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APPROXIMATE CONVEX FUNCTIONS

HUYNH VAN NGAI, DINH THE LUC, AND MICHEL THERA

ABSTRACT. The purpose of this paper is to study a class of generalized con-
vex functions defined on a Banach space, called approximate convex functions
which are stable under finite sums and finite suprema, and for which most of
the known subdifferentials such as the Clarke, the Mordukhovich and the Ioffe
approximate subdifferential coincide and share several properties of the Fenchel-
Moreau-Rockafeller convex subdifferential.

1. INTRODUCTION

The class of Lipschitz convex functions on a Banach space possesses the following
important properties:

(a) it is stable under finite sums and finite suprema;

(b) the optimality condition 0 € Of(x), where Of stands for the classical sub-
differential of convex functions, is sufficient for x to be a local minimum of the
functions y — f(y) + elly — x| for every e > 0;

(c) equality holds for the sum rule: O(f1 + f2)(z) = 0f1(x) + df2(x); and

(d) an integration property holds: If 0 fi(x) = Ofa(x) for all x € X, then f1 — fo
18 a constant.

It is a challenging problem to know, as pointed out by Ioffe [4], whether the above
class can be extended to nonconvex functions so that it still verifies properties a)-d)
with a suitably choosen subdifferential and contains all continuously differentiable
functions. Of course, if such an extended class exists, it cannot contain all Lipschitz
functions because for these functions, most of known subdifferentials do not satisfy
equality in the sum rule. A smaller class, consisting of Lipschitz and primal lower
nice functions [Poliquin 14], [Thibault-Zagrodny 18] on a Hilbert space also verifies
properties (a)-(d), but it does not contain all continuously differentiable functions.
The purpose of the present paper is to introduce a new class consisting of generalized
convex functions on a Banach space, called approximate convex functions, which
meets the above requirements. The main feature of this class of functions is twofold:

(1) it includes convex functions, as well as, continuously differentiable functions;
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(2) the subdifferential in the sense of Clarke and Mordukhovich coincides with the
Toffe geometric subdifferential, as well as with the Ioffe approximate subdifferential
when the functions are Lipschitz.

The so-called e-convex functions introduced by Jofré-Luc-Théra [7] serve as the
main tool to define approximate convex functions and to derive their properties.
The paper is organized as follows. In Section 2, we study e—convex functions, their
e—conjugate functions and e—subdifferentials. Much theory about convex functions
can be extended to e—convex functions, including Fenchel-Moreau’s duality theo-
rem. Section 3 deals with approximate convex functions and their basic properties
such as continuity, directional derivability etc.. It is shown that for approximate
convex functions properties a), b) and d) are satisfied, while property c) is true
under the Attouch-Brézis qualification assumption [2].

In the last section we answer a question raised by A. Ioffe about the existence of
a class of functions which satisfies properties a)-d) and contains Lipschitz convex
functions as well as continuously differentiable functions.

2. €e—CONVEX FUNCTIONS

Let X be a real Banach space with topological dual X*. Throughout the paper,
B(x,d) denotes the closed ball in X with center at x and radius § > 0, and B* the
closed unit ball of X*. Let f be a function from X to IRU{+o0}. As usual, we denote
by dom f = {x € X : f(x) < 400} and epif := {(z,a) € dom f x IR : f(z) < a}
the effective domain and the epigraph of f, respectively. The function f is proper if
it has a nonempty domain.

Recall ([7],[10]) that the function f is e—conver with ¢ > 0 if it satisfies the
following inequality for every =, y € X, and A € (0,1) :

(2.1) Oz + (1= Ny) <Af(2) + (1 =N f(y) + Al = A)llz —y].

It was shown in [7], [10] that e—convex functions have several interesting properties
and are useful for approximate calculus. In this section, by developing e—conjugate
functions and e—subdifferential, we obtain more characterizations about convex
functions.

2.1. e—conjugate functions
Let f be an e—convex function from X to IR U {+oc}. Let y € X be fixed. We
define the e—conjugate function f;(e,.) : X* — IR U {+o0} of f at y by

(2.2) fy(€,€) = 51615{(5,@ — f(x) —ellz —yll}.

Obviously, f; (¢,.) is a convex function. Its Fenchel-Legendre conjugate is denoted
by f;*(e,.z) and given by
(2.3) y (6x) = sup {(§,x) — fy(& &)}
feXx*
As we shall see, e—conjugate functions of e—convex functions have many properties

similar to conjugate functions of convex functions. For other generalizations of
conjugate functions the interested reader is refered to [20] and the references therein.
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For our aim, recall first that the Clarke directional derivative of f at x € dom f
is given by

fT(l“,U) :=suplimsup inf fly+tu) - fy)
>0 yiﬂx u€B(v,d) t

)

while the Clarke subdifferential of f at x € dom f is defined by
0% f(x) == {a* € X*| (a*,v) < f1(z,v) Vv € X },

where as usual, y I, .z means y — x and f(y) — f(z). If x ¢ dom f, we set
o f(z) = 0.

Recall also [10] that the e-subdifferential of f at z is defined by

O (x) = {a" € X" (a%,0) < f(z+v) — f(x) + o] ,Ywe X }.
We shall need the following estimation established in [10] for the e-subdifferential
of f:
(2.4) 0° f(x) C 0 f(a).
As usual, the infimal convolution hldg of two convex functions h and g is defined
by
(hOg)(z) = inf{h(y) + 9(2)| y + 2 = x}

and the convention +(0c0) — (+00) = 0 is adopted.
Proposition 2.1 Assume that f is e-convex and lower semicontinuous. Then the
following assertions hold:

i) As a function of y, the e-conjugate function f;(e,§) is Lipschitz with a Lipschitz
constant equal to €;

ii) As a function of €, the e-conjugate function f, (€, §) is decreasing;

i) As a function of &, the e-conjugate function f;(e,§) is convex and lower
semicontinuous, and it is proper if f is proper;

w) €0 f(z) <= [flo)+ fi(e,§) = 2);

v) For every x € X, one has f;*(e,r) < f(z) + €|z — y]|.
Proof. To prove i), let £ € X* be fixed. Let y,3’ € X. By the definition

fy(€,€) = ig}g{(é,@ —f(z)—ellz—yll} < 22§{<§,w> —f(@)—ellz =y +ely’ =y}

Consequently, f7(€,§) < fr(€,&) + €lly — y'||. Interchanging the roles of y and ¢/,
one obtains fy(e,£) > fyi(e,§) — €lly — ¢/[| and i) follows.

Assertion ii) is derived from the definition.

For assertion iii), observe that for every fixed z,y € X, the function £ — (£, z) —
f(z) —ellz —yl| is affine on X*; therefore it is convex and continuous. Hence f; (e, .)
is convex and lower semicontinuous on X*. Now assume that f is proper. We show
that f*(e,.) is proper. Indeed, there is € dom f such that 9 f(x) is nonempty
because f is proper lower semicontinuous. Let & € 9% f(x) C 9°f(x) (by (2.4)).
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One has ({,z —x) < f(2) — f(z) + €|]|z — z|| for all z € X. Use the inequality
|z —z| < |[lz —yll + |ly — =|| to deduce
(§2) = f(z) —ellz =yl < (& z) — fz) +ellz -y
for all z € X. Consequently, f*(¢,&) < (&, z) — f(x) + €||lr — y|| and hence £ €
dom f; (e, .), which shows that f*(e,.) is proper.
For assertion iv), it suffices to observe the following chain of equivalences:
§€0f(x) = (y—a) < fly) = fla) +ely—z| VyeX
= (&) = fy) —elly -zl < (&) = flx) VyeX
For the last assertion, let x,y € X. By definition, for all £ € X™* we have,
fy(€.8) 2 (& x) — fz) — ellz —y.
Equivalently, for all £ € X™*:
<§,$> - f;(€7§)

f(@) +ellz —yll.
Therefore, by (2.3), we obtain f;*(e,z) < f

() + €]|]x — y||.The proof is complete.

VARVAN

Proposition 2.2 Let f and g be lower semicontinuous functions from X to 1R U
{+o0}. Assume that f is ey—convex and g is ea—convex. Then for everyy € X and
& e X*, one has

(2.5) (f +9)y(er +€,8) < (fy(er,.)0gy(e2, ) ().

Equality holds if in addition, y € Int (domf) and y is a local minimum point of the
function f+g—(&,.) on X.

Proof. For the first part, let £1,& € X* and € X. One obtains

fyler, &) = (€, 2) — fz) — allz —y|
and
9y(€2,61) = (&1,2) — g() — eaflz — y|.
Therefore,
fyler,&1) + gy(e2,&2) = (f + g)ylen + €2,61 + &2)
and (2.5) holds. Under the additional condition, one has 0 € % (f 4+g— (¢,.))(y) C

9% f(y) + 0%g(y) — €. Therefore, there are & € 9 f(y) and & € d%g(y) such that
€ =& + &. Due to (iv) of Proposition 2.1, we obtain

foler, &) = (&,y) — fly)  gylea, &2) = (&2,9) — 9(y)
and
(f+9)ylar+e2,8) = (&) — fy) —9(y).
Hence (f;(e1,.)0gy(e2,.))(§) < (f + g)y(€1 + €2,€) and the proof is complete. 1
As the example below shows, inequality (2.5) is strict in general. Take f and

g : IR — 1R such that f(z) = —|z| and g(z) = 2|z|. Observe that f is 2-convex and
g is convex. One has (f + ¢)7(2,0) = —1 while (f{(2,.)0g;(0,.))(0) = 0.
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2.2. The Fenchel-Moreau extended duality theorem

We shall see in this subsection that the Fenchel-Moreau duality theorem can
be extended to express the relation between an e—convex function and its second
conjugate f;‘*(e, .). For this purpose we need the following approximate mean value
theorem proved by Zagrodny [21] (see also [9] for a generalized version):

Let f: X — IR U {400} be a proper lower semicontinuous function and let a,b be
two distinct points of dom f. Then there exist sequences {xn}neiN, {Z) nein such
that x,, — c € [a,b); 2%, € 9 f(z,) and

(i) T inf (", b — z,) > L0 = /(9)

n—o0 16— al

16— ell;

(1) liminf(xy,b—a) > f(b) — f(a).

n—oo

It follows from this theorem that for a proper lower semicontinuous function f,
the domain of 9 f := {x € X| 9% f(x) # 0} is graphically dense in dom f. Hence
if f is a proper lower semicontinuouse—convex function, then 9¢f(x) # () on a
graphically dense subset of domf.

Theorem 2.3 Let f : X — IRU {400} be a proper lower semicontinuous e—convex
function. Then for all x,y € X, we have

(2.6) [f(2) = £ (e, )| < ellz -y,

As a result, f;(€,.) and f;*(e,.) are proper lower semicontinuous convex function.
Moreover, f;*(e,x) > —oo for all x,y € X.

Proof. Let x,y € X. By virtue of Proposition 2.1, f;*(e,z) < f(z) + €[z — y|. In
order to prove (2.6), it suffices to show that

(2.7) y (6x) = f(z) — ez —y.
Let us consider the two following cases:
Case 1. 09 f(x) # 0. Take some ¢ € 0% f(z). By (2.4), £ € 0°f(x). One has
(&, z—x) < f(z) = f(x) + €|z — x| forall ze€ X.
Use the inequality ||z — | < ||z — y|| + ||y — z|| to deduce
(6,2) — () — elle — ]l < (6,2) — F(@) + el —yl| forall 2 € X,

Consequently, (§,z) — f*(¢,€) > f(z) — €||lx — y|| and we derive (2.7).
Case 2. 9° f(x) = (). It must hapen one of the following two situations:

Either 2.1: there exists a sequence {c, }nen converging to z and satisfying f(c,) <
f(z) for all n € IN or 2.2: there is a positive number 7 such that B(z,2vy)Ndomf =
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In Case 2.1, for every n, we define the function f, by
f(e) = (o) itz ta
fn(2) = f(2) if f(z) is finite
flen) +1 if f(z) = +o0.
Applying Zagrodny’s M.V.T to the function f,, on [c,, 2], select y, € B([cn, 2], 2) =
{Z € X| d[cn,x} (2) < % }; Yn # zand y;, € 8Cfn(yn) such that (y;,, z—yn) > 0 (da(2)
t

stands for the distance from z to the set A). Since ¢,, — z, then y,, — x. Note tha
O fu(2) = € f(2) for all z # x. Therefore, € f,,(yn) = O f(yn).

According to Case 1, we have
(Un>yn) = fy(&un) = f(Yn) — €llyn —yll-
Hence (y;, ) — f;(€,y5) = f(yn) — €llyn — y||. This yields
fy (e, x) > fyn) — €llyn — vl
Since f is lower semicontinuous, just take the limit as n tends to co to obtain (2.7).
In Case 2.2, pick a € domf and for n € IN, define the function g, by
() = {f(z) ifz#ux

n otherwise.

Since f is lower semicontinuous, then f is bounded from below on some neighbour-
hood V of the segment [a,z], i. e., there exists a € IR such that f(z) > « for all

zeV.
Now, apply again the mean value theorem to g, on [a,z]. There exist sequences
{2} e {25} men such that limy, oo 2™ = ¢, € [a,2); 2™ € 9%g, (2) and
x) — gn(a
(2.8) liminf(x;™, o —a") > MHC” —z.
m—00 |l = all
When n is large enough, say n > ng, one has g,(z) = n > f(a) = gn(a). Since
9%gn(z™) is nonempty, we must have ¢, ¢ B(z,7v), that is, |lc, — | > ~. For
n > ng, according to inequality (2.8), there is some index m,, such that 2]’ € V
and
n—f(a)
LT — Tt > .
" [l — all
Equivalently, we have

n— f(a)
*mn’ > *mn, M + ]
(@™ ) > (@) + T
On the other hand, use Case 1 to obtain

(™ wp'™) = fyle,a™) = flap™) = ellap™ =yl

Combining the above inequalities we obtain

(@) = fy(eaym) = )
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Consequently,

ACUERT f(|)

Finally, note that f(z]'") > « for all n > ng and that the sequence {||z'" — y||} is
bounded. Taking the limit as n — oo, in the above inequality we obtain f* (e,2) =
+00, and (2.7) holds. The proof is complete. |

+ flay™) = ellag™ =yl

Note that when f is convex, by setting ¢ = 0, Theorem 2.3 subsumes the classical
Fenchel-Moreau duality theorem.

Corollary 2.6 Let f : X — IRU{+o0} be a proper lower semicontinuous e— convex
function. The following assertions are equivalent:

(i) § € 0°f(x);
(i) x € 07 (€,)(E);
(iii) € € Of2*(e, ) (x).
Proof. First, the implication (ii) = (iii) is known because f(e,.) and f}*(e,.) are
convex functions. For the implication (i) = (ii), let £ € 9°f(z). Due to Proposition
2.1, we have
().

> (¢ x)—f¥(e,&) forall £ € X*.

(&) = f2(e,8) =
On the other hand, it follows from (2.2) that f(x
The above relations imply
(2, =& < f2(e, ) — fa(e,§) forall {’ € X7,
which shows that = € Jf(e,.)(£).
For the implication (iii) = (i), let £ € df;*(e,.)(x). One has (§,y—x) < fi*(e,y)—
(e, x) for all y € X. According to Theorem 2.3, f**(e,z) = f(x) and f¥*(y) <
f(y) +ellz —y||. Hence
€,y — o) < f(y) — F(2) +ellz — ]| for all y € X,
which shows that £ € 0°f(z).

f
)

3. APPROXIMATE CONVEX FUNCTIONS

Let f: X — IR U {+o0} be a lower semicontinuous function. For every § > 0,
we define the function f5 by fs(z) = f(z) if x € B(x,9) and +oo otherwise.

We say that the function f is approzimate convex at zg € X if for each ¢ > 0,
there exists § > 0 such that fs5 is e—convex, and f is approximate convex on a
nonempty set C' C X if it is approximate convex at every x € C. When C' = X, we
say simply that f is approximate convex.

In this section we shall concentrate our efforts to the study of the class of ap-
proximate convex functions.

3.1 Basic properties

It follows immediately from the definition that convex functions are approximate
convex, and the converse is not true. Below we shall give some more sufficient
conditions for a function to be approximate convex. Let us recall [8] that a function
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f: X = IRU{+o0} is said to be y— paraconver with v € 1R, if there is a constant
k > 0 such that for all z, y € X and X € (0, 1):

Oz + (1= XNy) <Af(x) + (1 =2 f(y) + rAL =Nz -yl

Recall also that a function f: X — IR U {400} is strictly differentiable at xg € X
if there exists D f(zp) € X* such that

i W — f(z) — Df(zo)(z —y)

ry oy o=yl

=0.

Proposition 3.1 Let f : X — IR U {+oo}. Each of the following conditions is
sufficient for f to be approximate conver at xg € X :

i) f is y—paraconvex with v > 1;
it) f is strictly differentiable at xo;

i) f = f1+ fo, or f = max{fi, fo} where fi and fy are approximate conver at
Zo;

i) f = goA where A is a continuous affine mapping from X to a Banach space Y
and g is a function from'Y to IRU{+oo} which is approrimate conver at Axy €Y.

Proof. Tt is obvious that each of conditions i), iii), iv) implies that f is approximate
convex at . Actually, under condition i) f is approximate convex at any point of
X. Now we show that f is approximate convex at xg if ii) is verified. By the strict
differentiablility of f at xg, for each € > 0, there exists § > 0 such that

(@) = £(y) = Df (xo)(x = )| < Sllz =yl V. y € Blao, ).
Therefore, for every z,y € B(xg,0) and A € (0,1) one has
[fQz+ (1= A)y) = f(z) = (1 = A)Df(xo)(y — )| <

SL=Nllz -yl
and .
[f(Az + (1= A)y) = f(y) = ADf(zo)(z — y)| < SAllz —y].

Consequently, for every z,y € B(zo,0) and A € (0,1) one has
€
FOz+ (1 =Ay) < fl@) + 1 = A)Df(zo)(y —2) + 5 (1 = Aljz — ]

and
FO@+ (1= Ny) < £(y) + ADF(wo)(x — y) + Mz =yl

Multiplying the above inequalities by A and (1 — \) respectively and summing them
up yields

fOz+ (1 =Ny) <Af(2) + (1= A)f(y) +re(l = A)]lz -y,
which shows that f is approximate convex at xg. |

The next proposition establishes a Lipschitz property of approximate convex
functions. Its proof follows the lines of the convex case ([13],[15]).

Proposition 3.2 Suppose that f : X — IR U {+o0} is a proper lower semicon-
tinuous function. If f is approzimate convex at xoy € Int(domf), then f is locally
Lipschitz at xg.



APPROXIMATE CONVEX FUNCTIONS 163

Proof. Since f is approximate convex at z, there exist ¢ > 0 and § > 0 such
that B(xo,0) C dom f and equality (2.1) is satisfied for all z,y € B(xg,0) and
A € (0,1). First, we want to show that f is locally bounded at xg. Let U, := {x €
B(xo, )| f(z) < n}, n = 1,2,.... Then, B(x0,6) = J,cy Un and all the U, are
closed. Thanks to the Baire category theorem, there is some index ng such that the
interior of Uy, denoted by Int U, is nonempty. Pick 2y € Int U,, and a > 1 such
that yo := 20 + a(xg — 20) € Int Uy, and select some nonnegative number v < ¢
such that for all x € B(x,7) one has z := yo + a(x — yp) € Int U,,. We have

fl@) = fla 'z + (1 —a yo)
<a'f(2)+ (1 —a ) f(y) +ea (1 —a Ny — 2|
<a g+ (1—a N f(y) +ea (1 —a1)20.
Thus, f is bounded from above, say, by M, on B(xg,7). To show that it is locally

bounded from below, note that for all x € B(x, "), obviously, 2xo — z € B(zg,7)
and consequently

f(xo) <1/2f(x) +1/2f (220 — x) + €/2]|z — -

Therefore, f(x) > 2f(xg) — M — 2e7y for all x € B(xp,7v) and f is bounded on
B(zg, ). Hence we may assume that |f(x)| < M for all z € B(zg,~). Now, for any
2,y € B(20,7/2), then 2 i= x+ (1/20)(z — y) € B(zo, ) with n := | — y]|. Hence,

2n v 2n 8 2eny
f@) = (et —y) < L f) + L f () + 2l gl
(=) y+2n"  v+2n v+ 27 (=) v+ 2n ) (7+277)2H |

It follows that

2n 4M
£@) = £w) < U@ — F@) +elle -yl < (S5 4 e) e -yl
Interchanging the roles of x and y, we obtain the required result. |

The following corollary will be used in the sequel.

Corollary 3.3 Let f : X — IR U {+o0} be a proper lower semicontinuous function
that is approzimate convex on the segment [a,b] with a # b and [a,b] C dom f. Then
the restriction of f on this segment is continuous.

Proof. Let us consider the function ¢ : IR — 1R defined by ¢(t) = f(ta + (1 —t)b)
if t € [0,1]; p(t) = f(a) if t > 1 and p(t) = f(b) if ¢ < 0. We wish to show that
¢ is continuous on [0, 1]. Note that ¢ is approximate convex at all ¢ € (0,1) and
by virtue of Proposition 3.2, ¢ is continuous on (0,1). We need only to show that
lim; o+ ¢(t) = ¢(0) (similarly, lim; ;- ¢(t) = ¢(1)). For each € > 0, thanks to
approximate convexity of f at b take a real § > 0 such that

(A1 4 (1 = Mt2) < Ap(t1) + (1 = A)p(t2) + eA(1 = A)[t1 — f2]

for all t1,t2 € [0,d] and A € (0,1). Let {t,}nen be a sequence converging to 0,
t, > 0. For n is large, one has t, < § and therefore

p(tn) < ta/0p(8) + (1 = 10 /0)p(0) + etn (1 — t)0.
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Passing to the limit as n — oo, we obtain limsup,,_,., ¢(tn) = (0) and con-
sequently, (since ¢ is lower semicontinuous) lim, .~ ¢(t,) = ©(0). The proof is
complete. |

We present a characterization of approximate convexity via convex functions.

Theorem 3.4 Let X be a Banach space and let f: X — 1R U {+o0} be a proper
lower semicontinuous function. Then, [ is approzimate conver at vy € X if and
only if for each € > 0, there exists 6 > 0 such that for any y € B(xg,d) we can
find a lower semicontinuous convex function gy(.) : X — IR U {+o0} satisfying the
following inequality for every x € B(xq,0).

|f(z) = gy(z)| < ellz —yl|.

Proof. For the part ”if”, assume that f is approximate convex at xg. For each
e > 0, take § > 0 such that the function fs5 is e—convex. Fix y € B(xo,d) and
define gy(z) := f5;(€,x), where fi(e,.) is the e—second conjugate function of fs.
The result follows from Theorem 2.3.

For the part "only if”, by the assumption, for each € > 0, there exists 6 > 0 such
that for every z € B(x9,0), we can find a convex function g, satisfying

(@) = g:(@)| < Slla = 2| for all = € Bao, o).
Let x,y € B(x0,9); A € (0,1). Since Az + (1 — N)y € B(zg, ) we have

@) = grera-np(@)] < 5= N~y
and
FW) = 9w ra-2W)] < SMlz =yl
It follows that
A (@) + AL = Nz =y = Agaara-ay (@)
and

(L= NF@) + M= Nz =yl = (1= Ngres -2, ).

On adding the above two inequalities and noticing that gy, (1—x)y(.) is convex and
Dra+(1-Ny(Az + (1 =N)y) = f(Az + (1 — N)y), we obtain the required inequality:

fAz+ (1 =Ay) <Af(@) + (1= A)f(y) +eA(d = N[z —yll.
The proof is complete. |

Corollary 3.5 If f : X — 1R U {400} is lower semicontinuous and approzimate
convex at g € dom f, then for every v € X, the directional derivative

/ T f(l‘o—i-tv)—f(l'o)
f(zo,v) := 1tllnon .

of f exists and is sublinear on X.

Proof. Since f is approximate convex at xg, making use of Theorem 3.4, for every
€ > 0, there exist 6 > 0 and a lower semicontinuous convex function g, (.) such that

F(@) = gao (@)] < cllz — 20| for all @ € B(o,d).
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Equivalently,
f(z) — €|l — 20| < gup(x) < f(2) + €]|z — 20| for all z € B(xp,d).
Fix v € X and take t > 0 small enough to have t||v|| < 6. Then,
f(zo + tv) — f(xo) Gro (20 + 10) = guo (o) _ f(@o +tv) — f(o)
t t - t
(note that g,,(xo) = f(zo)). Since gy, is convex, it is a basic fact in Convex Analysis
that

—efvll < + vl

o (T0 + V) — gy (20)
" .
Taking the limit as ¢ | 0 in the preceding inequalities, we obtain

: f(xo +tv) — f(20)
(3.1) hrrtll%up ;

g'/Z'Q (.’EO, U) = ltlﬁ)l

< Gy (T0, V) + €l|v]]

and

(3.2) lim fnf £ F0 + V) = f(@0)

i : > g (w0,) — el
Consequently, for any € > 0,

Jim sup f(zo +tv) — f(xp)
t10 t

f(zo +tv) — f(zo)
t

< lim inf + 2¢l|v]|.
10

This means that

f’(mo,v) _ ltll%l f(x() + t’l}t) — f(g;o)

exists. Obviously, f'(x,.) is positively homogeneous. We shall use (3.1) and (3.2)
to prove its subadditivity. Fix vi,vy € X, use (3.1) and write

[ (zo,v1 +v2) < gh (w0, v1 + v2) + €]lvr + V2.

By (3.2), then f(z0,v1) > g3, (0, v1) — €llv1|| and f'(zo, v2) = gg, (20, v2) — €llva]|.
On the other hand, since g, is convex, it is well-known that g, (zo,.) is sublinear.
Hence, for any ¢ > 0,

f(@o,v1 +v2) < f'(wo,v1) + f(z0,v2) + €([lor + vl + [l ]l + [Jv2]])-
Consequently, f'(xo,v1 + v2) < f'(xo,v1) + f/(x0,v2) and the proof is complete. 1
3.2. Subdifferential of approximate convex functions

Let f: X — IR U {+oc} be a given function and let € be a fixed nonnegative
real. Recall that the Fréchet e—subdifferential of f at x € dom f is defined by

Sk e x| s d @) — f2) = (@7, h)
of f(z) == {x € X" lﬁgiglof 1Al Z*E}.

When € = 0, we set 9F f(x) := 0} f(x). The limiting Fréchet e—subdifferential is
defined by

O f(x) := seq — lim sup 8ff(y)

f
y—x
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where, ” seq-limsup” denotes the sequential Painlevé-Kuratowski upper limit of sets,
ie.,

seq — limsup 8 f(y) = {x* € X*| Jzp, ER x, T, Y5 2* with x) € 85]"(3:”)}
!

Y=

with 757 denoting the weak™ convergence in the dual space X*.
The Mordukhovich subdifferential of f at x € dom f is the set ([11], [12]):
oM f(x) = seq — lim sup 8 f(y).
!
y-—>x,el0
We agree that OV f(z) = OF f(x) = def(z) = 0 if = ¢ dom f. We also need to recall

the definition of the e-approzimate subdifferential introduced by A. Ioffe in [4],[5].
Denote by F(X) the collection of all finite dimensional subspaces of X, then

0" f(x):= (] limsupd, fyrr(y),
LEF(X) yLoa,el0

where,
) flx) if zey+L
furi(@) = {+oo otherwise
and
t _
0 f(y) == {:c € X'| (a",v) < liminf fy + “t) IO 4ol woe X}.

”limsup” is used here to express the "topological Painlevé-Kuratowski limit”, na-
mely, for a multivalued mapping F' : X = X*, then * € limsup,_,, F'(y) if for
each weak™—neighbourhood W of the origin of X* and for each neighbourhood V'
of x, there exists y € V such that (w + z*) N F(y) # 0.

To define the Ioffe geometric subdifferential (denoted by 9% f(.)), we recall ([6])
that the G—normal cone to C C X at z € C is the set

NE(C,z) =" ( | 20%de(2)),
A>0

where dc(x) denotes the distance from x to C' and cl* means the weak*closure.
Now, 9% f(x) is given by

0% f(x) = {a* € X*| (¢*, -1) € N%(epif, (z, f(2)) }.
It is well-known that if X is finite dimensional, then 0% f(z), 04 f(x) and oM f(x)
coincide. The next proposition gives an important feature of approximate con-
vex functions. We are keeping the notation

Of (o) == {z* € X*| (a*,v) < f'(zo,v) forallv e X },
which agrees with the subdifferential in the sense of convex analysis when f is
convex.

Theorem 3.6 Let X be a Banach space. Let f : X — 1R U {400} be a lower
semicontinuous function. Assume that f is approrimate convexr at xg € dom f. Then
we have
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(i) 0% f(wo) = OM f (o) = OF f(w0) = Of (x0) = O f (wo);
(ii) Of (o) C 84 f (o). Bquality holds if in addition, f is Lipschitz at xo.
Proof. Clearly we have:
OF f(xo) C 9 f(x0),0" f(xo) € OM f(x0) and 9F f(z0) C Of (wo).

We need to show that 9 f(zo) C 0F f(x0); OM f(wo) C OF f(z0) and Of(z¢) C
OF f(z0). Since by assumption, f is approximate convexity at xg, for each € > 0,
there is & > 0 such that the function

fa(a) i {f(a:) if o€ B(x,9),

+o00 otherwise

is e—convex. Let 2* € 9 f(xg). One has
9° f (o) = 8 fs(o)
= {&* € X*| (&",h) < f(zo+h) — f(wo) +€|[b] Vh € B(0,6) }.
It follows that 2* € 9% f(x) and the inclusion 9° f(xg) C ¥ f(xo) is established.
As to equality 0% f(xg) = 0F f(x), observe that
0" f(x0) € 99 f(wo) € 0 f (o).
Since as already shown 9 f(xg) = 9 f(zo), we obtain 9% f(xq) = 9 f(xo) =

9° f (wo)-
For the inclusion M f(xq) C 0% f(xg), let 2* € OM f(xg). There exist sequences

{en} 1 0, {zp} — z, {2}} g z* with 27, € 8F f(z,). Pick a sequence of nonnegative
numbers 7, | 0. By definition, for each n, we can find a number 7, > 0 such that
(3.3) (@5, h) < f(@n+h) = f(@n) + (€n +va) || for all b € B(zn, ).
As above, for any € > 0, take § > 0 such that for all z,y € B(z¢,d) and A € (0,1),
inequality (2.1) is satisfied, i. e.,
fOz 4+ (1= Ny) SAf(2) +1 =) f(y) + el = N[z —y.
We may assume that x,, € B(xg,d) for all n > ng. For any y € B(xg,0), choose
t € (0,1) such that t||y — x| < nyn. From (3.3) and (2.1) one deduces that
(o ty — 7))

< flon + 1ty — zn)) — f(zn) + ten + W)lly — 24|

S A =t)f(zn) +f(y) — flzn) + el = 1) + en + ) lly — 2nl-
Therefore

(@nsy —an) < f(y) — f(@n) + (e + &+ )y — znll-

Passing to limit as n tends to oo, we obtain

(% y —wo) < f(y) — f(o) + elly — -
This shows that z* € 07 f(z¢) and the inclusion M f(zo) C 0¥ f(z0) holds.
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Finally, Let * € df(xg). Again by the approximate convexity of f at xg, for any
y € B(xo,0) fixed, and t € (0, 1), one has

Floo 1y = 20) ZJC0) < (4 — fag) + (1 = )lly = ol

Taking the limit as ¢ | 0 we obtain f'(zo,y — z0) < f(y) — f(zo) + €|ly — xo|| and
consequently z* € 9F f(xg). Hence, 0f (xo) = 0F f (o).

Let us now prove assertion (ii). Clearly, df(xo) = 0 f(z0) € 94 f(20). Suppose
now that f is Lipschitz around x¢. There are k > 0 and dp > 0 such that |f(x) —
f@)| < kllz —y| for all 2,y € B(xg,d). Let z* € 04 f(xq). Take v € X, €,7 > 0,
define W := {z* € X*| |(z*,v)| < v} and take L € F(X) such that v € L. Set
V := B(xg,n) with n > 0. By definition, there exist y € V and y* € 0. fy+1(y) such
that

(3.4) (y" =z v)| <.

Since f is approximate convex at xg, there is § > 0 with § < Jy such that f5 is
e—convex. For any n > 0 and ¢ > 0 small enough to have n + t||v|]| < ¢, one
has y + tv € B(xp,0). For all s € (0,t), by using the decomposition y + sv =
(y + tv)s/t + y(t — s)/t one obtains:

s t—s es(t —s
Flt o) < 2w+ )+ 2 )+ ST
Equivalently
fly+sv)—fly) _ fly+tv) - fy s
Wts0) = f) o S i) 2 TW) | g 5y,
s t t
Letting s | 0 in the latter inequality yields
" +tv) —
o) < TUED IO

On the other hand, since f is Lipschitz with a Lipschitz constant k and y € B(zg, ),
one has

fly+tv) = f(y) < flzo + tv) — f(xo) + 2.
Combining (3.4) with the latter inequalities we obtain

f(xo+tv) — f(zo)
t

By letting nn | 0 and v | 0 in this inequality we have
f(@o +tv) — f(x0)

(x*,v) <

2K
+ 2¢||v|| + Tn + .

(x*,v) < " + 2¢l|v||
and then by letting further ¢ | 0 and € | 0, we obtain (z*,v) < f’(xg,v). This shows
that * € 9f(zp) and completes the proof. |

Corollary 3.7 Assume that f : X — IR U {400} is lower semicontinuous and
approximate convex at z € X. Then the condition 0 € 8Cf(z) implies that z is a
local minimum of the functions f(.) + €||. — z|| for every e > 0.
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Proof. By Theorem 3.6, 0 f(z) = 0¥ (z). The condition 0 € 6% f(z) means that for
each € > 0, one has f(z + h) + €[|h|| > f(z) for h sufficiently close to 0. This shows
that z is a local minimum of the function f(.) + €. — z||. 1

Let us now prove a sum rule for the subdifferential of approximate convex func-
tions (see [1], [17], [19] for convex functions).

Theorem 3.8 Let X be a Banach space. Let fi and fo : X — 1R U {+o0} be
proper lower semicontinuous functions. Suppose that dom f1 and dom fy are convex
sets and that f1 and fo are approrimate convexr at rog € dom fi Ndom fo. Then one
has

A(f1 + f2)(xo) 2 0f1(x0) + Ofa(20).
Equality holds provided the Attouch-Brézis condition holds, i.e.

U A(dom f; — dom fa) is a closed subspace of X.
A>0

Proof. The inclusion 9(f1 + f2)(x0) 2 df1(xo) + 9 f2(xo) follows immediately from
the definition. Now assume that the Attouch-Brézis condition holds. First we show
that

A(f1 + f2)(zo) € cl(9 f1(z0) + Of2(0)),
where ”cl” denotes the closure in the norm topology. Let ¢ > 0 be arbitrarily
fixed. Since f; and fo are approximate convex functions, by Theorem3.4, there
exist § > 0 and lower semicontinuous convex functions g3 (.) and g2 (.) such that
for all x € B(xg,d) the following inequalities are satisfied
|fi(a) = 9o (@)] < €l — o, i=1,2.
This implies that
dom f; N B(xg,d) = domgio N B(xp,0) and 89?50(1‘0) C 9fi(xg) + eB* fori =1,2.
By setting © = x¢ and by estimating fi + f2 by the above inequality for z € B(zo, 6)
we obtain:
(3.5) d(f1+ f2)(z0) C 8(gg, + g2,) (w0) + 2¢B*
Note further that
| AMdom f1 — dom f) = | J A(dom 10 B(xo, ) — dom fo N B(x0,5)>.
A>0 A>0

Indeed, the inclusion ”2” is obvious. The converse inclusion follows from the fact
that dom f; C UxsgA(domf; N B(xp,0)) because domfi is convex. We derive from
the Attouch-Brézis condition that

U A(domgio N B(xzg,d) — domgi0 N B(azo,é))
A>0

is a closed subspace of X. Hence, the sum rule valid for convex functions (see [2]),
yields:

g, + 92,)(x0) = Dga, (x0) + Dg2, (x0).
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Combining this formula with (3.5) yields:
A(f1+ f2)(z0) C Of1(z0) + Of2(z0) + 4eB™.

As € > 0 is arbitrary, we conclude

O(f1 + f2)(xo) C cl(9f1(z0) + O f2(x0)).

Let us now show that Jf1(zo) + 0f2(xo) is norm-closed. Let {z}} be a net
of elements of dfi(xg) + 9f2(xp) norm-converging to z*. We want to show that
x* € 0f1(xo) + 0 f2(xp). Without any loss of generality, we may assume that the net
{z%} is norm-bounded. Let z} = y* 42 with y} € df1(x¢) and 2 € 9f(xp). Denote
by L := UA>0)\<domf1 — domfg) and take v := A\(x1 — x2) € L with 1 € domfy,
x9 € domfo. Assume that fi, fo are e—convex on B(xg,d) for some €,0 > 0. Choose
t > 0 small enough to have xg + t(x1 — z9) and xg + t(x2 — z9) € B(xg,d). One has

() = 50 11 = 20)) — (s ez — 20))]
= My tlar — 20)) — {z — 2t — 20)]
A

< S 1f (o +t(z1 = 20)) = f(wo) + etllzr — woll + tllzalllwz — zoll+

+ fa(wo + t(z2 — 20)) — fa(wo) + etllra — zol|]-

Since {z},} is norm-bounded, the above inequality implies that the net {y}} is
weak*—bounded on L and consequently {y}} is norm-bounded on L. Since L is
a closed subspace of X, then L is a Banach space itself and therefore the net of
the restrictions {y7, ;} of {y,} to L has a weak"—convergent subsequence in the

topological dual L* of L. We can assume that y* ; v y; € L*. By the Hahn-
Banach theorem, there exists an extension y* € X* of y7- In order to complete the
proof, we want to show that y* € df1(zo) and z* —y* € dfa(xg). Let € > 0. There is
d > 0 such that f is e-convex on B(z,0). Since y) € dfi(xo), for all x € B(xo,d),
one has

(Y, ® — 20) < fi(x) — fi(wo) + €l|z — zo] .

Let x € B(xo,9). If € domf; then z — z9 € L, hence (y},z — zo) — (y*,z — o)
and consequently

(y* . —x0) < fi(z) — fi(wo) + ¢€l|z — w0

Obviously, this inequality also holds if z ¢ dom f;. Hence, y* € 0% f1(z0) = 0.f1(x0).
Similarly, z* — y* € 9 fo(xg) = 0f2(wg) and the proof is complete. 1

As a direct consequence of Theorem 3.8 we have:

Corollary 3.9 Assume that f1 and fo are approximate convex at xg € dom f1 N
Int(domfs) (or, equivalently fo is Lipschitz around xy). Then we have:

O(f1 + f2)(wo) = Of1(w0) + Of2(0).
Proof. The proof follows immediately from Theorem 3.8. |
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Corollary 3.10 Suppose that f : X — 1R U {400} is proper lower semicontinu-
ous and approzimate convexr at xg € X. Then

Def(x0) = OF f(x0) = Of (w0) + €B".
Proof. By virtue of Corollary 3.9, one has
Of f (o) = " (f +ell. — wol))(x0) = 8f (z0) + €B".
The proof of equality 8. f(zo) = dF f(x) is similar to equality M f (o) = 0 f (o)
in Proposition 3.6. |

This corollary is a generalization of Proposition 2.3 and Proposition 2.8 of [7]
established in the case when f is convex or continuously differentiable.

3.3. Integration of subdifferentials of approximate convex functions

In the sequel, f is supposed to be a lower semicontinuous function from a Banach
space X to the extended real line 1R U {400} and Jf is any subdifferential which
satisfies the following conditions:

(i) Of (x) = OF f(x) if f is approzimate convex at x, or equivalently
Of (x) = {z* € X*| (a*,v) < f'(z,v) forallve X };

(ii) 0 € Of (x) if x is a local minimum of f;
(iii) If g is a Lispchitz convex function or a Lipschitz concave function on X,
then

Af+9g)(x) COf(x)+ dg(x) forevery x € dom fNdomg;
(iv) If f and g coincide on a neighbourhood of x, then 0f(x) = dg(x).

It was shown in [9, 18], that for any subdifferential which satisfies conditions (i)-
(iv), the Zagrodny Mean Value Theorem (M. V. T) is valid. Clarke’s subdifferential,
Mordukhovich’s subdifferential , G-subdifferential... verify conditions (i)-(iv). The
following property of approximate convex functions will be needed.

Lemma 3.11 Let g : X — IR U {400} be a proper lower semicontinuous function
that is approzimate conver at xg €domg and let v € X. Assume that ¢ (zo,v) >
—o00. Then for every a > 0, there exists n > 0 such that for every s,t € 1R with
0 < s <t<mn, the folloving inequality is satisfied:

g(wo + tv) — g(xo + sv) < g(wo + tv) — g(wo)

- < " + al|v]|.

Proof. Since g is approximate convex at xg, for a > 0 there is g > 0 such that for
all z,y € B(xzg,d0); A € (0,1), (assume that B(xg,dp) C U) one has

(3.6) gz + (1= Ny) < Ag(z) + (1= Ng(y) + %)\(1 =Nz -yl

Observe that the result is obvious if there is 6 > 0 such that g(xo+tv) = +oo for all
t € (0,0). Assume now there is 6; > 0 with §; < dg such that z¢+ ;v € domg. Pick
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d > 0 such that d||v|| < dp and 6 < §;. For 0 < s < t < §/2, using the representation
s
To + sv = Z(xo—i—tv) +

Sxo and according to (3.6), one has

as(t —s)

<
g(xo + sv) < pr

t—s
glao + tv) + ——g(wo) +

~+ | »

Consequently
g(a:0+tv)—g(:c0—|—sv) g($0+sv)_g(x0) a”’UH
t—s s 4"
Passing to the limit as s | 0, one deduces
g(zo + tv) — g(z0)
t
On the other hand, using the representation

Y
|
\

(3.7)

> ¢'(zo,v) — %HUH for all t with 0 <t < §/2.

s t—s
zo+ (t+ s)v = E(xo + 2tv) + T(xo + tv),

we derive from (3.6) that

g(zo + (t+ s)v) — g(zg + tv) < g(xo + 2tv) — g(zo + (t + s)v)
S o t—s

+ 2ol
4U.

Passing to the limit as s | 0, we obtain

g(zo + 2tv) — g(zo + tv)

g (xo + tv,v) < ;

1 vl|.
Hence

2t t

2tv) — tv) —
lim sup ¢/ (20 + tv, v) < limsup [29(560 + 2tv) — g(xo) g(zo + tv) 9(550)]
t]0 10

+ Zlvl = g'@o,v) + Tl

Therefore, there exists n € (0,0/2) such that
(3.8) g/ (x0 +tv,0) < g/(x0,v) + S [[v]| for all t € (0,m).
Finally, use again the approximate convexity of f. For any r > 0, s > 0 such that
0<s<t<t+r<mn, using the decomposition

= T (ot (4 r)0) 4 —— (w0 + sv)
X v =

0 P )+ (ot s
and (3.6), we derive

g(zo + tv) — g(wo + sv) _ g(zo + (t+r)v) — g(zo + tv)
t—s r

IN

+ 2ol
—[|U]|.
4

Letting r | 0, we obtain
g(@o + tv) — g(xo + sv)
t—s
Combining this inequality with (3.7), (3.8) yield the result. 1

@
< g (w0 + tv,v) + ZHU”

The following theorem is an extension of Thibault & Zagrodny (Theorem 2.1 in
[18]) to the case of approximate convex functions.
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Theorem 3.12 Let U C X be a nonempty convex open subset of X. Let f,g: X —
IR U {400} be proper lower semicontinuous functions and let € > 0. Assume that
UNndomf # (,domg is conver and g is approximate convexr on U and that the
following condition is satisfied:

(O0) 0f(z) Cog(x)+eB* Vae X.
Then U Ndom f = U Ndom g and for every x € U; y € U Ndom g, one has

39  g(@) —gy) —ellz —yl < f(x) = fly) < g9(z) —g(y) +ellz -yl

Proof. The proof we present here follows Thibault & Zagrodny [18]. We mention
that the domain of df is graphically dense in dom f, hence U Ndom df # () because
U Ndom f # (. First we prove the second inequality of (3.9) for x € U and yg €
U Ndom df. Indeed, it holds trivially if x = yp. According to the assumption (0)
the set dg(yp) is non-empty and consequently yo € U Ndom g. Take now = # yo and
set v := x — yo. Obviously, ¢ (yo,v) > —o0.

Claim 1. For a > 0, there is n > 0 such that for every t € (0,7), the following
inequality holds true:
(3.10) Flyo +tv) — fyo) < g(yo + tv) — g(yo) + (€ + 5a/A)t|v].

Indeed, given a > 0 and n > 0 be as in Lemma 3.11. Let ¢t € (0,7). For every
n =1,2,..., we define the function f,, by

f(@) ifx # yo + tv
fn(x) =< flyo+tv) ifxz=yo+tvand f(yo + tv) is finite
n ifex=yo+tv and f(yo+ tv) = +o0.

Note that at any = # yo + tv, Ofn(z) and Jf(x) coincide. By virtue of the mean
value theorem, for every n, we can find sequences {z]'},,c1n converging to ¢, =
Yo + Snv € [yo,xo + tv), and z}™ € Jf (x]") such that

tv) —
liminf(z™ yo + tv — x") > Jn(yo +tv) — f(%o)
e ol

Since ™ € 9f (™) C dg(x') + eB* and as x!"* € B(yo, do) for m sufficiently large,
it follows from the approximate convexity of g that
(" g0 +tv —2") < gyo +tv) — g(x,") + (€ + a/4)|[yo + tv — x|
The above inequalities yield:
Fa(yo +tv) — fyo) (t

t
Passing to the limit as m — oo, we obtain

fulyo +tv) = fa(yo) _ 9(yo +tv) = 9(yo + snv)
t - t— sy
This and Lemma 3.11 imply
fn(yo + tv) = ful(yo) < g(yo + tv) — g(yo) + (€ + 5a/4)t]v]].

Taking now the limit as n — oo in this inequality we obtain (3.10) which completes
the claim 1.

(t = sn)|lv]l-

—sn) < g(yo +tv) — g(xy') + (e + a/4)||lyo + tv — 3"

+ (e + a/4)||v]].
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Claim 2. The following inequality is true:

(3.11) f(@) = f(yo) < g(x) — g(yo) + €llz — yol|-

If g(x) = +o0, then the inequality above is obvious. Assume that g(z) < +oco.
Define C := {t € [0,1]| (3.10) holds }. Obviously, C' is bounded and by Claim 1, it
is nonempty. Since f is a lower semicontinuous function, further, since g(yo) and
g(z) are finite, according to Corollary 3.3, the restriction of g to [yo, x| is continuous
and therefore C' is also closed. Hence, it is a compact subset of 1R and consequently
max C' exists. Assume that tg = maxC. Actually, tg = 1. Indeed, if tg < 1, one
has g(yo + tov) < +oo because g(x) < +oo. By Proposition 3.2, the restriction
of g to [yo,x] is locally Lipchitzian at yo + tov. Hence, q (yo + tov,v) is finite.
Therefore, similarly to the proof of (3.10), by replacing yo by yo + tov, we find a
number ¢; € (to, 1) such that

f(yo +t1v) — f(yo + tov) < g(yo + t1v) — g(yo + tov) + (€ + 5a/4)(t1 — to)||v]|.

This inequality together with (3.10) imply that t; € C, a contradiction. Thus ¢y = 1
and for this ¢y and for all @ > 0 we have

f(@) = fyo) < 9(x) = g(yo) + (€ + 5a/4)[lx — yol-
Therefore (3.11) holds true.

Next we prove the second inequality of (3.9) for € U and y € U Ndom f. Since
dom Jf is graphically dense in dom f, there exists a sequence {y, }nen C UNdom 0 f

such that y, 4 y. By (3.11) one has
f@) = flyn) < 9(@) — g(yn) +€llz —ynll Vo e U.

This and the lower semicontinuouity of g imply

(3.12) flx) = fly) <g(x) —gy) +ellz—yl| VzeU

as requested. The latter inequality also shows that U Ndom f = U N dom g. Con-
sequently, the second inequality of (3.9) is true for every x € U and y € U Ndom g.
Finally, interchanging the roles of z and y in inequality (3.12), we have

9(x) —g(y) < f(z) = f(y) +ellz -y
for every = € dom f. Obviously, the above inequality holds trivially if f(x) = 4o0.
Therefore, the first inequality in (3.9) holds for every = € U and y € U N dom f.
The proof is complete. |

Corollary 3.13 Let X be a Banach space and let f,g be lower semicontinuous
functions from X to IR U {+oo}. Assume that dom f # (), dom g is convex and g is
approzimate conver on X and that Of(x) C dg(x) for all x € X. Then f(z) — g(x)
18 a constant.

Proof. Apply Theorem 3.12 for U = X and e = 0. |

Note that inequality (3.9) is no longer true if dom g is not convex. This fact is
due to the local nature of approximate convexity. Take for instance the functions f
and g from IR to IR U +{oo} and given by f(1) = f(0) = g(0) = 0;¢(1) = 1 and
f(z) = g(x) = +oo for all © # 0;2 # 1. One has df(z) = dg(x) for all z € 1R.
However, f — ¢ is not a constant.
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4. APPLICATION

In this section we are going to apply the previously obtained properties of ap-
proximate convex functions to give an answer to the following question of [4]: Does
there exist a class (L) of functions verifying properties b)-d) mentioned in the in-
troduction such that

(a’) It is stable under finite sums, finite infima and finite suprema;

e) It contains continuous convez functions and continuously differentiable func-
tions.

Obviously, the answer to the above question is negative because the infimum of
two continuously differentiable functions does not necessarily verify properties b)
and c). For instance, the functions f : IR — 1R defined by f(r) = min{—z,2?}
does not satisfy property (b) at = = 0; while f; and fy : IR — 1R defined by
fi(z) = min{z, —2} = —|z| and fa(z) = |z| do not verify (c¢) at @ = 0. This
observation leads us to look for a class of functions that is stable under finite sums
and finite suprema, and verifies properties b)-e). Let us denote by LAC the family
of Lipschitz approximate convex functions on a Banach space X. According to
Proposition 3.1, Corollary 3.7, 3.9 and 3.13, LAC is stable under finite sums and
finite suprema and verifies properties b)-e). Now, in order to obtain a class of
functions larger than Lipschitz functions we can proceed as follows. Let f be any
proper lower semicontinuous, approximate convex function such that Uy~oA(dom f—
dom f) is closed subspace, for instance f is a convex function such that dom f is
finite dimensional. Define LACy¢ as the family consisting of f, of all functions from
LAC together with their finite sums and finite suprema. Then LACy is a class
of not necessarily Lipschitz functions that verifies properties a)-e). Note that by
taking f and g such that O(f + g) # 0f + Jg, we obtain LAC¢ # LAC,. In other
words, maximal classes of lower semicontinuous functions verifying properties a)-e)
do exist (by Zorn’s lemma) but the largest one does not exist.
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