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APPROXIMATE CONVEX FUNCTIONS

HUYNH VAN NGAI, DINH THE LUC, AND MICHEL THÉRA

Abstract. The purpose of this paper is to study a class of generalized con-
vex functions defined on a Banach space, called approximate convex functions
which are stable under finite sums and finite suprema, and for which most of
the known subdifferentials such as the Clarke, the Mordukhovich and the Ioffe
approximate subdifferential coincide and share several properties of the Fenchel-
Moreau-Rockafeller convex subdifferential.

1. Introduction

The class of Lipschitz convex functions on a Banach space possesses the following
important properties:

(a) it is stable under finite sums and finite suprema;
(b) the optimality condition 0 ∈ ∂f(x), where ∂f stands for the classical sub-

differential of convex functions, is sufficient for x to be a local minimum of the
functions y → f(y) + ε‖y − x‖ for every ε > 0;

(c) equality holds for the sum rule: ∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x); and
(d) an integration property holds: If ∂f1(x) = ∂f2(x) for all x ∈ X, then f1 − f2

is a constant.

It is a challenging problem to know, as pointed out by Ioffe [4], whether the above
class can be extended to nonconvex functions so that it still verifies properties a)-d)
with a suitably choosen subdifferential and contains all continuously differentiable
functions. Of course, if such an extended class exists, it cannot contain all Lipschitz
functions because for these functions, most of known subdifferentials do not satisfy
equality in the sum rule. A smaller class, consisting of Lipschitz and primal lower
nice functions [Poliquin 14], [Thibault-Zagrodny 18] on a Hilbert space also verifies
properties (a)-(d), but it does not contain all continuously differentiable functions.
The purpose of the present paper is to introduce a new class consisting of generalized
convex functions on a Banach space, called approximate convex functions, which
meets the above requirements. The main feature of this class of functions is twofold:

(1) it includes convex functions, as well as, continuously differentiable functions;
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(2) the subdifferential in the sense of Clarke and Mordukhovich coincides with the
Ioffe geometric subdifferential, as well as with the Ioffe approximate subdifferential
when the functions are Lipschitz.

The so-called ε-convex functions introduced by Jofré-Luc-Théra [7] serve as the
main tool to define approximate convex functions and to derive their properties.
The paper is organized as follows. In Section 2, we study ε−convex functions, their
ε−conjugate functions and ε−subdifferentials. Much theory about convex functions
can be extended to ε−convex functions, including Fenchel-Moreau’s duality theo-
rem. Section 3 deals with approximate convex functions and their basic properties
such as continuity, directional derivability etc.. It is shown that for approximate
convex functions properties a), b) and d) are satisfied, while property c) is true
under the Attouch-Brézis qualification assumption [2].

In the last section we answer a question raised by A. Ioffe about the existence of
a class of functions which satisfies properties a)-d) and contains Lipschitz convex
functions as well as continuously differentiable functions.

2. ε−convex functions

Let X be a real Banach space with topological dual X∗. Throughout the paper,
B(x, δ) denotes the closed ball in X with center at x and radius δ > 0, and B∗ the
closed unit ball of X∗. Let f be a function from X to 1R∪{+∞}. As usual, we denote
by dom f = {x ∈ X : f(x) < +∞} and epif := {(x, α) ∈ dom f × 1R : f(x) ≤ α}
the effective domain and the epigraph of f, respectively. The function f is proper if
it has a nonempty domain.

Recall ([7],[10]) that the function f is ε−convex with ε > 0 if it satisfies the
following inequality for every x, y ∈ X, and λ ∈ (0, 1) :

(2.1) f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ελ(1− λ)‖x− y‖.
It was shown in [7], [10] that ε−convex functions have several interesting properties
and are useful for approximate calculus. In this section, by developing ε−conjugate
functions and ε−subdifferential, we obtain more characterizations about convex
functions.

2.1. ε−conjugate functions

Let f be an ε−convex function from X to 1R ∪ {+∞}. Let y ∈ X be fixed. We
define the ε−conjugate function f∗y (ε, .) : X∗ → 1R ∪ {+∞} of f at y by

(2.2) f∗y (ε, ξ) := sup
x∈X

{〈ξ, x〉 − f(x)− ε‖x− y‖}.

Obviously, f∗y (ε, .) is a convex function. Its Fenchel-Legendre conjugate is denoted
by f∗∗y (ε, .x) and given by

(2.3) f∗∗y (ε, x) := sup
ξ∈X∗

{〈ξ, x〉 − f∗y (ε, ξ)}.

As we shall see, ε−conjugate functions of ε−convex functions have many properties
similar to conjugate functions of convex functions. For other generalizations of
conjugate functions the interested reader is refered to [20] and the references therein.
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For our aim, recall first that the Clarke directional derivative of f at x ∈ dom f
is given by

f↑(x, v) := sup
δ>0

lim sup
y

f→→x

inf
u∈B(v,δ)

f(y + tu)− f(y)
t

,

while the Clarke subdifferential of f at x ∈ dom f is defined by

∂Cf(x) :=
{
x∗ ∈ X∗| 〈x∗, v〉 ≤ f↑(x, v) ∀v ∈ X

}
,

where as usual, y
f→ →x means y → x and f(y) → f(x). If x /∈ dom f, we set

∂Cf(x) = ∅.
Recall also [10] that the ε-subdifferential of f at x is defined by

∂εf(x) :=
{
x∗ ∈ X∗ : 〈x∗, v〉 ≤ f(x + v)− f(x) + ε‖v‖ ,∀v ∈ X

}
.

We shall need the following estimation established in [10] for the ε-subdifferential
of f :

(2.4) ∂Cf(x) ⊆ ∂εf(x).

As usual, the infimal convolution h¤g of two convex functions h and g is defined
by

(h¤g)(x) = inf{h(y) + g(z)| y + z = x}
and the convention +(∞)− (+∞) = 0 is adopted.

Proposition 2.1 Assume that f is ε-convex and lower semicontinuous. Then the
following assertions hold:

i) As a function of y, the ε-conjugate function f∗y (ε, ξ) is Lipschitz with a Lipschitz
constant equal to ε;

ii) As a function of ε, the ε-conjugate function f∗y (ε, ξ) is decreasing;
iii) As a function of ξ, the ε-conjugate function f∗y (ε, ξ) is convex and lower

semicontinuous, and it is proper if f is proper;
iv) ξ ∈ ∂εf(x) ⇐⇒ f(x) + f∗x(ε, ξ) = 〈ξ, x〉;
v) For every x ∈ X, one has f∗∗y (ε, x) ≤ f(x) + ε‖x− y‖.

Proof. To prove i), let ξ ∈ X∗ be fixed. Let y, y′ ∈ X. By the definition

f∗y (ε, ξ) := sup
x∈X

{〈ξ, x〉−f(x)−ε‖x−y‖} ≤ sup
x∈X

{〈ξ, x〉−f(x)−ε‖x−y′‖+ε‖y′−y‖}.

Consequently, f∗y (ε, ξ) ≤ f∗y′(ε, ξ) + ε‖y − y′‖. Interchanging the roles of y and y′,
one obtains f∗y (ε, ξ) ≥ f∗y′(ε, ξ)− ε‖y − y′‖ and i) follows.

Assertion ii) is derived from the definition.

For assertion iii), observe that for every fixed x, y ∈ X, the function ξ → 〈ξ, x〉 −
f(x)− ε‖x−y‖ is affine on X∗; therefore it is convex and continuous. Hence f∗y (ε, .)
is convex and lower semicontinuous on X∗. Now assume that f is proper. We show
that f∗(ε, .) is proper. Indeed, there is x ∈ dom f such that ∂Cf(x) is nonempty
because f is proper lower semicontinuous. Let ξ ∈ ∂Cf(x) ⊆ ∂εf(x) (by (2.4)).
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One has 〈ξ, z − x〉 ≤ f(z) − f(x) + ε‖z − x‖ for all z ∈ X. Use the inequality
‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ to deduce

〈ξ, z〉 − f(z)− ε‖z − y‖ ≤ 〈ξ, x〉 − f(x) + ε‖x− y‖
for all z ∈ X. Consequently, f∗(ε, ξ) ≤ 〈ξ, x〉 − f(x) + ε‖x − y‖ and hence ξ ∈
dom f∗y (ε, .), which shows that f∗(ε, .) is proper.

For assertion iv), it suffices to observe the following chain of equivalences:

ξ ∈ ∂εf(x) ⇐⇒ 〈ξ, y − x〉 ≤ f(y)− f(x) + ε‖y − x‖ ∀y ∈ X

⇐⇒ 〈ξ, y〉 − f(y)− ε‖y − x‖ ≤ 〈ξ, x〉 − f(x) ∀y ∈ X

⇐⇒ f∗x(ε, ξ) = 〈ξ, x〉 − f(x).

For the last assertion, let x, y ∈ X. By definition, for all ξ ∈ X∗ we have,

f∗y (ε, ξ) ≥ 〈ξ, x〉 − f(x)− ε‖x− y‖.
Equivalently, for all ξ ∈ X∗:

〈ξ, x〉 − f∗y (ε, ξ) ≤ f(x) + ε‖x− y‖.
Therefore, by (2.3), we obtain f∗∗y (ε, x) ≤ f(x) + ε‖x− y‖.The proof is complete.

Proposition 2.2 Let f and g be lower semicontinuous functions from X to 1R ∪
{+∞}. Assume that f is ε1−convex and g is ε2−convex. Then for every y ∈ X and
ξ ∈ X∗, one has

(2.5) (f + g)∗y(ε1 + ε2, ξ) ≤ (f∗y (ε1, .)¤g∗y(ε2, .))(ξ).

Equality holds if in addition, y ∈ Int (domf) and y is a local minimum point of the
function f + g − 〈ξ, .〉 on X.

Proof. For the first part, let ξ1, ξ2 ∈ X∗ and x ∈ X. One obtains

f∗y (ε1, ξ1) ≥ 〈ξ1, x〉 − f(x)− ε1‖x− y‖
and

g∗y(ε2, ξ1) ≥ 〈ξ1, x〉 − g(x)− ε2‖x− y‖.
Therefore,

f∗y (ε1, ξ1) + g∗y(ε2, ξ2) ≥ (f + g)y(ε1 + ε2, ξ1 + ξ2)

and (2.5) holds. Under the additional condition, one has 0 ∈ ∂C(f + g−〈ξ, .〉)(y) ⊆
∂Cf(y) + ∂Cg(y) − ξ. Therefore, there are ξ1 ∈ ∂Cf(y) and ξ2 ∈ ∂Cg(y) such that
ξ = ξ1 + ξ2. Due to (iv) of Proposition 2.1, we obtain

f∗y (ε1, ξ1) = 〈ξ1, y〉 − f(y) g∗y(ε2, ξ2) = 〈ξ2, y〉 − g(y)

and
(f + g)∗y(ε1 + ε2, ξ) = 〈ξ, y〉 − f(y)− g(y).

Hence (f∗y (ε1, .)¤g∗y(ε2, .))(ξ) ≤ (f + g)∗y(ε1 + ε2, ξ) and the proof is complete.

As the example below shows, inequality (2.5) is strict in general. Take f and
g : 1R → 1R such that f(x) = −|x| and g(x) = 2|x|. Observe that f is 2-convex and
g is convex. One has (f + g)∗1(2, 0) = −1 while (f∗1 (2, .)¤g∗1(0, .))(0) = 0.
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2.2. The Fenchel-Moreau extended duality theorem

We shall see in this subsection that the Fenchel-Moreau duality theorem can
be extended to express the relation between an ε−convex function and its second
conjugate f∗∗y (ε, .). For this purpose we need the following approximate mean value
theorem proved by Zagrodny [21] (see also [9] for a generalized version):

Let f : X → 1R ∪ {+∞} be a proper lower semicontinuous function and let a, b be
two distinct points of dom f. Then there exist sequences {xn}n∈1N, {x∗n}n∈1N such
that xn → c ∈ [a, b); x∗n ∈ ∂Cf(xn) and

(i) lim inf
n→∞ 〈x∗n, b− xn〉 ≥ f(b)− f(a)

‖b− a‖ ‖b− c‖ ;

(ii) lim inf
n→∞ 〈x∗n, b− a〉 ≥ f(b)− f(a).

It follows from this theorem that for a proper lower semicontinuous function f ,
the domain of ∂Cf := {x ∈ X| ∂Cf(x) 6= ∅} is graphically dense in dom f . Hence
if f is a proper lower semicontinuous ε−convex function, then ∂εf(x) 6= ∅ on a
graphically dense subset of domf.

Theorem 2.3 Let f : X → 1R∪{+∞} be a proper lower semicontinuous ε−convex
function. Then for all x, y ∈ X, we have

(2.6) |f(x)− f∗∗y (ε, x)| ≤ ε‖x− y‖.
As a result, f∗y (ε, .) and f∗∗y (ε, .) are proper lower semicontinuous convex function.
Moreover, f∗∗y (ε, x) > −∞ for all x, y ∈ X.

Proof. Let x, y ∈ X. By virtue of Proposition 2.1, f∗∗y (ε, x) ≤ f(x) + ε‖x − y‖. In
order to prove (2.6), it suffices to show that

(2.7) f∗∗y (ε, x) ≥ f(x)− ε‖x− y‖.
Let us consider the two following cases:

Case 1. ∂Cf(x) 6= ∅. Take some ξ ∈ ∂Cf(x). By (2.4), ξ ∈ ∂εf(x). One has

〈ξ, z − x〉 ≤ f(z)− f(x) + ε‖z − x‖ for all z ∈ X.

Use the inequality ‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖ to deduce

〈ξ, z〉 − f(z)− ε‖z − y‖ ≤ 〈ξ, x〉 − f(x) + ε‖x− y‖ for all z ∈ X.

Consequently, 〈ξ, x〉 − f∗(ε, ξ) ≥ f(x)− ε‖x− y‖ and we derive (2.7).

Case 2. ∂Cf(x) = ∅. It must hapen one of the following two situations:

Either 2.1: there exists a sequence {cn}n∈1N converging to x and satisfying f(cn) <
f(x) for all n ∈ 1N or 2.2: there is a positive number γ such that B(x, 2γ)∩domf =
∅.
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In Case 2.1, for every n, we define the function fn by

fn(z) :=





fn(z) := f(z) if z 6= x

f(x) if f(x) is finite
f(cn) + 1 if f(x) = +∞.

Applying Zagrodny’s M.V.T to the function fn on [cn, x], select yn ∈ B([cn, x], 1
n) ={

z ∈ X| d[cn,x](z) ≤ 1
n

}
; yn 6= x and y∗n ∈ ∂Cfn(yn) such that 〈y∗n, x−yn〉 > 0 (dA(z)

stands for the distance from z to the set A). Since cn → x, then yn → x. Note that
∂Cfn(z) = ∂Cf(z) for all z 6= x. Therefore, ∂Cfn(yn) = ∂Cf(yn).

According to Case 1, we have

〈y∗n, yn〉 − f∗y (ε, y∗n) ≥ f(yn)− ε‖yn − y‖.
Hence 〈y∗n, x〉 − f∗y (ε, y∗n) ≥ f(yn)− ε‖yn − y‖. This yields

f∗∗y (ε, x) ≥ f(yn)− ε‖yn − y‖.
Since f is lower semicontinuous , just take the limit as n tends to ∞ to obtain (2.7).

In Case 2.2, pick a ∈ domf and for n ∈ 1N, define the function gn by

gn(z) :=

{
f(z) if z 6= x

n otherwise.

Since f is lower semicontinuous , then f is bounded from below on some neighbour-
hood V of the segment [a, x], i. e., there exists α ∈ 1R such that f(z) ≥ α for all
z ∈ V.

Now, apply again the mean value theorem to gn on [a, x]. There exist sequences
{xm

n }m∈1N; {x∗mn }m∈1N such that limm→∞ xm
n = cn ∈ [a, x); x∗mn ∈ ∂Cgn(xm

n ) and

(2.8) lim inf
m→∞ 〈x∗mn , x− xm

n 〉 ≥
gn(x)− gn(a)
‖x− a‖ ‖cn − x‖.

When n is large enough, say n ≥ n0, one has gn(x) = n > f(a) = gn(a). Since
∂Cgn(xm

n ) is nonempty, we must have cn /∈ B(x, γ), that is, ‖cn − x‖ > γ. For
n ≥ n0, according to inequality (2.8), there is some index mn such that xmn

n ∈ V
and

〈x∗mn
n , x− xmn

n 〉 >
n− f(a)
‖x− a‖ γ.

Equivalently, we have

〈x∗mn , x〉 > 〈x∗mn
n , xmn

n 〉+
n− f(a)
‖x− a‖ γ.

On the other hand, use Case 1 to obtain

〈x∗mn
n , xmn

n 〉 − f∗y (ε, x∗mn
n ) ≥ f(xmn

n )− ε‖xmn
n − y‖.

Combining the above inequalities we obtain

〈x∗mn
n , x〉 − f∗y (ε, x∗mn

n ) ≥ n− f(a)
‖x− a‖ γ + f(xmn

n )− ε‖xmn
n − y‖.
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Consequently,

f∗∗y (ε, x) ≥ n− f(a)
‖x− a‖ γ + f(xmn

n )− ε‖xmn
n − y‖.

Finally, note that f(xmn
n ) ≥ α for all n ≥ n0 and that the sequence {‖xmn

n − y‖} is
bounded. Taking the limit as n →∞, in the above inequality we obtain f∗∗y (ε, x) =
+∞, and (2.7) holds. The proof is complete.

Note that when f is convex, by setting ε = 0, Theorem 2.3 subsumes the classical
Fenchel-Moreau duality theorem.

Corollary 2.6 Let f : X → 1R∪{+∞} be a proper lower semicontinuous ε−convex
function. The following assertions are equivalent:

(i) ξ ∈ ∂εf(x);
(ii) x ∈ ∂f∗x(ε, .)(ξ);
(iii) ξ ∈ ∂f∗∗x (ε, .)(x).

Proof. First, the implication (ii) ⇒ (iii) is known because f∗x(ε, .) and f∗∗x (ε, .) are
convex functions. For the implication (i) ⇒ (ii), let ξ ∈ ∂εf(x). Due to Proposition
2.1, we have

〈ξ, x〉 − f∗x(ε, ξ) = f(x).
On the other hand, it follows from (2.2) that f(x) ≥ 〈ξ′, x〉−f∗x(ε, ξ′) for all ξ′ ∈ X∗.
The above relations imply

〈x, ξ′ − ξ〉 ≤ f∗x(ε, ξ′)− f∗x(ε, ξ) for all ξ′ ∈ X∗,

which shows that x ∈ ∂f∗x(ε, .)(ξ).
For the implication (iii)⇒ (i), let ξ ∈ ∂f∗∗x (ε, .)(x). One has 〈ξ, y−x〉 ≤ f∗∗x (ε, y)−

f∗∗x (ε, x) for all y ∈ X. According to Theorem 2.3, f∗∗x (ε, x) = f(x) and f∗∗x (y) ≤
f(y) + ε‖x− y‖. Hence

〈ξ, y − x〉 ≤ f(y)− f(x) + ε‖x− y‖ for all y ∈ X,

which shows that ξ ∈ ∂εf(x).

3. Approximate convex functions

Let f : X → 1R ∪ {+∞} be a lower semicontinuous function. For every δ > 0,
we define the function fδ by fδ(x) = f(x) if x ∈ B(x0, δ) and +∞ otherwise.

We say that the function f is approximate convex at x0 ∈ X if for each ε > 0,
there exists δ > 0 such that fδ is ε−convex, and f is approximate convex on a
nonempty set C ⊆ X if it is approximate convex at every x ∈ C. When C = X, we
say simply that f is approximate convex.

In this section we shall concentrate our efforts to the study of the class of ap-
proximate convex functions.

3.1 Basic properties

It follows immediately from the definition that convex functions are approximate
convex, and the converse is not true. Below we shall give some more sufficient
conditions for a function to be approximate convex. Let us recall [8] that a function
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f : X → 1R∪{+∞} is said to be γ− paraconvex with γ ∈ 1R, if there is a constant
κ > 0 such that for all x, y ∈ X and λ ∈ (0, 1):

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) + κλ(1− λ)‖x− y‖γ .

Recall also that a function f : X → 1R ∪ {+∞} is strictly differentiable at x0 ∈ X
if there exists Df(x0) ∈ X∗ such that

lim
x,y→x0

f(y)− f(x)−Df(x0)(x− y)
‖x− y‖ = 0.

Proposition 3.1 Let f : X → 1R ∪ {+∞}. Each of the following conditions is
sufficient for f to be approximate convex at x0 ∈ X :

i) f is γ−paraconvex with γ > 1;
ii) f is strictly differentiable at x0;
iii) f = f1 + f2, or f = max{f1, f2} where f1 and f2 are approximate convex at

x0;
iv) f = g◦A where A is a continuous affine mapping from X to a Banach space Y

and g is a function from Y to 1R∪{+∞} which is approximate convex at Ax0 ∈ Y.

Proof. It is obvious that each of conditions i), iii), iv) implies that f is approximate
convex at x0. Actually, under condition i) f is approximate convex at any point of
X. Now we show that f is approximate convex at x0 if ii) is verified. By the strict
differentiablility of f at x0, for each ε > 0, there exists δ > 0 such that

|f(x)− f(y)−Df(x0)(x− y)| ≤ ε

2
‖x− y‖ ∀x, y ∈ B(x0, δ).

Therefore, for every x, y ∈ B(x0, δ) and λ ∈ (0, 1) one has

|f(λx + (1− λ)y)− f(x)− (1− λ)Df(x0)(y − x)| ≤ ε

2
(1− λ)‖x− y‖

and
|f(λx + (1− λ)y)− f(y)− λDf(x0)(x− y)| ≤ ε

2
λ‖x− y‖.

Consequently, for every x, y ∈ B(x0, δ) and λ ∈ (0, 1) one has

f(λx + (1− λ)y) ≤ f(x) + (1− λ)Df(x0)(y − x) +
ε

2
(1− λ)‖x− y‖

and
f(λx + (1− λ)y) ≤ f(y) + λDf(x0)(x− y) +

ε

2
λ‖x− y‖.

Multiplying the above inequalities by λ and (1−λ) respectively and summing them
up yields

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) + λε(1− λ)‖x− y‖,
which shows that f is approximate convex at x0.

The next proposition establishes a Lipschitz property of approximate convex
functions. Its proof follows the lines of the convex case ([13],[15]).

Proposition 3.2 Suppose that f : X → 1R ∪ {+∞} is a proper lower semicon-
tinuous function. If f is approximate convex at x0 ∈ Int(domf), then f is locally
Lipschitz at x0.
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Proof. Since f is approximate convex at x0, there exist ε > 0 and δ > 0 such
that B(x0, δ) ⊂ dom f and equality (2.1) is satisfied for all x, y ∈ B(x0, δ) and
λ ∈ (0, 1). First, we want to show that f is locally bounded at x0. Let Un := {x ∈
B(x0, δ)| f(x) ≤ n}, n = 1, 2, .... Then, B(x0, δ) =

⋃
n∈1N Un and all the Un are

closed. Thanks to the Baire category theorem, there is some index n0 such that the
interior of Un0 denoted by Int Un0 is nonempty. Pick z0 ∈ Int Un0 and α > 1 such
that y0 := z0 + α(x0 − z0) ∈ Int Un0 and select some nonnegative number γ < δ
such that for all x ∈ B(x0, γ) one has z := y0 + α(x− y0) ∈ Int Un0 . We have

f(x) = f(α−1z + (1− α−1)y0)

≤ α−1f(z) + (1− α−1)f(y0) + εα−1(1− α−1)‖y0 − z‖
≤ α−1n0 + (1− α−1)f(y0) + εα−1(1− α−1)2δ.

Thus, f is bounded from above, say, by M , on B(x0, γ). To show that it is locally
bounded from below, note that for all x ∈ B(x0, γ), obviously, 2x0 − x ∈ B(x0, γ)
and consequently

f(x0) ≤ 1/2f(x) + 1/2f(2x0 − x) + ε/2‖x− x0‖.
Therefore, f(x) ≥ 2f(x0) − M − 2εγ for all x ∈ B(x0, γ) and f is bounded on
B(x0, γ). Hence we may assume that |f(x)| ≤ M for all x ∈ B(x0, γ). Now, for any
x, y ∈ B(x0, γ/2), then z := x + (γ/2η)(x− y) ∈ B(x0, γ) with η := ‖x− y‖. Hence,

f(x) = f
( 2η

γ + 2η
z +

γ

γ + 2η
y
)
≤ 2η

γ + 2η
f(z) +

γ

γ + 2η
f(y) +

2εηγ

(γ + 2η)2
‖z − y‖.

It follows that

f(x)− f(y) ≤ 2η

γ
(f(z)− f(x)) + εγ‖x− y‖ ≤

(4M

γ
+ εγ

)
‖x− y‖.

Interchanging the roles of x and y, we obtain the required result.

The following corollary will be used in the sequel.

Corollary 3.3 Let f : X → 1R ∪ {+∞} be a proper lower semicontinuous function
that is approximate convex on the segment [a, b] with a 6= b and [a, b] ⊂ dom f . Then
the restriction of f on this segment is continuous.

Proof. Let us consider the function ϕ : 1R → 1R defined by ϕ(t) = f(ta + (1− t)b)
if t ∈ [0, 1]; ϕ(t) = f(a) if t ≥ 1 and ϕ(t) = f(b) if t ≤ 0. We wish to show that
ϕ is continuous on [0, 1]. Note that ϕ is approximate convex at all t ∈ (0, 1) and
by virtue of Proposition 3.2, ϕ is continuous on (0, 1). We need only to show that
limt→0+ ϕ(t) = ϕ(0) (similarly, limt→1− ϕ(t) = ϕ(1)). For each ε > 0, thanks to
approximate convexity of f at b take a real δ > 0 such that

ϕ(λt1 + (1− λ)t2) ≤ λϕ(t1) + (1− λ)ϕ(t2) + ελ(1− λ)|t1 − t2|
for all t1, t2 ∈ [0, δ] and λ ∈ (0, 1). Let {tn}n∈1N be a sequence converging to 0,
tn > 0. For n is large, one has tn < δ and therefore

ϕ(tn) ≤ tn/δϕ(δ) + (1− tn/δ)ϕ(0) + εtn(1− tn)δ.
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Passing to the limit as n → ∞, we obtain lim supn→∞ ϕ(tn) = ϕ(0) and con-
sequently, (since ϕ is lower semicontinuous ) limn→∞ ϕ(tn) = ϕ(0). The proof is
complete.

We present a characterization of approximate convexity via convex functions.

Theorem 3.4 Let X be a Banach space and let f : X → 1R ∪ {+∞} be a proper
lower semicontinuous function. Then, f is approximate convex at x0 ∈ X if and
only if for each ε > 0, there exists δ > 0 such that for any y ∈ B(x0, δ) we can
find a lower semicontinuous convex function gy(.) : X → 1R ∪ {+∞} satisfying the
following inequality for every x ∈ B(x0, δ).

|f(x)− gy(x)| ≤ ε‖x− y‖.
Proof. For the part ”if”, assume that f is approximate convex at x0. For each

ε > 0, take δ > 0 such that the function fδ is ε−convex. Fix y ∈ B(x0, δ) and
define gy(x) := f∗∗δy (ε, x), where f∗∗δy (ε, .) is the ε−second conjugate function of fδ.
The result follows from Theorem 2.3.

For the part ”only if”, by the assumption, for each ε > 0, there exists δ > 0 such
that for every z ∈ B(x0, δ), we can find a convex function gz satisfying

|f(x)− gz(x)| ≤ ε

2
‖x− z‖ for all x ∈ B(x0, δ).

Let x, y ∈ B(x0, δ); λ ∈ (0, 1). Since λx + (1− λ)y ∈ B(x0, δ) we have

|f(x)− gλx+(1−λ)y(x)| ≤ ε

2
(1− λ)‖x− y‖

and
|f(y)− gλx+(1−λ)y(y)| ≤ ε

2
λ‖x− y‖.

It follows that
λf(x) +

ε

2
λ(1− λ)‖x− y‖ ≥ λgλx+(1−λ)y(x)

and
(1− λ)f(y) +

ε

2
λ(1− λ)‖x− y‖ ≥ (1− λ)gλx+(1−λ)y(y).

On adding the above two inequalities and noticing that gλx+(1−λ)y(.) is convex and
gλx+(1−λ)y(λx + (1− λ)y) = f(λx + (1− λ)y), we obtain the required inequality:

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ελ(1− λ)‖x− y‖.
The proof is complete.

Corollary 3.5 If f : X → 1R ∪ {+∞} is lower semicontinuous and approximate
convex at x0 ∈ dom f, then for every v ∈ X, the directional derivative

f ′(x0, v) := lim
t↓0

f(x0 + tv)− f(x0)
t

of f exists and is sublinear on X.

Proof. Since f is approximate convex at x0, making use of Theorem 3.4, for every
ε > 0, there exist δ > 0 and a lower semicontinuous convex function gx0(.) such that

|f(x)− gx0(x)| ≤ ε‖x− x0‖ for all x ∈ B(x0, δ).
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Equivalently,

f(x)− ε‖x− x0‖ ≤ gx0(x) ≤ f(x) + ε‖x− x0‖ for all x ∈ B(x0, δ).

Fix v ∈ X and take t > 0 small enough to have t‖v‖ < δ. Then,

f(x0 + tv)− f(x0)
t

− ε‖v‖ ≤ gx0(x0 + tv)− gx0(x0)
t

≤ f(x0 + tv)− f(x0)
t

+ ε‖v‖
(note that gx0(x0) = f(x0)). Since gx0 is convex, it is a basic fact in Convex Analysis
that

g′x0
(x0, v) = lim

t↓0
gx0(x0 + tv)− gx0(x0)

t
.

Taking the limit as t ↓ 0 in the preceding inequalities, we obtain

(3.1) lim sup
t↓0

f(x0 + tv)− f(x0)
t

≤ g′x0
(x0, v) + ε‖v‖

and

(3.2) lim inf
t↓0

f(x0 + tv)− f(x0)
t

≥ g′x0
(x0, v)− ε‖v‖.

Consequently, for any ε > 0,

lim sup
t↓0

f(x0 + tv)− f(x0)
t

≤ lim inf
t↓0

f(x0 + tv)− f(x0)
t

+ 2ε‖v‖.

This means that

f ′(x0, v) = lim
t↓0

f(x0 + tv)− f(x0)
t

exists. Obviously, f ′(x0, .) is positively homogeneous. We shall use (3.1) and (3.2)
to prove its subadditivity. Fix v1, v2 ∈ X, use (3.1) and write

f ′(x0, v1 + v2) ≤ g′x0
(x0, v1 + v2) + ε‖v1 + v2‖.

By (3.2), then f ′(x0, v1) ≥ g′x0
(x0, v1) − ε‖v1‖ and f ′(x0, v2) ≥ g′x0

(x0, v2) − ε‖v2‖.
On the other hand, since gx0 is convex, it is well-known that g′x0

(x0, .) is sublinear.
Hence, for any ε > 0,

f ′(x0, v1 + v2) ≤ f ′(x0, v1) + f ′(x0, v2) + ε(‖v1 + v2‖+ ‖v1‖+ ‖v2‖).
Consequently, f ′(x0, v1 + v2) ≤ f ′(x0, v1) + f ′(x0, v2) and the proof is complete.

3.2. Subdifferential of approximate convex functions

Let f : X → 1R ∪ {+∞} be a given function and let ε be a fixed nonnegative
real. Recall that the Fréchet ε−subdifferential of f at x ∈ dom f is defined by

∂F
ε f(x) :=

{
x∗ ∈ X∗| lim inf

‖h‖→0

f(x + h)− f(x)− 〈x∗, h〉
‖h‖ ≥ −ε

}
.

When ε = 0, we set ∂F f(x) := ∂F
0 f(x). The limiting Fréchet ε−subdifferential is

defined by
∂̂εf(x) := seq− lim sup

y
f→x

∂F
ε f(y)
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where, ” seq-limsup”denotes the sequential Painlevé-Kuratowski upper limit of sets,
i.e.,

seq− lim sup
y

f→x

∂F
ε f(y) =

{
x∗ ∈ X∗| ∃xn

f→ x, x∗n
w∗→ x∗ with x∗n ∈ ∂F

ε f(xn)
}

with ”w∗→” denoting the weak∗ convergence in the dual space X∗.
The Mordukhovich subdifferential of f at x ∈ dom f is the set ([11], [12]):

∂Mf(x) := seq− lim sup
y

f→x,ε↓0
∂F

ε f(y).

We agree that ∂Mf(x) = ∂F
ε f(x) = ∂̂εf(x) = ∅ if x /∈ dom f. We also need to recall

the definition of the ε-approximate subdifferential introduced by A. Ioffe in [4],[5].
Denote by F(X) the collection of all finite dimensional subspaces of X, then

∂Af(x) :=
⋂

L∈F(X)

lim sup
y

f→x,ε↓0
∂−ε fy+L(y),

where,

fy+L(x) =

{
f(x) if x ∈ y + L

+∞ otherwise

and

∂−ε f(y) :=
{

x∗ ∈ X∗| 〈x∗, v〉 ≤ lim inf
u→v,t↓0

f(y + tu)− f(y)
t

+ ε‖v‖ ∀v ∈ X
}

.

”limsup” is used here to express the ”topological Painlevé-Kuratowski limit”, na-
mely, for a multivalued mapping F : X ⇒ X∗, then x∗ ∈ lim supy→x F (y) if for
each weak∗−neighbourhood W of the origin of X∗ and for each neighbourhood V
of x, there exists y ∈ V such that (w + x∗) ∩ F (y) 6= ∅.

To define the Ioffe geometric subdifferential (denoted by ∂Gf(.)), we recall ([6])
that the G−normal cone to C ⊆ X at x ∈ C is the set

NG(C, x) := cl∗
( ⋃

λ>0

λ∂AdC(x)
)
,

where dC(x) denotes the distance from x to C and cl∗ means the weak∗closure.
Now, ∂Gf(x) is given by

∂Gf(x) :=
{
x∗ ∈ X∗| (x∗,−1) ∈ NG(epif, (x, f(x))

}
.

It is well-known that if X is finite dimensional, then ∂Gf(x), ∂Af(x) and ∂Mf(x)
coincide. The next proposition gives an important feature of approximate con-
vex functions. We are keeping the notation

∂f(x0) :=
{
x∗ ∈ X∗| 〈x∗, v〉 ≤ f ′(x0, v) for all v ∈ X

}
,

which agrees with the subdifferential in the sense of convex analysis when f is
convex.

Theorem 3.6 Let X be a Banach space. Let f : X → 1R ∪ {+∞} be a lower
semicontinuous function. Assume that f is approximate convex at x0 ∈ dom f. Then
we have
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(i) ∂Cf(x0) = ∂Mf(x0) = ∂F f(x0) = ∂f(x0) = ∂Gf(x0);
(ii) ∂f(x0) ⊆ ∂Af(x0). Equality holds if in addition, f is Lipschitz at x0.

Proof. Clearly we have:

∂F f(x0) ⊆ ∂Cf(x0), ∂F f(x0) ⊆ ∂Mf(x0) and ∂F f(x0) ⊆ ∂f(x0).

We need to show that ∂Cf(x0) ⊆ ∂F f(x0); ∂Mf(x0) ⊆ ∂F f(x0) and ∂f(x0) ⊆
∂F f(x0). Since by assumption, f is approximate convexity at x0, for each ε > 0,
there is δ > 0 such that the function

fδ(x) :=

{
f(x) if x ∈ B(x0, δ),
+∞ otherwise

is ε−convex. Let x∗ ∈ ∂Cf(x0). One has

∂Cf(x0) = ∂Cfδ(x0)

=
{
x∗ ∈ X∗| 〈x∗, h〉 ≤ f(x0 + h)− f(x0) + ε‖h‖ ∀h ∈ B(0, δ)

}
.

It follows that x∗ ∈ ∂F f(x0) and the inclusion ∂Cf(x0) ⊆ ∂F f(x0) is established.

As to equality ∂Gf(x0) = ∂F f(x0), observe that

∂F f(x0) ⊆ ∂Gf(x0) ⊆ ∂Cf(x0).

Since as already shown ∂F f(x0) = ∂Cf(x0), we obtain ∂Gf(x0) = ∂F f(x0) =
∂Cf(x0).

For the inclusion ∂Mf(x0) ⊆ ∂F f(x0), let x∗ ∈ ∂Mf(x0). There exist sequences

{εn} ↓ 0, {xn} → x, {x∗n}
w∗→ x∗ with x∗n ∈ ∂F

εn
f(xn). Pick a sequence of nonnegative

numbers γn ↓ 0. By definition, for each n, we can find a number ηn > 0 such that

(3.3) 〈x∗n, h〉 ≤ f(xn + h)− f(xn) + (εn + γn)‖h‖ for all h ∈ B(xn, ηn).

As above, for any ε > 0, take δ > 0 such that for all x, y ∈ B(x0, δ) and λ ∈ (0, 1),
inequality (2.1) is satisfied, i. e.,

f(λx + (1− λ)y) ≤ λf(x) + 1− λ)f(y) + ελ(1− λ)‖x− y‖.
We may assume that xn ∈ B(x0, δ) for all n ≥ n0. For any y ∈ B(x0, δ), choose
t ∈ (0, 1) such that t‖y − xn‖ < ηn. From (3.3) and (2.1) one deduces that

〈x∗n, t(y − xn)〉
≤ f(xn + t(y − xn))− f(xn) + t(εn + γn)‖y − xn‖
≤ (1− t)f(xn) + tf(y)− f(xn) + t(ε(1− t) + εn + γn)‖y − xn‖.

Therefore
〈x∗n, y − xn〉 ≤ f(y)− f(xn) + (ε + εn + γn)‖y − xn‖.

Passing to limit as n tends to ∞, we obtain

〈x∗, y − x0〉 ≤ f(y)− f(x0) + ε‖y − x0‖.
This shows that x∗ ∈ ∂F f(x0) and the inclusion ∂Mf(x0) ⊆ ∂F f(x0) holds.
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Finally, Let x∗ ∈ ∂f(x0). Again by the approximate convexity of f at x0, for any
y ∈ B(x0, δ) fixed, and t ∈ (0, 1), one has

f(x0 + t(y − x0))− f(x0)
t

≤ f(y)− f(x0) + ε(1− t)‖y − x0‖.

Taking the limit as t ↓ 0 we obtain f ′(x0, y − x0) ≤ f(y) − f(x0) + ε‖y − x0‖ and
consequently x∗ ∈ ∂F f(x0). Hence, ∂f(x0) = ∂F f(x0).

Let us now prove assertion (ii). Clearly, ∂f(x0) = ∂F f(x0) ⊆ ∂Af(x0). Suppose
now that f is Lipschitz around x0. There are κ > 0 and δ0 > 0 such that |f(x) −
f(y)| ≤ κ‖x − y‖ for all x, y ∈ B(x0, δ0). Let x∗ ∈ ∂Af(x0). Take v ∈ X, ε, γ > 0,
define W :=

{
x∗ ∈ X∗| |〈x∗, v〉| ≤ γ

}
and take L ∈ F(X) such that v ∈ L. Set

V := B(x0, η) with η > 0. By definition, there exist y ∈ V and y∗ ∈ ∂−ε fy+L(y) such
that

(3.4) |〈y∗ − x∗, v〉| ≤ γ.

Since f is approximate convex at x0, there is δ > 0 with δ < δ0 such that fδ is
ε−convex. For any η > 0 and t > 0 small enough to have η + t‖v‖ < δ, one
has y + tv ∈ B(x0, δ). For all s ∈ (0, t), by using the decomposition y + sv =
(y + tv)s/t + y(t− s)/t one obtains:

f(y + sv) ≤ s

t
f(y + tv) +

t− s

t
f(y) +

εs(t− s)
t2

t‖v‖.

Equivalently

f(y + sv)− f(y)
s

≤ f(y + tv)− f(y)
t

+ ε(1− s

t
)‖v‖.

Letting s ↓ 0 in the latter inequality yields

〈y∗, v〉 ≤ f(y + tv)− f(y)
t

+ 2ε‖v‖.

On the other hand, since f is Lipschitz with a Lipschitz constant κ and y ∈ B(x0, η),
one has

f(y + tv)− f(y) ≤ f(x0 + tv)− f(x0) + 2κη.

Combining (3.4) with the latter inequalities we obtain

〈x∗, v〉 ≤ f(x0 + tv)− f(x0)
t

+ 2ε‖v‖+
2κη

t
+ γ.

By letting η ↓ 0 and γ ↓ 0 in this inequality we have

〈x∗, v〉 ≤ f(x0 + tv)− f(x0)
t

+ 2ε‖v‖

and then by letting further t ↓ 0 and ε ↓ 0, we obtain 〈x∗, v〉 ≤ f ′(x0, v). This shows
that x∗ ∈ ∂f(x0) and completes the proof.

Corollary 3.7 Assume that f : X → 1R ∪ {+∞} is lower semicontinuous and
approximate convex at z ∈ X. Then the condition 0 ∈ ∂Cf(z) implies that z is a
local minimum of the functions f(.) + ε‖.− z‖ for every ε > 0.
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Proof. By Theorem 3.6, ∂Cf(z) = ∂F (z). The condition 0 ∈ ∂F f(z) means that for
each ε > 0, one has f(z + h) + ε‖h‖ ≥ f(z) for h sufficiently close to 0. This shows
that z is a local minimum of the function f(.) + ε‖.− z‖.

Let us now prove a sum rule for the subdifferential of approximate convex func-
tions (see [1], [17], [19] for convex functions).

Theorem 3.8 Let X be a Banach space. Let f1 and f2 : X −→ 1R ∪ {+∞} be
proper lower semicontinuous functions. Suppose that dom f1 and dom f2 are convex
sets and that f1 and f2 are approximate convex at x0 ∈ dom f1 ∩ dom f2. Then one
has

∂(f1 + f2)(x0) ⊇ ∂f1(x0) + ∂f2(x0).

Equality holds provided the Attouch-Brézis condition holds, i.e.
⋃

λ>0

λ(dom f1 − dom f2) is a closed subspace of X.

Proof. The inclusion ∂(f1 + f2)(x0) ⊇ ∂f1(x0) + ∂f2(x0) follows immediately from
the definition. Now assume that the Attouch-Brézis condition holds. First we show
that

∂(f1 + f2)(x0) ⊆ cl(∂f1(x0) + ∂f2(x0)),

where ”cl” denotes the closure in the norm topology. Let ε > 0 be arbitrarily
fixed. Since f1 and f2 are approximate convex functions, by Theorem3.4, there
exist δ > 0 and lower semicontinuous convex functions g1

x0
(.) and g2

x0
(.) such that

for all x ∈ B(x0, δ) the following inequalities are satisfied

|fi(x)− gi
x0

(x)| ≤ ε‖x− x0‖ , i = 1, 2.

This implies that

dom fi ∩B(x0, δ) = dom gi
x0
∩B(x0, δ) and ∂gi

x0
(x0) ⊆ ∂fi(x0) + εB∗ for i = 1, 2.

By setting x = x0 and by estimating f1+f2 by the above inequality for x ∈ B(x0, δ)
we obtain:

(3.5) ∂(f1 + f2)(x0) ⊆ ∂(g1
x0

+ g2
x0

)(x0) + 2εB∗

Note further that
⋃

λ>0

λ
(
dom f1 − dom f2

)
=

⋃

λ>0

λ
(
dom f1 ∩B(x0, δ)− dom f2 ∩B(x0, δ)

)
.

Indeed, the inclusion ”⊇” is obvious. The converse inclusion follows from the fact
that dom f1 ⊆ ∪λ>0λ(domf1 ∩ B(x0, δ)) because domf1 is convex. We derive from
the Attouch-Brézis condition that

⋃

λ>0

λ
(
dom g1

x0
∩B(x0, δ)− dom g2

x0
∩B(x0, δ)

)

is a closed subspace of X. Hence, the sum rule valid for convex functions (see [2]),
yields:

∂(g1
x0

+ g2
x0

)(x0) = ∂g1
x0

(x0) + ∂g2
x0

(x0).
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Combining this formula with (3.5) yields:

∂(f1 + f2)(x0) ⊆ ∂f1(x0) + ∂f2(x0) + 4εB∗.

As ε > 0 is arbitrary, we conclude

∂(f1 + f2)(x0) ⊆ cl(∂f1(x0) + ∂f2(x0)).

Let us now show that ∂f1(x0) + ∂f2(x0) is norm-closed. Let {x∗α} be a net
of elements of ∂f1(x0) + ∂f2(x0) norm-converging to x∗. We want to show that
x∗ ∈ ∂f1(x0)+∂f2(x0). Without any loss of generality, we may assume that the net
{x∗α} is norm-bounded. Let x∗α = y∗α+z∗α with y∗α ∈ ∂f1(x0) and z∗α ∈ ∂f(x0). Denote
by L :=

⋃
λ>0 λ

(
domf1 − domf2

)
and take v := λ(x1 − x2) ∈ L with x1 ∈ domf1,

x2 ∈ domf2. Assume that f1, f2 are ε−convex on B(x0, δ) for some ε, δ > 0. Choose
t > 0 small enough to have x0 + t(x1 − x0) and x0 + t(x2 − x0) ∈ B(x0, δ). One has

〈y∗α, v〉 =
λ

t
[〈y∗α, t(x1 − x0)〉 − 〈y∗α, t(x2 − x0)〉]

=
λ

t
[〈y∗α, t(x1 − x0)〉 − 〈x∗α − z∗α, t(x2 − x0)〉]

≤ λ

t
[f(x0 + t(x1 − x0))− f(x0) + εt‖x1 − x0‖+ t‖x∗α‖‖x2 − x0‖+

+ f2(x0 + t(x2 − x0))− f2(x0) + εt‖x2 − x0‖].
Since {x∗α} is norm-bounded, the above inequality implies that the net {y∗α} is
weak∗−bounded on L and consequently {y∗α} is norm-bounded on L. Since L is
a closed subspace of X, then L is a Banach space itself and therefore the net of
the restrictions {y∗α,L} of {y∗α} to L has a weak∗−convergent subsequence in the

topological dual L∗ of L. We can assume that y∗α,L
w∗→ y∗L ∈ L∗. By the Hahn-

Banach theorem, there exists an extension y∗ ∈ X∗ of y∗L. In order to complete the
proof, we want to show that y∗ ∈ ∂f1(x0) and x∗−y∗ ∈ ∂f2(x0). Let ε > 0. There is
δ > 0 such that f is ε-convex on B(x0, δ). Since y∗α ∈ ∂f1(x0), for all x ∈ B(x0, δ),
one has

〈y∗α, x− x0〉 ≤ f1(x)− f1(x0) + ε‖x− x0‖ .

Let x ∈ B(x0, δ). If x ∈ domf1 then x − x0 ∈ L, hence 〈y∗α, x − x0〉 → 〈y∗, x − x0〉
and consequently

〈y∗, x− x0〉 ≤ f1(x)− f1(x0) + ε‖x− x0‖.
Obviously, this inequality also holds if x /∈ domf1. Hence, y∗ ∈ ∂F f1(x0) = ∂f1(x0).
Similarly, x∗ − y∗ ∈ ∂F f2(x0) = ∂f2(x0) and the proof is complete.

As a direct consequence of Theorem 3.8 we have:

Corollary 3.9 Assume that f1 and f2 are approximate convex at x0 ∈ dom f1 ∩
Int(domf2) (or, equivalently f2 is Lipschitz around x0). Then we have:

∂(f1 + f2)(x0) = ∂f1(x0) + ∂f2(x0).

Proof. The proof follows immediately from Theorem 3.8.
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Corollary 3.10 Suppose that f : X → 1R ∪ {+∞} is proper lower semicontinu-
ous and approximate convex at x0 ∈ X. Then

∂̂εf(x0) = ∂F
ε f(x0) = ∂f(x0) + εB∗.

Proof. By virtue of Corollary 3.9, one has

∂F
ε f(x0) := ∂F (f + ε‖.− x0‖)(x0) = ∂f(x0) + εB∗.

The proof of equality ∂̂εf(x0) = ∂F
ε f(x0) is similar to equality ∂Mf(x0) = ∂F f(x0)

in Proposition 3.6.

This corollary is a generalization of Proposition 2.3 and Proposition 2.8 of [7]
established in the case when f is convex or continuously differentiable.

3.3. Integration of subdifferentials of approximate convex functions

In the sequel, f is supposed to be a lower semicontinuous function from a Banach
space X to the extended real line 1R ∪ {+∞} and ∂f is any subdifferential which
satisfies the following conditions:

(i) ∂f(x) = ∂F f(x) if f is approximate convex at x, or equivalently

∂f(x) =
{
x∗ ∈ X∗| 〈x∗, v〉 ≤ f ′(x, v) for all v ∈ X

}
;

(ii) 0 ∈ ∂f(x) if x is a local minimum of f ;
(iii) If g is a Lispchitz convex function or a Lipschitz concave function on X,

then

∂(f + g)(x) ⊆ ∂f(x) + ∂g(x) for every x ∈ dom f ∩ dom g;

(iv) If f and g coincide on a neighbourhood of x, then ∂f(x) = ∂g(x).

It was shown in [9, 18], that for any subdifferential which satisfies conditions (i)-
(iv), the Zagrodny Mean Value Theorem (M. V. T) is valid. Clarke’s subdifferential,
Mordukhovich’s subdifferential , G-subdifferential... verify conditions (i)-(iv). The
following property of approximate convex functions will be needed.

Lemma 3.11 Let g : X → 1R ∪ {+∞} be a proper lower semicontinuous function
that is approximate convex at x0 ∈dom g and let v ∈ X. Assume that g

′
(x0, v) >

−∞. Then for every α > 0, there exists η > 0 such that for every s, t ∈ 1R with
0 < s < t < η, the folloving inequality is satisfied:

g(x0 + tv)− g(x0 + sv)
t− s

≤ g(x0 + tv)− g(x0)
t

+ α‖v‖.

Proof. Since g is approximate convex at x0, for α > 0 there is δ0 > 0 such that for
all x, y ∈ B(x0, δ0); λ ∈ (0, 1), (assume that B(x0, δ0) ⊆ U) one has

(3.6) g(λx + (1− λ)y) ≤ λg(x) + (1− λ)g(y) +
α

4
λ(1− λ)‖x− y‖.

Observe that the result is obvious if there is δ > 0 such that g(x0 + tv) = +∞ for all
t ∈ (0, δ). Assume now there is δ1 > 0 with δ1 < δ0 such that x0 + δ1v ∈domg. Pick
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δ > 0 such that δ‖v‖ < δ0 and δ < δ1. For 0 < s < t < δ/2, using the representation

x0 + sv =
s

t
(x0 + tv) +

t− s

t
x0 and according to (3.6), one has

g(x0 + sv) ≤ s

t
g(x0 + tv) +

t− s

t
g(x0) +

αs(t− s)
4t

‖v‖.
Consequently

g(x0 + tv)− g(x0 + sv)
t− s

≥ g(x0 + sv)− g(x0)
s

− α

4
‖v‖.

Passing to the limit as s ↓ 0, one deduces

(3.7)
g(x0 + tv)− g(x0)

t
≥ g′(x0, v)− α

4
‖v‖ for all t with 0 < t < δ/2.

On the other hand, using the representation

x0 + (t + s)v =
s

t
(x0 + 2tv) +

t− s

t
(x0 + tv),

we derive from (3.6) that

g(x0 + (t + s)v)− g(x0 + tv)
s

≤ g(x0 + 2tv)− g(x0 + (t + s)v)
t− s

+
α

4
‖v‖.

Passing to the limit as s ↓ 0, we obtain

g′(x0 + tv, v) ≤ g(x0 + 2tv)− g(x0 + tv)
t

+
α

4
‖v‖.

Hence

lim sup
t↓0

g′(x0 + tv, v) ≤ lim sup
t↓0

[
2
g(x0 + 2tv)− g(x0)

2t
−−g(x0 + tv)− g(x0)

t

]

+
α

4
‖v‖ = g′(x0, v) +

α

4
‖v‖.

Therefore, there exists η ∈ (0, δ/2) such that

(3.8) g′(x0 + tv, v) ≤ g′(x0, v) +
α

2
‖v‖ for all t ∈ (0, η).

Finally, use again the approximate convexity of f. For any r > 0, s > 0 such that
0 < s < t < t + r < η, using the decomposition

x0 + tv =
t− s

t + r − s
(x0 + (t + r)v) +

r

t + r − s
(x0 + sv)

and (3.6), we derive

g(x0 + tv)− g(x0 + sv)
t− s

≤ g(x0 + (t + r)v)− g(x0 + tv)
r

+
α

4
‖v‖.

Letting r ↓ 0, we obtain
g(x0 + tv)− g(x0 + sv)

t− s
≤ g′(x0 + tv, v) +

α

4
‖v‖.

Combining this inequality with (3.7), (3.8) yield the result.

The following theorem is an extension of Thibault & Zagrodny (Theorem 2.1 in
[18]) to the case of approximate convex functions.
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Theorem 3.12 Let U ⊆ X be a nonempty convex open subset of X. Let f, g : X →
1R ∪ {+∞} be proper lower semicontinuous functions and let ε ≥ 0. Assume that
U ∩ dom f 6= ∅,dom g is convex and g is approximate convex on U and that the
following condition is satisfied:

(✷) ∂f(x) ⊆ ∂g(x) + εB∗ ∀x ∈ X.

Then U ∩ dom f = U ∩ dom g and for every x ∈ U ; y ∈ U ∩ dom g, one has

(3.9) g(x)− g(y)− ε‖x− y‖ ≤ f(x)− f(y) ≤ g(x)− g(y) + ε‖x− y‖.
Proof. The proof we present here follows Thibault & Zagrodny [18]. We mention

that the domain of ∂f is graphically dense in dom f , hence U ∩dom ∂f 6= ∅ because
U ∩ dom f 6= ∅. First we prove the second inequality of (3.9) for x ∈ U and y0 ∈
U ∩ dom ∂f. Indeed, it holds trivially if x = y0. According to the assumption (✷)
the set ∂g(y0) is non-empty and consequently y0 ∈ U ∩dom g. Take now x 6= y0 and
set v := x− y0. Obviously, g

′
(y0, v) > −∞.

Claim 1. For α > 0, there is η > 0 such that for every t ∈ (0, η), the following
inequality holds true:

(3.10) f(y0 + tv)− f(y0) ≤ g(y0 + tv)− g(y0) + (ε + 5α/4)t‖v‖.
Indeed, given α > 0 and η > 0 be as in Lemma 3.11. Let t ∈ (0, η). For every
n = 1, 2, ..., we define the function fn by

fn(x) :=





f(x) if x 6= y0 + tv

f(y0 + tv) if x = y0 + tv and f(y0 + tv) is finite
n if x = y0 + tv and f(y0 + tv) = +∞.

Note that at any x 6= y0 + tv, ∂fn(x) and ∂f(x) coincide. By virtue of the mean
value theorem, for every n, we can find sequences {xm

n }m∈1N converging to cn :=
y0 + snv ∈ [y0, x0 + tv), and x∗mn ∈ ∂f(xm

n ) such that

lim inf
m→∞ 〈x∗mn , y0 + tv − xm

n 〉 ≥
fn(y0 + tv)− f(y0)

t‖v‖ (t− sn)‖v‖.

Since x∗mn ∈ ∂f(xm
n ) ⊆ ∂g(xm

n )+ εB∗ and as xm
n ∈ B(y0, δ0) for m sufficiently large,

it follows from the approximate convexity of g that

〈x∗mn , y0 + tv − xm
n 〉 ≤ g(y0 + tv)− g(xm

n ) + (ε + α/4)‖y0 + tv − xm
n ‖.

The above inequalities yield:
fn(y0 + tv)− f(y0)

t
(t− sn) ≤ g(y0 + tv)− g(xm

n ) + (ε + α/4)‖y0 + tv − xm
n ‖.

Passing to the limit as m →∞, we obtain
fn(y0 + tv)− fn(y0)

t
≤ g(y0 + tv)− g(y0 + snv)

t− sn
+ (ε + α/4)‖v‖.

This and Lemma 3.11 imply

fn(y0 + tv)− fn(y0) ≤ g(y0 + tv)− g(y0) + (ε + 5α/4)t‖v‖.
Taking now the limit as n →∞ in this inequality we obtain (3.10) which completes
the claim 1.
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Claim 2. The following inequality is true:

(3.11) f(x)− f(y0) ≤ g(x)− g(y0) + ε‖x− y0‖.
If g(x) = +∞, then the inequality above is obvious. Assume that g(x) < +∞.
Define C := {t ∈ [0, 1]| (3.10) holds }. Obviously, C is bounded and by Claim 1, it
is nonempty. Since f is a lower semicontinuous function, further, since g(y0) and
g(x) are finite, according to Corollary 3.3, the restriction of g to [y0, x] is continuous
and therefore C is also closed. Hence, it is a compact subset of 1R and consequently
max C exists. Assume that t0 = max C. Actually, t0 = 1. Indeed, if t0 < 1, one
has g(y0 + t0v) < +∞ because g(x) < +∞. By Proposition 3.2, the restriction
of g to [y0, x] is locally Lipchitzian at y0 + t0v. Hence, g

′
(y0 + t0v, v) is finite.

Therefore, similarly to the proof of (3.10), by replacing y0 by y0 + t0v, we find a
number t1 ∈ (t0, 1) such that

f(y0 + t1v)− f(y0 + t0v) ≤ g(y0 + t1v)− g(y0 + t0v) + (ε + 5α/4)(t1 − t0)‖v‖.
This inequality together with (3.10) imply that t1 ∈ C, a contradiction. Thus t0 = 1
and for this t0 and for all α > 0 we have

f(x)− f(y0) ≤ g(x)− g(y0) + (ε + 5α/4)‖x− y0‖.
Therefore (3.11) holds true.

Next we prove the second inequality of (3.9) for x ∈ U and y ∈ U ∩ dom f. Since
dom ∂f is graphically dense in dom f , there exists a sequence {yn}n∈1N ⊂ U∩dom ∂f

such that yn
f→ y. By (3.11) one has

f(x)− f(yn) ≤ g(x)− g(yn) + ε‖x− yn‖ ∀x ∈ U.

This and the lower semicontinuouity of g imply

(3.12) f(x)− f(y) ≤ g(x)− g(y) + ε‖x− y‖ ∀x ∈ U

as requested. The latter inequality also shows that U ∩ dom f = U ∩ dom g. Con-
sequently, the second inequality of (3.9) is true for every x ∈ U and y ∈ U ∩ dom g.
Finally, interchanging the roles of x and y in inequality (3.12), we have

g(x)− g(y) ≤ f(x)− f(y) + ε‖x− y‖
for every x ∈ dom f. Obviously, the above inequality holds trivially if f(x) = +∞.
Therefore, the first inequality in (3.9) holds for every x ∈ U and y ∈ U ∩ dom f.
The proof is complete.

Corollary 3.13 Let X be a Banach space and let f, g be lower semicontinuous
functions from X to 1R ∪ {+∞}. Assume that dom f 6= ∅,dom g is convex and g is
approximate convex on X and that ∂f(x) ⊆ ∂g(x) for all x ∈ X. Then f(x)− g(x)
is a constant.

Proof. Apply Theorem 3.12 for U = X and ε = 0.

Note that inequality (3.9) is no longer true if dom g is not convex. This fact is
due to the local nature of approximate convexity. Take for instance the functions f
and g from 1R to 1R ∪ +{∞} and given by f(1) = f(0) = g(0) = 0; g(1) = 1 and
f(x) = g(x) = +∞ for all x 6= 0; x 6= 1. One has ∂f(x) = ∂g(x) for all x ∈ 1R.
However, f − g is not a constant.
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4. Application

In this section we are going to apply the previously obtained properties of ap-
proximate convex functions to give an answer to the following question of [4]: Does
there exist a class (L) of functions verifying properties b)-d) mentioned in the in-
troduction such that

(a’) It is stable under finite sums, finite infima and finite suprema;
e) It contains continuous convex functions and continuously differentiable func-

tions.
Obviously, the answer to the above question is negative because the infimum of

two continuously differentiable functions does not necessarily verify properties b)
and c). For instance, the functions f : 1R → 1R defined by f(x) = min{−x, x2}
does not satisfy property (b) at x = 0; while f1 and f2 : 1R → 1R defined by
f1(x) = min{x,−x} = −|x| and f2(x) = |x| do not verify (c) at x = 0. This
observation leads us to look for a class of functions that is stable under finite sums
and finite suprema, and verifies properties b)-e). Let us denote by LAC the family
of Lipschitz approximate convex functions on a Banach space X. According to
Proposition 3.1, Corollary 3.7, 3.9 and 3.13, LAC is stable under finite sums and
finite suprema and verifies properties b)-e). Now, in order to obtain a class of
functions larger than Lipschitz functions we can proceed as follows. Let f be any
proper lower semicontinuous, approximate convex function such that ∪λ>0λ(dom f−
dom f) is closed subspace, for instance f is a convex function such that dom f is
finite dimensional. Define LACf as the family consisting of f , of all functions from
LAC together with their finite sums and finite suprema. Then LACf is a class
of not necessarily Lipschitz functions that verifies properties a)-e). Note that by
taking f and g such that ∂(f + g) 6= ∂f + ∂g, we obtain LACf 6= LACg. In other
words, maximal classes of lower semicontinuous functions verifying properties a)-e)
do exist (by Zorn’s lemma) but the largest one does not exist.
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