) ≥ 0.

In case (a), the second assertion is a consequence of the fact that, under its assump-
tions, the functions kx : w 7→ g(x − w) + th(t−1w) are weakly l.s.c. and coercive,
uniformly in (x, t) for x in a bounded set and t in a compact subset of P. In fact, if
g is bounded below by b− c ‖·‖ for some b, c ∈ R and H(p) ≤ m for each p ∈ B(0, r)
with r > c, then

th(t−1w) ≥ t sup
p∈B(0,r)

(〈p, t−1w〉 −m
)

= r ‖w‖ −mt

while g(x− w) ≥ b− c+ ‖w‖ − c+ ‖x‖ with r > c+, so that

kx(w) ≥ (r − c+) ‖w‖+ b− c+ ‖x‖ −mt.

Assertion (b) is clearly a consequence of assertion (a).
On the other hand, when X is finite dimensional and h∞(v) > −g∞(−v) for any

unit vector v in X, kx is also coercive, uniformly for (x, t) in any compact subset
B of X × P. Otherwise, we can find c > 0 and sequences (wn), (xn, tn) in X and
B respectively with (rn) := (‖wn‖) → ∞ such that g(xn − wn) + tnh(t−1

n wn) ≤ c.
Without loss of generality we may assume wn = rnvn, where (vn) converges to a
unit vector v and (xn, tn) converges to some (x, t) ∈ X × P. Then we get

h∞(v) ≤ lim inf
n

r−1
n tnh(rnt−1

n vn) ≤ lim sup
n

−r−1
n g(xn − rnvn) ≤ −g∞(−v),

a contradiction. The lower semicontinuity of u follows easily; see also [62], [63]. ¤
Example 3.7 Let X = R, g(x) = (1− |x|)+, H(p) = ι[1,2](|p|). Then neither g nor
H are convex and u(x, t) = g(x). For x = 1, t > 0 one has (p, 0) ∈ ∂u(x, t) for any
p ∈ [−1, 0] and q + H(p) > 0 for p ∈]− 1, 0], q = 0. Here assumption (c) is satisfied.

Under a smoothness assumption, the preceding result can be reinforced (compare
with [52]).

Lemma 3.2. Suppose H∗∗ = H and h := H∗ is Gâteaux-differentiable. If the inf-
convolution in the definition of u is exact at (x, t) ∈ X × P, then for each (p, q) ∈
∂u(x, t) one has q+H(p) = 0. Moreover, ∂u(x, t), if nonempty, is a singleton, so that
if moreover g is convex and u is continuous at (x, t), then u is Gâteaux-differentiable
at (x, t).

Proof. Let F, G : X × R → R be given by G(x, t) = g(x) + ι{0}(t), F (x, t) =
ht(x) = th(x/t) for (x, t) ∈ X × P, F (x, 0) = ι∗dom H(x), F (x, t) = +∞ for (x, t) ∈
X× ]−∞, 0[. Clearly, for the choice h0 = ι∗dom H one has

u = F £ G,
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where £ denotes the inf-convolution with respect to the variable (x, t). Moreover,
the inf-convolution F £ G is exact at (x, t) ∈ X× P iff g¤ht is exact at x :

(F £ G) (x, t) = F (x− y, t− s) + G(y, s) ⇔ (g¤ht) (x) = ht(x− y) + g(y), s = 0.

Now, for any (p, q) ∈ ∂u(x, t) one easily shows that (p, q) ∈ ∂F (x− y, t). Since h is
(Gâteaux) differentiable, this relation means that

(9) p = h′(
x− y

t
), q = h(

x− y

t
)− h′(

x− y

t
)(

x− y

t
).

Since h is convex and H∗∗ = H, these equalities imply that

H(p) = h∗(p) = p.(
x− y

t
)− h(

x− y

t
) = −q.

Since (p, q) is uniquely determined by relation (9), the last conclusion follows. ¤
Example 3.8. Suppose X = R and let H be given by H(p) = p ln p− p for p > 0,
H(0) = 0, H(p) = +∞ for p < 0. Then h(x) = expx and by the two preceding
results, for any l.s.c. function g satisfying g∞(1) > ∞, g∞(−1) > 0 the Lax-Oleinik
solution u is a supersolution and a lower solution, i.e. a bilateral solution in the
sense of [7].
Example 3.9. Suppose X is finite dimensional, the norm of X is differentiable off
0 and let H be given by H(p) = ‖p‖ ln ‖p‖ − ‖p‖ + 1 for p 6= 0, H(0) = 1. Then
h(x) = exp ‖x‖−1 and the same conclusion holds, for any l.s.c. function g satisfying
g∞(v) > −∞ for any unit vector v ∈ X.
Example 3.10. Let X = R, g(x) = (1 − |x|)+, H(p) = ι[−2,2](p). Then H = H∗∗

and u(x, t) = g(x). For any (x, t) ∈ X × P and any (p, q) ∈ ∂u(x, t) one has
q + H(p) = 0. This fact also follows from the next theorem.

Theorem 3.3. For any (x, t) ∈ X × P and for any (p, q) ∈ ∂u(x, t), where u is
given by (5), one has q + H∗∗(p) ≤ 0; thus, if H is a closed proper convex function
then u is a lower solution: for any (x, t) ∈ X× P and for any (p, q) ∈ ∂u(x, t) one
has q + H(p) ≤ 0. If moreover the inf-convolution in the definition of u is exact at
(x, t) then q + H(p) = 0.

Proof. Let (x, t) ∈ X × P and let (p, q) ∈ ∂u(x, t). For any s > 0 and w ∈ W, by
relation (8) and the associativity of the infimal convolution we have

u(x + sw, t + s) = ((ht¤g)¤hs) (x + sw)
≤ u(x, t) + sh(w).

It follows that
lim sup

s→0+

1
s

(u(x + sw, t + s)− u(x, t)) ≤ h(w).

Thus
〈p, w〉+ q1 ≤ h(w)

and we get
q + H∗∗(p) = q + sup

w∈X
(〈p, w〉 − h(w)) ≤ 0.
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The last assertion is then a consequence of the preceding lemma. ¤
Remark. The preceding proof shows that the relation q + H(p) ≤ 0 is valid
whenever (p, q) ∈ ∂ru(x, t), where ∂ru(x, t) is the set of (p, q) ∈ X∗ × R such that

∀(w, r) ∈ X × R 〈p, w〉+ qr ≤ lim sup
s→0+

s−1 (u(x + sw, t + sr)− u(x, t)) .

This set is larger than ∂u(x, t).
Variants of the preceding results can be given; in Proposition 3.1 one can use

the Fréchet subdifferential and coercivity conditions. Another variant does not
suppose the infimal convolution is exact in (5) but it uses the Fenchel-Moreau
subdifferential ∂c of convex analysis, a notion which is more restrictive than the
Hadamard subdifferential. We will observe in the next corollary (in which the last
assertion is due to C. Zalinescu) that when g is convex, the function u is convex, so
that ∂cu = ∂u.

Proposition 3.4. For any (x, t) ∈ X × P and for any (p, q) ∈ ∂cu(x, t), one has
q + H(p) ≥ 0 and in fact q + H∗∗(p) = 0.

Proof. By the definition of ∂cu(x, t), for any (w, s) ∈ X × P we have

(g¤hs) (w) = u(w, s) ≥ u(x, t) + 〈p, w − x〉+ q(s− t).

Thus, for any w, z ∈ X, s > 0 we have

g(w − z) + hs(z) ≥ u(x, t) + 〈p, w − z〉+ 〈p, z〉 − 〈p, x〉+ q(s− t),

hence, rearranging terms, taking suprema on w′ := w − z and then on z, we get

0 ≥ u(x, t) + g∗(p) + h∗s(p)− 〈p, x〉+ q(s− t).

Since h∗s(p) = sH∗∗(p), since g∗(p) is finite by assumption (6) and since s can be
arbitrarily large, we get q + H∗∗(p) ≤ 0. Since s can be arbitrarily close to 0, since
H∗∗(p) > −∞ by (6) and since by (7) we have u(x, t) ≥ (g∗ + tH)∗(x), we get

qt ≥ u(x, t) + g∗(p)− 〈p, x〉
≥ inf

w∈X
(g(x− w) + g∗(p)− 〈p, x〉+ tH∗(w/t))

≥ inf
w∈X

(−〈p, w〉+ tH∗(w/t)) = −tH∗∗(p),

hence q ≥ −H∗∗(p) ≥ H(p). ¤

Corollary 3.5. Suppose g is convex. Then, u is convex and for any (x, t) ∈ X×
P, for any (p, q) ∈ ∂u(x, t) one has q + H(p) ≥ 0. If moreover H is a closed proper
convex function on X∗ then for any (x, t) ∈ X× P and for any (p, q) ∈ ∂u(x, t) one
has q + H(p) = 0.

Proof. When g is convex, u is convex as the performance function of the function
(w, x, t) 7→ g(x− w) + th(t−1w) in view of the relations

r′t′h(
x′

t′
) + r′′t′′h(

x′′

t′′
) ≥ th(

1
t
(r′x′ + r′′x′′))
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valid for r′, r′′ ≥ 0, r′+ r′′ = 1, t := r′t′+ r′′t′′. It follows that ∂u(x, t) = ∂cu(x, t).¤

Theorem 3.6. For any (x, t) ∈ X×P and for any (p, q) ∈ ∂+u(x, t) := −∂(−u)(x, t)
one has q + H∗∗(p) ≤ 0. In particular, if H is a closed proper convex function on
X∗, u is a subsolution. If moreover g is convex, then q + H(p) = 0 and u is
Gâteaux-differentiable at (x, t) when ∂+u(x, t) is nonempty.

Proof. As H = h∗, given (x, t) ∈ X × P, (p, q) ∈ −∂(−u)(x, t) it suffices to prove
that 〈p, w〉 − h(w) ≤ −q for each w ∈ X. For each s ∈]0, t[, relation (8) yields

u(x, t) = ((g¤ht−s) ¤hs) (x)
≤ (g¤ht−s) (x− sw) + sh(w),

so that
s−1 (u(x− sw, t− s)− u(x, t)) ≥ −h(w).

Taking limits we obtain

〈p,−w〉+ q(−1) ≥ lim inf
s→0+

s−1 (u(x− sw, t− s)− u(x, t)) ≥ −h(w),

as expected. ¤
Remark. The preceding proof shows that the inequality q + H∗∗(p) ≤ 0 is valid
whenever (p, q) ∈ −∂r(−u)(x, t). Moreover, when h is continuous, it suffices that
for each (w, r) ∈ X × R one has

〈p, w〉+ qr ≥ lim inf
(s,z)→(0+,w)

s−1 (u(x + sz, t + rs)− u(x, t)) .

4. Initial conditions

In order to check the initial conditions we recall some basic definitions of epi-
convergence (see [2] and the recent monograph [53] for instance). Given a family
(ft)t>0 of functions on X parametrized by P :=]0,+∞[, we define its (weak) epi-limit
inferior by(

ew − lim inf
t→0+

ft

)
(x) = sup

W∈N (x)
lim inf
t→0+

inf
w∈W

ft(w) = lim inf
(w,t)→(x,0+)

ft(w),

where N (x) denotes the family of (weak) neighborhoods of x, and its epi-limit
superior by (

e− lim sup
t→0+

ft

)
(x) := sup

ε>0
lim sup

t→0+

inf
w∈B(x,ε)

ft(w),

where B(x, ε) is the closed ball with center x and radius ε. The family is said
to (Mosco) epi-converge to a function g on X if ew − lim inft→0+ ft = g = e −
lim supt→0+

ft. This notion can be given a simple interpretation in terms of set-
convergence and is of great importance when dealing with duality questions. To the
knowledge of the authors it has not yet been used for Hamilton-Jacobi equations but
in [10], [12] (for the limit inferior in the concept of lower semicontinuous solution),
[49] (under the form of level-convergence). Here we stress the relationship with
classical variational convergences (see [2], [53] for example).
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Proposition 4.1. (a) One always has v(·, 0) ≤ ew − lim inft→0+ v(·, t), v(·, 0) ≤ g.
(b) With assumption (6) one has

v(·, 0) = e− lim
t→0+

v(·, t) ≤ ew − lim inf
t→0+

u(·, t) ≤ e− lim sup
t→0+

u(·, t) ≤ g.

(c) If domg∗ ⊂ domH then v(·, 0) = g∗∗, hence v(·, 0) = g when g = g∗∗.
(d) If assumption (6) holds, if domg∗ ⊂ domH and g = g∗∗, then the functions
v(·, t) and u(·, t) epi-converge to g as t → 0+. If furthermore H is bounded below,
then v(·, t) and u(·, t) pointwise converge to g as t → 0+.

Proof. (a) The inequality v(·, 0) ≤ ew − lim inft→0+ v(·, t) is a consequence of
the weak lower semicontinuity of v. We have v(·, 0) = (g∗ + ιdomH)∗ , where ιdomH

denotes the indicator function of the domain of H. Since g∗ + ιdomH ≥ g∗, we get
v(·, 0) ≤ g∗∗ ≤ g.

(b) When there exist a ∈ X, b ∈ R such that H(·) ≥ 〈·, a〉−b, we have H∗(a) ≤ b,
hence, for each w ∈ X,

(10) v(w, t) ≤ u(w, t) = (g¤ht) (w) ≤ g(w − ta) + tH∗(a) ≤ g(w − ta) + tb.

Thus, for any x ∈ X and any sequence (tn) → 0+, taking (wn) := (x + tna)
which converges to x, we see that (e− lim sup u(·, tn)) (x) ≤ lim supn u(wn, tn) ≤
limn (g(x) + tnb) = g(x). Similarly, as tH ≥ ιdomH + 〈·, ta〉 − tb for t > 0, we get

v(w, t) ≤ (g∗ + ιdomH)∗(w − ta) + tb,

(e− lim sup v(·, tn)) (x) ≤ lim sup
n

v(wn, tn) ≤ lim
n

((g∗ + ιdomH)∗(x) + tnb)

= v(x, 0).

(c) If domg∗ ⊂ domH we have g∗ + ιdomH = g∗, hence

v(·, 0) = (g∗ + ιdomH)∗ = g∗∗.

(d) Gathering the preceding inequalities we obtain (when g = g∗∗)

v(·, 0) = e− lim sup
t→0+

v(·, t) ≤ e− lim sup
t→0+

u(·, t) ≤ g = g∗∗ = v(·, 0)

v(·, 0) ≤ e− lim
t→0+

v(·, t) ≤ ew − lim inf
t→0+

u(·, t) ≤ e− lim sup
t→0+

u(·, t) ≤ v(·, 0).

Thus v(·, t) and u(·, t) epi-converge to g.
When H is bounded below, taking a = 0 in (10), so that H∗(0) ≤ b < +∞, it

follows that for each x ∈ X

lim sup
t→0+

v(x, t) ≤ lim sup
t→0+

u(x, t) ≤ lim sup
t→0+

(g(x) + tb) ≤ g(x)

and since

g(x) ≤ e− lim inf
t→0+

v(·, t)(x) ≤ lim inf
t→0+

v(x, t) ≤ lim inf
t→0+

u(x, t)

v(·, t) and v(·, t) pointwise converge to g. ¤
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Corollary 4.2. Suppose g = g∗∗, dom g∗ ⊂ dom H and (6) holds. Then v is a
supersolution to (1)-(2) in the epi-limit sense. If the conjugation giving v is exact
then

inf{q + H(p) : (p, q) ∈ ∂u(x, t)} = 0 ∀(x, t) ∈ X × P.

If H = H∗∗ then v is also a lower solution.

Example 4.1 Let X = R, g(x) = 0 for x ∈ R−, g(x) = +∞ for x > 0, H(p) =
(|p|−1)2. Then g∗(p) = ιR+(p) and dom g∗ = R+ ⊂ dom H. Then v(x, t) = x+ 1

4tx
2

for x ≥ −2t, v(x, t) = −t for x < −2t. We note that H is nonconvex and v is
differentiable a.e. with (1) satisfied a.e.
Example 4.2 Let g(x) = c ‖x‖, H(p) = a ‖p‖ with c > 0, a > 0. Then g∗ = ιcB∗
and dom g∗ ⊂ dom H. Then v(x, t) = u(x, t) = c (‖x‖ − ta)+ .

Example 4.3 Let g(x) = c ‖x‖, H(p) = 1
2 ‖p‖2 . Then g∗ = ιcB∗ and dom g∗ ⊂

dom H. Then v(x, t) = u(x, t) = 1
2t ‖x‖2 for ‖x‖ ≤ ct, v(x, t) = u(x, t) = c ‖x‖ − c2

2 t
for ‖x‖ > ct.

In the following statement, the convexity assumption on g is dropped, but only
u is considered.

Proposition 4.3. Suppose either
(a) If g = g∗∗, domg∗ ⊂ domH or
(b) X is finite dimensional, g is l.s.c., g¤h∞ ≥ g and

(11) h∞(z) > −g∞(−z) for each z ∈ X\{0}.
Then ew − lim inft→0+ u(·, t) ≥ g. If moreover H is bounded below by a continuous
affine function (resp. is bounded below), then the function u(·, t) epi-converges (resp.
pointwise converges) to g as t → 0+.

Proof. In case (a) we have

g = v(·, 0) ≤ ew − lim inf
t→0+

v(·, t) ≤ ew − lim inf
t→0+

u(·, t)

by the preceding proposition.
(b) Suppose on the contrary that ew− lim inft→0 u(·, t)(x) < g(x) for some x ∈ X;

then there exist some r < g(x) and sequences (tn) → 0+, (xn) → x such that
(u(xn, tn)) → r. The definition of an infimal convolution ensures that we can find a
sequence (wn) such that

g(xn − wn) + tnh(t−1
n wn) → r as n →∞.

Taking subsequences, we may assume that either (wn) has a limit w or that (sn) :=
(‖wn‖) → ∞ and (zn) := (s−1

n wn) has a limit z with norm 1. In the first case, we
get

r ≥ g(x− w) + h∞(w) ≥ (g¤h∞) (x) ≥ g(x) > r,

a contradiction. In the second case, we get

−g∞(−z) ≥ − lim inf
n

s−1
n g(sn(s−1

n xn − zn)) ≥ lim inf
n

s−1
n tnh(snt−1

n zn)) ≥ h∞(z),

a contradiction with our assumption. Therefore e− lim inft→0 u(·, t) ≥ g.
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The second assertion follows as in the preceding proof. ¤
Remark. A similar result holds when X is an infinite dimensional reflexive Banach
space and assumption (11) is replaced with the stronger assumption

lim inf
‖x‖→∞

h(x)/ ‖x‖ > − lim inf
‖x‖→∞

g(x)/ ‖x‖ .

Corollary 4.4. Suppose X is finite dimensional, g is l.s.c., dom H∗ is nonempty
and condition (11) holds. Then u is a supersolution to (1)-(2) in the epi-limit sense.
If moreover H = H∗∗ then u is also a lower solution.

5. Coincidence of the Hopf-Lax and of the Lax-Oleinik solutions

Without convexity assumptions, the Hopf solution and the Lax solution may
differ drastically, as Examples 2.5 and 3.5 show. Let us first make clear the fact
that, under convexity assumptions, the Hopf solution and the Lax solution are close.
Throughout we assume that condition (3) is satisfied. This assumption discards the
case H = 0, g a non continuous linear form, for which the conclusion of the following
proposition is not satisfied.

Proposition 5.1. Suppose condition (3) holds, g is convex and H is a closed proper
convex function. Then the Hopf solution v coincides with the l.s.c. hull u of the
Lax solution u on X × P.

Proof. As observed above, when H = H∗∗ and g is convex, for each t ∈ P, u(·, t)
being convex on X, one has v(·, t) = u(·, t)∗∗ = u(·, t), the lower semicontinuous hull
of u(·, t) because v does not take the value −∞. Thus, for each (x, t) ∈ X × P one
has, by Proposition 4.1,

v(x, t) = lim inf
x′→x

u(x′, t) ≥ lim inf
(x′,t′)→(x,t)

u(x′, t′) ≥ lim inf
(x′,t′)→(x,t)

v(x′, t′) ≥ v(x, t),

v being l.s.c., and equality holds. ¤
Remark. If domg∗ ⊂ domH then u = v on X ×R. On X ×R− this is trivial. For
t = 0, by Proposition 4.1 we have

g∗∗ = v(·, 0) = e− lim
t→0+

v(·, t) ≤ ew − lim inf
t→0+

u(·, t) ≤ g,

Since g∗∗ = g, and v(·, 0) ≤ u(·, 0) by our choice of u(·, 0), the relations v(·, 0) =
ew− lim inft→0+ u(·, t) = u(·, 0) = g ensue. This fact also follows from [35] Theorem
2.1 (which can be extended to the framework of the preceding proposition and does
not assume that domg∗ ⊂ domH), showing that v is the biconjugate of u with
respect to the two variables (x, t).

Let us draw some consequences of the coincidence of v and u at some point
(x, t) ∈ X × P.

Proposition 5.2. Suppose that for some (x, t) ∈ X × P one has v(x, t) = u(x, t).
Then, for each (p, q) ∈ ∂+u(x, t) one has (p, q) ∈ ∂+v(x, t) and q + H(p) ≥ 0.
Moreover for each (p, q) ∈ ∂v(x, t) (in particular for each (p, q) ∈ ∂+v(x, t)) one
has (p, q) ∈ ∂u(x, t) and if H(p) = H∗∗(p), then q + H(p) = 0.
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Proof. Since u ≥ v, the inclusion ∂+u(x, t) ⊂ ∂+v(x, t) holds whenever v(x, t) =
u(x, t). Since v is convex, for any (p, q) ∈ ∂+u(x, t) ⊂ ∂+v(x, t), we have (p, q) ∈
∂v(x, t), hence q + H(p) ≥ 0 by Proposition 2.1.

Let (p, q) ∈ ∂v(x, t) = ∂cv(x, t) ⊂ ∂cu(x, t) ⊂ ∂u(x, t). If H(p) = H∗∗(p) The-
orem 3.3 yields q + H(p) ≤ 0 while Proposition 2.1 ensures that q + H(p) ≥ 0.
¤

Now, let us present criteria ensuring that v and u coincide.

Proposition 5.3. Suppose g is convex and H is a closed proper convex function.
Then for each (x, t) ∈ X × P such that ∂u(·, t)(x) 6= ∅ (or a fortiori ∂u(x, t) 6= ∅)
one has v(x, t) = u(x, t), ∂v(·, t)(x) = ∂u(·, t)(x) and ∂v(x, t) = ∂u(x, t).

Proof. Under the assumptions on g and H the function u is convex and v(·, t) =
u(·, t)∗∗. Since for each (x, t) ∈ X × P and each p ∈ ∂u(·, t)(x) = ∂cu(·, t)(x) the
function u(·, t) is lower semicontinuous at x, one has u(·, t)(x) = u(·, t)∗∗(x) =
v(·, t)(x) and ∂u(·, t)(x) = ∂cu(·, t)(x) = ∂cu(·, t)∗∗(x) = ∂cv(·, t)(x) = ∂v(·, t)(x).
The last assertion is proved similarly. ¤

Theorem 5.4. Suppose X is reflexive, the cone Z := R+(domg∗−domH) is closed
and symmetric and g and H are closed proper convex functions. Then for each
(x, t) ∈ X × P one has v(x, t) = u(x, t). Moreover the infimal convolution in the
definition of u is exact wherever it is finite.

Proof. This follows from a general result of Attouch and Brézis ([3]) since in that
case one has (g∗ + tH)∗ = g∗∗¤(tH)∗ = g¤ht. For other criteria in this line see [5].

6. Uniqueness results

Uniqueness results are a prominent feature in the viscosity approach to Hamilton-
Jacobi equations ([20]-[21]). Another notable uniqueness result due to Barron and
Jensen concerns l.s.c. solutions or unilateral solutions ([12], see also [9], [7]); however
the technique used in [12] seems to be limited to the finite dimensional case. Infinite
dimensional results have been the object of much interest during the last few years
([15], [22]...), in the stationary case as in the evolutionary case. Here, instead of
sum rules, we use mean value results; see also [22] in which uniform continuity
assumptions are involved.

In our first result we use a mean value theorem for viscosity subdifferentials or
Hadamard subdifferentials (see [4], [48] and its references). In fact, it is valid for a
large class of subdifferentials provided Z := X×R satisfies some regularity condition
close to the trustworthiness condition of Ioffe [36], [37], [38], called reliability in [48].
This condition requires that for any l.s.c. function f on Z, for any Lipschitzian
convex function g on Z and for any z ∈ dom f at which f +g attains its infimum and
for any ε > 0 there exist u, v ∈ B(z, ε) such that |f(u)− f(z)| < ε and 0 ∈ ∂f(u) +
∂g(v)+εB∗, where B∗ is the unit ball of Z∗. This condition is satisfied when Z is an
Asplund space and ∂ is the Fréchet subdifferential or when Z has a smooth enough
bump function and ∂ is the viscosity subdifferential or the Hadamard subdifferential.
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Here we do not give a formal definition of what can be called a subdifferential, but
we assume ∂ satisfies usual properties such as coincidence with the Fenchel-Moreau
subdifferential in the convex case and the rule ∂(f + ` + c)(z) = ∂f(z) + ` for any
c ∈ R, ` ∈ Z∗, z ∈ Z (see [38], [48] for instance).

Lemma 6.1. ([48]) Suppose Z is reliable for a subdifferential ∂. Let f : Z →
R ∪ {∞} be a l.s.c. function finite at z0 ∈ Z. Then, for any z ∈ Z there exist
z ∈ [z0, z[ and sequences (zn) → z, (z∗n) in Z∗ such that z∗n ∈ ∂f(zn) for each n ∈ N
and

lim inf
n

〈z∗n, z − z0〉 ≥ f(z)− f(z0).

Theorem 6.2. Suppose X×R is reliable for a subdifferential ∂. Let w : X×P→ R
be a lower solution to (1) which is l.s.c. and such that for each x ∈ X one has
lim inf(z,t)→(x,0+) w(z, t) ≤ g(x). Then w ≤ u, the Lax solution.

A similar result holds if w is a subsolution.
Proof. Let us observe that for any s, t ∈ P, x, x′, y ∈ X we have

(12) w(x′, t + s) ≤ w(x′ − ty, s) + tH∗(y).

This follows from the mean value inequality

w(x′, t + s)− w(x′ − ty, s) ≤ lim inf
n

(pn.ty + qnt)

for some (pn, qn) ∈ ∂w(zn) where (zn) is a sequence converging to some z ∈ [(x′ −
ty, s), (x′, t + s)] and from the inequalities qn ≤ −H(pn), pn.y −H(pn) ≤ H∗(y).

Taking the limit inferior when (x′, s) → (x, 0+) in (12) and using the assumption
about the initial condition, we get

w(x, t) ≤ g(x− ty) + tH∗(y).

Taking the infimum on y we get w(x, t) ≤ u(x, t). ¤

Corollary 6.3. Suppose, with condition (3) and the assumptions of the preceding
theorem, that H = H∗∗ and for each t ∈ P the function w(·, t) is convex and proper.
Then w ≤ v, the Hopf solution.

Proof. Since H = H∗∗, and since condition (3) holds, for each t ∈ P one has
v(·, t) = u(·, t)∗∗, the greatest closed convex function majorized by u(·, t). Therefore
w(·, t) ≤ v(·, t). ¤

The following corollary is given in [35] under the additional assumption that
dom H∗ is open.

Corollary 6.4. Suppose X×R is reliable (for the Hadamard subdifferential), g and
H are closed proper convex functions satisfying (3). Then the Hopf solution is the
greatest lower solution w of (1) which is l.s.c. and such that

lim inf
(z,t)→(x,0)

w(z, t) ≤ g(x).
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Proof. As observed in Proposition 5.1, when g and H are closed proper convex
functions and (3) holds, the Hopf solution v is the l.s.c. hull of the Lax solution u.
Since w ≤ u, and since w is l.s.c., we also have w ≤ v. We know from Proposition
4.1 that lim inf(z,t)→(x,0) v(z, t) ≤ g(x). ¤

The next results will use multi-directional mean value inequalities, in the line of
[34], [35]. The simplest such inequality is similar to [17] Theorem 2.3 p. 114; its
proof is obtained by adding the use of the lop-sided Moreau minimax theorem ([46]).
Here we say that a function f on a normed space Z is tangentially convex if for any
z ∈ dom f the Hadamard lower derivative f ′(z, ·) is convex and f ′(z, 0) = 0. This
class contains usual marginal functions and convex composite functions satisfying
a classical qualification condition.

Lemma 6.5. Let Z be a reflexive Banach space and let f : Z → R ∪ {+∞} be a
weakly l.s.c. function which is tangentially convex. Given z0 ∈ Z and a bounded
closed convex subset Y of Z there exist z ∈ [z0, Y [:= {(1−t)z0+ty : y ∈ Y, t ∈ [0, 1[}
and z∗ ∈ ∂f(z) (the Hadamard subdifferential) such that

min
Y

f − f(z0) ≤ z∗.(y − z0) ∀y ∈ Y.

Theorem 6.6. Suppose X is a reflexive Banach space, H is u.s.c. at each point of
dom g∗, is bounded above on bounded subsets and such that

lim sup
‖p‖→∞

H(p)/ ‖p‖ < +∞.

Let w : X×R+ → R be a weakly l.s.c., tangentially convex, Hadamard supersolution
to (1) such that w(·, 0) ≥ g (or even ≥ g∗∗). Then w ≥ v, the Hopf solution.

Let us observe that when X is reflexive the assumption lim sup‖p‖→∞H(p)/ ‖p‖ <

+∞ is a consequence of the relation (−H)∞(p) > −∞ for each p ∈ X∗ (the as-
ymptotic function being taken in a sequential way, with respect to the weak topol-
ogy); conversely, this assumption implies the relation (−H)∞(p) > −∞ for each
p ∈ X∗\{0}.

Proof. It suffices to prove that for each p ∈ dom g∗ ∩ dom H and for any (x, t) ∈
X × P, one has

(13) f(x, t) := w(x, t)− p.x + g∗(p) + tH(p) ≥ 0.

Suppose on the contrary that (with some fixed p ∈ dom g∗ ∩ dom H) there is some
(x, t) ∈ X × P such that f(x, t) < 0. Let α ∈]0,−f(x, t)[. Since

w(·, 0) ≥ (g ≥) g∗∗ ≥ (g∗ + ιdom H)∗ ≥ p(·)− g∗(p)− 0.H(p)

one has infx∈X f(x, 0) ≥ 0. Thus, Lemma 6.5 ensures that, for each r > 0, there
exist (xr, tr) ∈ [(x, t), B(x, r) × {0}[ and (pr, qr) ∈ ∂f(xr, tr) such that, for each
x ∈ B(x, r),

α ≤ pr.(x− x)− qrt.

Taking the infimum over x ∈ B(x, r) it follows that

α ≤ −r ‖pr‖ − qrt.
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The inclusion (pr, qr) ∈ ∂f(xr, tr) being equivalent to the relation (pr + p, qr −
H(p)) ∈ ∂w(xr, tr), so that qr −H(p) + H(pr + p) ≥ 0 (as tr > 0), we get

(14) α + r ‖pr‖ ≤ −qrt ≤ t (H(pr + p)−H(p)) .

Let ρ > 0 be such that H(p + p) − H(p) < α/t for p ∈ B(0, ρ). The preceding
inequalities ensure that ‖pr‖ ≥ ρ. Since H is bounded above on bounded sets, and

H(pr + p) ≥ H(p) + t
−1(α + rρ)

we must have ‖pr‖ → ∞ as r → ∞. Then inequality (14) yields a contradiction
with our assumption lim sup‖p‖→∞H(p)/ ‖p‖ < +∞. ¤

A more involved mean value inequality will give a variant of the preceding result
improving [35] Theorem 3.3 which assumes that X is a Hilbert space, H is closed
proper convex and globally Lipschitzian (this last assumption being equivalent to
our growth condition under the convexity assumption on H).

Lemma 6.7. ([38]) Let Z be a reliable Banach space for a subdifferential ∂ and let
f : Z → R ∪ {+∞} be a l.s.c. function. Given ε > 0, z0 ∈ Z and a bounded closed
convex subset Y of Z, there exist z ∈ co(z0, Y ) + B(0, ε) and z∗ ∈ ∂f(z) such that

sup
δ>0

min
y′∈Y +B(0,δ)

f(y′)− f(z0) ≤ z∗.(y − z0) ∀y ∈ Y.

Theorem 6.8. Suppose X × R is reliable for a subdifferential ∂, H is u.s.c. on
dom g∗, H is bounded above on bounded sets and such that lim sup‖p‖→∞H(p)/ ‖p‖ <

+∞. Let w : X × R+ → R be a l.s.c. supersolution to (1) such that w(·, 0) ≥ g (or
even ≥ g∗∗) and such that for each bounded subset M of X one has

lim inf
t→0+

inf
y∈M

(w(y, t)− w(y, 0)) ≥ 0.

Then w ≥ v, the Hopf solution.

Note that the semicontinuity assumption lim inft→0+ infy∈Y (w(y, t)− w(y, 0)) ≥
0 is satisfied if X is reflexive and if w is weakly lower semicontinuous at each point
of X × {0} and w(·, 0) is weakly continuous.

Proof. Again we prove (13) by supposing on the contrary that for some p ∈ dom g∗
there is some (x, t) ∈ X × P such that f(x, t) < 0, where f(x, t) := w(x, t)− p.x +
g∗(p) + tH(p) as above. Taking again α ∈]0,−f(x, t)[, noting that f(·, 0) ≥ 0 and
using our uniform lower semicontinuity assumption on balls for w, hence for f, for
each r > 0 we can find sr ∈]0, t/2[ such that f(x, s) ≥ α + f(x, t) for each (x, s) ∈
B(x, r + 1) × [0, 2sr]. Then, taking Y := B(x, r) × {sr}, ε ∈]0, sr[, ε < 1, Lemma
6.7 yields some (xr, tr) ∈ co((x, t), B(x, r)×{sr})+B(0, ε) and (pr, qr) ∈ ∂f(xr, tr)
such that for each x ∈ B(x, r)

α ≤ pr.(x− x)− qr(t− sr).

Our choice of ε ensures that tr > 0. Thus, we can finish the proof as above, replacing
t by t− sr. ¤

In the preceding result and in the next corollary, taking for ∂ the Fréchet subd-
ifferential, or the Hadamard subdifferential, the reliability assumption is satisfied.
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If X has a Lipschitzian C1 bump function, the reliability assumption is satisfied for
the viscosity subdifferential.

Corollary 6.9. Suppose X is reflexive, X×R is reliable for a subdifferential ∂ and
H is a closed proper convex function satisfying condition (3). Suppose H is u.s.c.
on dom g∗ and satisfies a linear growth condition: H(·) ≤ b+c ‖·‖ for some b, c ∈ R.
Let w be a weakly l.s.c. function on X ×R+ which is convex and proper in its first
variable, satisfies w(x, 0) = lim inf(z,t)→(x,0) w(z, t) = g(x) for each x ∈ X and is a
supersolution and a lower solution to (1). Then w = v, the Hopf solution.

Proof. Under our assumptions, we have u ≥ w ≥ v. Since for each t > 0 the
function w(·, t) is convex and l.s.c. and proper, we get (u(·, t))∗∗ ≥ w(·, t); since
H = H∗∗ we have (u(·, t))∗∗ = v(·, t). It follows that (u(·, t))∗∗ = w(·, t) = v(·, t). ¤

Our last statement is close to classical results.

Corollary 6.10. Suppose X is reflexive. Suppose g is a closed proper convex func-
tion, H is convex and such that lim sup‖p‖→∞H(p)/ ‖p‖ < +∞. Then u = v is
the unique weakly l.s.c. supersolution and lower solution w to (1) which satisfies
w(·, 0) = g.

Proof. The convexity and growth assumptions on H imply that H is continuous
and bounded above on bounded sets. Since X is reflexive, it can be endowed with
a norm which is Hadamard (and even Fréchet) differentiable off 0 ([23] p. 286), so
that X is reliable for the Hadamard subdifferential. Since H is continuous, one has
R+(domg∗ − domH) = X and u = v by Theorem 5.4. Then the result follows from
Theorems 6.2 and 6.6. ¤
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[5] D. Azé, Duality for the sum of convex functions in general normed spaces, Arch. Math. 62
(1994), 554-561.

[6] M. Bardi and L.C. Evans, On Hopf’s formulas for solutions of Hamilton-Jacobi equations,
Nonlinear Anal. 8 (1984), 1373-1381.

[7] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Birkhäuser, Basel (1998).
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Toulouse, 1990.

[53] R.T. Rockafellar and R. J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1997.
[54] R.T. Rockafellar and P.R. Wolenski, Convexity and duality in Hamilton-Jacobi theory,

preprint, Univ. of Washington and Louisiana Univ., Nov. 1997.
[55] R.T. Rockafellar and P.R. Wolenski, Envelop representations of value functions in Hamilton-

Jacobi theory, preprint Univ. of Washington and Louisiana Univ., Feb. 1998.
[56] P.E. Souganidis, Existence of viscosity solutions of Hamilton-Jacobi equations, J. Diff. Equa-

tions 56 (1985), 345-390.
[57] A.I. Subbotin, Generalized solutions of first-order PDE’s, Birkhäuser, Basel, 1995.
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du Séminaire d’Anal. Convexe, Montpellier (1990), exposé n◦ 8.
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[63] C. Zălinescu, Mathematical programming in infinite dimensional normed linear spaces, (Eng-
lish translation of a book published by Editura Academiei, Bucharest (1998).

Manuscript received May 26, 2000

revised July 3, 2000

Jean-Paul PENOT
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