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THE PARATINGENT SPACE AND A CHARACTERIZATION OF
C1-MAPS DEFINED ON ARBITRARY SETS

GUZMAN TIERNO

Abstract. We use the paratingent space (introduced by Glaeser, J. Analyse
Math, 6 (1958), and strictly related to Bouligand’s paratingent cone) to obtain a
topological-geometrical characterization of the maps defined on arbitrary subsets
of Rm that admit C1-extensions. This result constitutes an improvement of
Whitney’s Extension Theorem and has many applications. Among them a new
proof of the Inverse Function Theorem and a generalized version of it.

1. Introduction

The paratingent space ∆p(A) of A ⊂ IRm, essentially introduced by Glaeser [6],
is the subspace of IRm defined by the property that the map p 7→ ∆p(A) is “the
smallest” set-valued map with a closed graph whose values are linear subspaces
of IRm and contain Bouligand’s paratingent cone (Section 2). When considering
C1-submanifolds of IRm the paratingent space reduces to the usual tangent space.

The aim of this work is to show that the paratingent space can be used to char-
acterize the maps defined on arbitrary subsets of IRn that admit C1-extensions.

The main result of this work is the following. Let f : X ⊂ IRn → IRm be con-
tinuous at p ∈ X. The map f admits a C1-extension around p if and only if
∆(p,f(p))(Gf ) is a graph (where Gf is the graph of f in IRn × IRm and saying that
∆(p,f(p))(Gf ) is a graph means that its projection into IRn is injective) (Statement
and applications of this result are in Section 3 while its proof is in Section 5).

There are some important aspects to point out. First, it is surprising that from
the fact that ∆(x,f(x))(Gf ) is a graph at p it follows that f is C1 on a neighborhood
of p.

Second, to prove this result we use Whitney’s Extension Theorem but our re-
sult constitutes an improvement of Whitney’s Theorem itself. In fact, Whitney’s
Theorem gives conditions for a map (defined on a closed set X) to have a C1-
extension but it requires an a priori knowledge of the differential of the extension
at every point of X. On the contrary we don’t ask such an information but, in case
∆(p,f(p))(Gf ) is a graph, we construct a differential for the extension and then we
construct a C1-extension of f . That is, we use only the information carried by f
(see Section 5). To clarify this point it is important to observe that the paratingent
space can be obtained from Bouligand’s paratingent cone by applying to it, a finite
number of times, two simple topological-geometrical constructions (see Glaeser [6]
and Section 4.1). The possibility of such a construction emphasizes the properties
of the paratingent space and makes, at least theoretically, explicitly testable the
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hypotheses of our main result: the idea is that we first construct ∆(p,f(p))(Gf ) by
the mentioned topological-geometrical means and then we check if it is a graph; in
such a case we can assert that f admits a C1-extension around p.

The third aspect to point out is that our main result has many applications.
Strictly related to our main result is the fact that if dim(∆p(A))=k then there

exists a C1-submanifold of IRm of dimension k that contains a neighborhood of p in A
and, moreover, there are not C1-submanifolds of IRm of lower dimension satisfying
this request (Section 3.1). This result was partly proved by Glaeser [6]. In view of
this property dim(∆p(A)) can be called the differential (or C1) dimension of A at
p.

The differential dimension can be used to prove the following characterization of
the C1-submanifolds of IRm, based by no means on the concept of diffeomorphism.
A set M ⊂ IRm is a C1-submanifold if and only if it is locally compact and the
paratingent and contingent cones are at each point of M linear spaces of the same
dimension (Section 3.2). This result was previously proved in Tierno [9] but the
proof we give here is new and deeper. Using this characterization we prove that
under simple conditions on A ⊂ IRm the set bdB(A, δ) = {x ∈ IRm : d(x,A) = δ}
(that is, the sphere centered on A) is a C1-submanifold of IRm.

Consider now a C1-map f : X ⊂ IRn → Y ⊂ IRm . The properties of the paratin-
gent space allow us to define a differential dfX,Y

p : ∆p(X) → ∆f(p)(Y ) (see Sec-
tion 3.3). With this extended definition of the differential we prove that f is a local
diffeomorphism at p if and only if dfX,Y

p is injective. This result is a generalization
of the Inverse Function Theorem and in fact we prove that the Inverse Function
Theorem can be easily deduced from it.

To conclude we prove that the paratingent space ∆p(X) can be characterized as
the space where the differential at p of every C1-map, defined on a neighborhood
of p and null on X, is zero. Surprisingly we find that this fact is equivalent to
Whitney’s Extension Theorem (see Section 5). This fact shows also that ∆p(X)
is the biggest subspace of IRm where we can define the differential of a C1-map
f : X ⊂ IRn → IRm .

About the structure of the paper. After the introduction and the definitions we
state our main result (Section 3). We then deduce many consequences. In Section 4
we give an explicit way to construct the paratingent space and we prove many
properties of Bouligand’s cones and of the paratingent space. Finally, in Section 5,
we prove our main result and we clarify its relationship with Whitney’s Extension
Theorem.
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2. Contingent cone, paratingent cone and
paratingent space

2.1. Some terms and notations. We use the notation H : X ⇒ Y to mean that
H is a set-valued map from X into Y (that is, it associates to every element x ∈ X
a subset of Y ).

Let X and Y be metric spaces. A set-valued map H : X ⇒ Y is said to have a
closed graph if from

xk ∈ X, yk ∈ H(xk), (xk, yk) → (x, y),

it follows that y ∈ H(x). This means that the graph of H, i.e. the set {(x, y) ∈
X × Y : y ∈ H(x)}, is closed in X × Y .

The set-valued map H is said to be lower semicontinuous at x ∈ X if for any
y ∈ H(x) and any sequence of elements xk ∈ X converging to x, there exists a
sequence of elements yk ∈ H(xk) converging to y. The set-valued map H is said to
be lower semicontinuous if it is lower semicontinuous at every point.

The set-valued map H is said to be continuous if it is both with a closed graph
and lower semicontinuous.

A set-valued map H : X ⇒ Y of a set X into a vector space Y is said to be
linear subspace-valued or more simply subspace-valued if H(x) is a linear subspace
of Y for every x ∈ X.

Let X ⊂ IRn, Y ⊂ IRm and f : X → Y . With Gf we denote the graph of f
and we consider it as a subset of IRn × IRm. The map f is said to be of class C1

X

or, of class C1 on X, if for every x ∈ X there exist an open neighborhood U of
x in IRn and a C1 map g : U → IRm that coincides with f on X ∩ U . The map
f : X → Y is said to be a diffeomorphism or, more precisely, a C1-diffeomorphism,
if it is C1

X , invertible and has a C1
Y inverse; in this case X and Y are said to be

C1-diffeomorphic.
An n-dimensional C1-submanifold of IRm is a subset M of IRm that is locally C1-

diffeomorphic to IRn which means that for every p ∈ M there exists a neighborhood
of p in M that is C1-diffeomorphic to IRn.

For a differentiable map f defined on an open set we denote by dfp its differential
at p.

We say that a set X ⊂ IRn × IRm is a graph if the projection of X into IRn is
injective that is, if for every x ∈ IRn there exists at most one y ∈ IRm such that
(x, y) belongs to X.

We use the standard notation B(x, ρ) = {y ∈ IRn : d(x, y) < ρ} and we denote
the scalar product of IRn by 〈· , ·〉. Finally, if V ⊂ IRm we write 〈V 〉 to denote the
linear subspace of IRm spanned by V .
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2.2. Contingent cone, paratingent cone and paratingent space. We begin
by briefly recalling the definitions of the contingent cone and the paratingent cone.
For literature and results regarding these cones see [1, 5, 7, 8, 9] and the references
therein.

Definition Let A ⊂ IRm and p ∈ Ā.
• The set

Cp(A) =
{

v ∈ IRm : there exist xk ∈ A, xk → p and

αk ∈ [0,+∞) such that αk(xk − p) → v
}

is called the contingent (cone) of A at p.
• The set

Sp(A) =
{

v ∈ IRm : there exist xk, yk ∈ A, xk, yk → p and

αk ∈ IR such that αk(xk − yk) → v
}

is called the paratingent (cone) of A at p.
• The subspace of IRm spanned by the paratingent cone of A at p is denoted

by Tp(A). That is, we set Tp(A) = 〈Sp(A)〉. (We will not be concerned with the
subspace spanned by the contingent).

The following properties of Cp(A) and Sp(A) can easily be proved:
• Cp(A) ⊂ Sp(A), Cp(Ā) = Cp(A), Sp(Ā) = Sp(A).
• If U is a neighborhood of p in IRm then Cp(A) = Cp(A ∩ U) and Sp(A) =

Sp(A ∩ U).
• If A ⊂ B then Cp(A) ⊂ Cp(B) and Sp(A) ⊂ Sp(B).
• If v ∈ Sp(A) then −v ∈ Sp(A), that is, Sp(A) is symmetrical.

The sets Cp(A), Sp(A) and Tp(A) give rise to the set-valued maps p 7→ Cp(A),
p 7→ Sp(A) and p 7→ Tp(A). For these maps we shall always consider as a domain
the set Ā, that is, when we refer to p 7→ Cp(A), p 7→ Sp(A) and p 7→ Tp(A) we think
of

Ā
−→−→ IRm

p 7−→ Cp(A), Sp(A), Tp(A).

We have the following interesting result.

Proposition 2.1. Let A ⊂ IRm. The set-valued map p 7→ Sp(A) has a closed graph.

The proof is not difficult and can be found in Aubin-Frankowska [1], Shi [8],
Tierno [9].

Remark Even though Tp(A) is spanned by Sp(A), the set-valued map p 7→ Tp(A)
is not, in general, a map with a closed graph (unless A ⊂ IR; in such a case Tp(A) =
Sp(A) for every p ∈ Ā). As an example consider the function f : [0, 1] → IR given by
f(0) = 0, f( t

2n + 1−t
2n±1) = t

n2 for t ∈ [0, 1] and n ∈ N and set A = Gf ⊂ IR2. First we
want to prove that S(0,0)(A) = IR × 0. Assume ak = (xk, f(xk)), bk = (yk, f(yk)),
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xk, yk → 0 (xk 6= yk) and (ak − bk)/ ‖ak − bk‖ → (x, y) ∈ S(0,0)(A). Assume
xk, yk < 1

2n then it is easily seen that

f(xk)− f(yk)
‖xk − yk‖ <

1/n2

1/n
=

1
n

,

and this implies y = 0. Now, the subspace spanned by S(1/n,f(1/n))(A) is IR2 for
every n ∈ N and this shows that the subspace spanned by the paratingent space is
not, in this case, a map with a closed graph.

We shall study in more detail the properties of the contingent cone and the
paratingent cone in Section 4; we will now take such properties for known and we
will refer to the proofs in Section 4 when using them.

We now turn our attention to the definition of the paratingent space. The paratin-
gent space will constitute our main object of study and it will lead us to many
interesting results.

We have seen that p 7→ Sp(A) is a map with a closed graph, but observe that
in general its values are not linear subspaces. On the contrary p 7→ Tp(A) is a
subspace-valued map but it may fail to have a closed graph.

We now define a new tangent space, the “paratingent space” ∆p(A), that gives
rise to a set-valued map p 7→ ∆p(A) that puts together the properties of the maps
p 7→ Sp(A) and p 7→ Tp(A). Such a map is, in a sense, “the smallest” subspace-
valued map with a closed graph that “contains” the map p 7→ Sp(A). The exact
definition of the paratingent space is as follows

Definition Let A ⊂ IRm and p ∈ Ā. Set

Ψ(A) =
{

H : Ā ⇒IRm : H is subspace-valued, has a closed graph

and H(x) ⊃ Sx(A) for x ∈ Ā
}

.

The set
∆p(A) =

⋂

H∈Ψ(A)

H(p)

is called the paratingent space of A at p.

The paratingent space was introduced by Glaeser in [6, Chapter 2, § 5] for closed
subsets of IRm with the name of “paratingent linearisé”.

Elementary properties of ∆p(A):
• ∆p(A) = ∆p(Ā), ∆p(A) ⊃ Tp(A),

A ⊂ B ⇒ ∆p(A) ⊂ ∆p(B),
If U is a neighborhood of p in IRm then ∆p(A ∩ U) = ∆p(A).

• ∆p(A) is a subspace of IRm (as an intersection of subspaces of IRm).
• the set-valued map p 7→ ∆p(A) is a map with a closed graph (its graph being

the intersection of closed sets)
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As a consequence of these properties we get that the map p 7→ ∆p(A) is in Ψ(A) and
since, obviously, ∆p(A) ⊂ H(p) for every H ∈ Ψ(A), we may say that “p 7→ ∆p(A)
is the smallest map in Ψ(A)”.

We shall see that the paratingent space enjoys very strong properties. Moreover,
in Section 4.1 we shall give an alternative “more constructive” definition of ∆p(A)
that will make the properties of this space even more interesting. The most im-
portant property of the paratingent space constitutes our main result and it is the
object of the next section.

3. Statement of the main result and applications

In this section we state our main result. We then relate it to other results and
point out some important applications. The proof of our main result will be given
in Section 5. Our main result shows a strong relationship between the paratingent
space and the maps of class C1 defined on arbitrary sets. The result says that a
continuous map f : X → Y is of class C1 on a neighborhood of p ∈ X if and only
if the paratingent space of the graph of f at the point (p, f(p)) is itself a graph,
that is, if it does not contain “vertical” vectors.

Precisely stated the result says

Theorem 3.1. Let X ⊂ IRn, Y ⊂ IRm and p ∈ X. A map f : X → Y is C1 on
a neighborhood of p in X (i.e. there exists a C1 map defined on an open subset of
IRn containing p, that coincides with f on a neighborhood of p in X) if and only if
f is continuous at p and ∆(p,f(p))(Gf ) is a graph.

(The proof of Theorem 3.1 will be given in Section 5).
Obviously the interesting part of the theorem is the “if-part”.
Before showing some consequences and applications of this result we want to

point out three remarkable aspects.
1) It is interesting to observe that we only require that ∆(x,f(x))(Gf ) nicely be-

haves (that is, it is a graph) at a single point p to obtain that the map f nicely
behaves (that is, it is C1) on a whole neighborhood of p.

2) Our theorem is strictly related to Whitney’s C1-Extension Theorem under
various points of view (the statement of Whitney’s Theorem is in Section 5). In
fact we shall use Whitney’s Theorem to prove our result but we shall also see that our
result sharpens and completes Whitney’s result. All this will be done in Section 5,
however a first aspect can be immediately pointed out. Indeed Theorem 3.1 allows
us to decide if a map admits a C1-extension by checking only the properties of its
graph (i.e. by checking only the properties of its values) and not relying upon the
existence of other functions as Whitney’s Extension Theorem does. In this sense
Theorem 3.1 may be considered an improvement of Whitney’s Theorem.

The conditions that ensure the existence of a “global” C1-extension are the con-
tent of Corollary 3.2.

3) We shall see in Section 4.1 that the paratingent space admits a constructive
definition. Therefore every testable property of the paratingent space of a set X
can be considered as an explicitly testable property of X. In particular Theorem 3.1
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gives an explicitly testable condition to know if a map defined on an arbitrary set
admits a C1-extension.

3.1. Application 1: Characterizations of C1-maps. We begin by pointing out
some results strictly related to Theorem 3.1.

First, the “global” version of Theorem 3.1.

Corollary 3.2. Let X ⊂ IRn, Y ⊂ IRm and let f : X → Y be continuous. If for
every x ∈ X, ∆(x,f(x))(Gf ) is a graph, then there exist an open set U and a C1-map
g : U → IRm such that U ⊃ X and g = f on X (that is, f is C1

X).
Moreover if X is closed, U can be chosen to be IRn.

Proof. The proof can be easily obtained applying the partitions of unity; in order
not to be too cumbersome we leave the details to the interested reader. ¤

We can substitute ∆(x,f(x))(Gf ) with T(x,f(x))(Gf ) or with S(x,f(x))(Gf ) in the
statement of Corollary 3.2 provided that X satisfies certain conditions, as shown in
the next result.

Theorem 3.3. Let X ⊂ IRn be locally compact and let f : X → IRm be continuous.
(1) Assume Tx(X) = Sx(X) for every x ∈ X, then f is C1

X if and only if
T(x,f(x))(Gf ) is a graph for every x ∈ X.

(2) Assume n = 1, that is X ⊂ IR, then f is C1
X if and only if S(x,f(x))(Gf ) is

a graph for every x ∈ X, equivalently, if and only if

lim
x,y∈X, x,y→p

f(x)− f(y)
x− y

exists for every p ∈ X.
(3) Assume that X is contained in a 1-dimensional C1-submanifold of IRn, or

that X is open, or that X is a C1-submanifold of IRn. In all these cases, f
is C1

X if and only if S(x,f(x))(Gf ) is a graph for every x ∈ X, equivalently,
if and only if

lim
x,y∈X, x,y→p, x−y

‖x−y‖→v

f(x)− f(y)
‖x− y‖

exists for every v ∈ Sp(X) with ‖v‖ = 1 and for every p ∈ X.

Proof. We begin our proof with the following remark.

Remark If f : X → IRm is continuous it is not difficult to see that the fact that
S(p,f(p))(Gf ) is a graph is equivalent to say that

lim
x,y∈X, x,y→p, x−y

‖x−y‖→v

f(x)− f(y)
‖x− y‖

exists for every v ∈ Sp(X) with ‖v‖ = 1.

1) Since S(x,f(x))(Gf ) ⊂ T(x,f(x))(Gf ), S(x,f(x))(Gf ) is a graph for every x ∈ X.
If π : IRn × IRm → IRn denotes the projection onto the first factor we have that
π(S(x,f(x))(Gf )) = Sx(X) and π(T(x,f(x))(Gf )) = Tx(X) (this property of tangent
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cones is in Proposition 4.12). Therefore, considering that Tx(X) = Sx(X), we obtain
that T(x,f(x))(Gf ) = S(x,f(x))(Gf ) for every x ∈ X. Using the fact that Gf is locally
compact (it is homeomorphic to X) we deduce that S(x,f(x))(Gf ) = T(x,f(x))(Gf ) =
∆(x,f(x))(Gf ) for every x ∈ X. This implies that ∆(x,f(x))(Gf ) is a graph for every
x ∈ X and therefore, by Theorem 3.1, f is C1

X .
2) First observe that X ⊂ IR implies that Sx(X) = Tx(X) for every x ∈ X.

By considering the components of f we may assume m = 1, that is, that f takes
its values on IR. Therefore S(x,f(x))(Gf ) ⊂ IR × IR. Since S(x,f(x))(Gf ) is sym-
metric (with respect to the origin) and since it is a graph, we have that either
S(x,f(x))(Gf ) = {0} or S(x,f(x))(Gf ) is a 1-dimensional subspace of IR× IR. In both
cases we obtain S(x,f(x))(Gf ) = T(x,f(x))(Gf ) and this, in view of point 1), concludes
the proof.

3) If X is contained in a 1-dimensional C1-submanifold of IRn the conclusion
derives from point 2) and the proof is omitted.

To prove the result when X is open we need the following result due to Miricǎ [7,
Prop. 3.11]: Let U ⊂ IRn be open and let f : U → IRm be locally Lipschitz at x ∈ U .
Then, if (a + b, c) ∈ S(x,f(x))(Gf ), there exist (a, d), (b, e) ∈ S(x,f(x))(Gf ) such that
d + e = c.

(For the definition of locally Lipschitz see Section 4) This property is particularly
interesting if S(x,f(x))(Gf ) is a graph. In such a case it follows that S(x,f(x))(Gf ) is
the graph of a linear map. We know (Proposition 4.2) that the fact that S(x,f(x))(Gf )
is a graph implies that f is locally Lipschitz, therefore using the property above we
conclude our proof.

The proof when X is a C1-submanifold of IRn is left to the reader.
The statements concerning the existence of limits follow from our previous re-

mark. ¤

Remark 1) Part 2 of the previous theorem was previously proved (for closed
subsets of IR, which is equivalent) by Whitney [11].

2) The hypothesis of local compactness of X in Theorem 3.3 cannot be removed.
Consider, for instance, the function f : [0, 1] → IR defined in the Remark after
Prop. 2.2. Now restrict this function to the set X = [0, 1] \ {1/n : n ∈ N}. All the
hypotheses of Theorem 3.3 are satisfied except for the local compactness of X, but
this new function does not have any C1-extension in a neighborhood of 0 since all
its extensions must coincide with f in a neighborhood of 0.

3) Part 3 of Theorem 3.3 can also be proved directly, that is, without the use of
Theorem 3.1 (compare Tierno [9, Prop. 4]).

4) It is interesting to observe that under the hypotheses of Theorem 3.3-2,3 check-
ing if f has a C1-extension reduces (at least theoretically) to check the existence of
a limit (even if, in general, a difficult one).

3.2. Application 2: The differential dimension and a characterization of
C1-manifolds. In this Section we introduce, by means of the paratingent space,
the notion of differential dimension of a subset of IRm, we then use it to give a
geometrical characterization of the C1-submanifolds of IRm.

The next propositions motivate the definition.
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Theorem 3.4. Let X ⊂ IRm and p ∈ X. Let F be a subspace of IRm such that
∆p(X) ∩ F = {0}. Then, in a neighborhood of p the set X may be regarded as the
graph of a C1-map from a subset of F⊥ into F .

Proof. Let π : IRm → F⊥ and µ : IRm → F be the orthogonal projections onto F⊥
and onto F . Let K be a compact neighborhood of p in X̄ such that π is injective on
K (the existence of such a neighborhood is a property shown in Proposition 4.3).
Set g = π|K : K → π(K) and h = µ ◦ g−1. Since g is a homeomorphism, h is
continuous. The set K may be regarded as the graph of h. Since we have

∆(π(p),h(π(p)))(Gh) ∩ F = ∆p(K) ∩ F = {0},
we can invoke Theorem 3.1 to conclude that h is C1 on a neighborhood of π(p). ¤

Corollary 3.5. Let X ⊂ IRm and p ∈ X. If dim(∆p(X)) = n, then there exist
C1-submanifolds of IRm of dimension n that contain a neighborhood of p in X, and
there are not C1-submanifolds of IRm of dimension lower then n that contain a
neighborhood of p in X .

Proof. By Theorem 3.4, there is a neighborhood of p in X which may be regarded as
the graph of a C1-map f defined on a subset of ∆p(X) and with values in ∆p(X)⊥.
Consider now a C1-extension f̄ : U → ∆p(X)⊥ of f defined on an open subset
U of ∆p(X). The graph of f̄ is an n-dimensional C1-submanifold containing a
neighborhood of p in X.

If V is a C1-submanifold of IRm containing a neighborhood of p in X then
∆p(X) ⊂ ∆p(V ) and therefore dim(∆p(X)) ≤ dim(∆p(V )). ¤

Loosely speaking Theorem 3.4 says that if dim(∆p(X)) = n, then there exists a
neighborhood of p in X that can be smoothly flattened into IRn, i.e. one can find a
diffeomorphism of a neighborhood of p in X into IRk if and only if k ≥ dim(∆p(X)).

This result was partly proved by Glaeser [6, Chapter 2, Theorem 1].

Definition Let X ⊂ IRm and p ∈ X. The integer dim(∆p(X)) is called the
differential dimension (or C1-dimension) of X at p and it is denoted by dimC1(X, p).

The integer maxp∈X dimC1(X, p) is called differential dimension (or C1-dimension)
of X and it is denoted by dimC1(X).

Elementary properties of dimC1(X, p):
• dimC1(X, p) = dimC1(X̄, p).
• The map f(p) = dimC1(X, p) : X̄ → N is upper semicontinuous (therefore,

since it takes its values in N, every point is a point of local maximum).
• If f : X → Y is a diffeomorphism then dimC1(X, p) = dimC1(Y, f(p)) for

every p ∈ X.
Problem If dimC1(X) = n, is it possible to find an n-dimensional C1-submanifold
of IRm containing X?

The answer seems to be obviously positive but we couldn’t find the way to con-
struct the required manifold.
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We now use the differential dimension to prove that a set X ⊂ IRm is a C1-
submanifold of dimension n if and only if it is locally compact and Cp(X) = Sp(X) '
IRn for every p ∈ X. This result was previously proved in Tierno [9] using weaker
tools than the one we use here (in particular in [9] there’s no use of the paratingent
space), however we give this new proof since it is an easy consequence of our main
result.

We need the following characterization of open sets in terms of contingent cones.

Proposition 3.6. 1) A set A ⊂ IRn is open if and only if it is locally compact and
Cx(A) = IRn for every x ∈ A.

2) More generally, let M be a C1-submanifold of IRm. A subset A of M is open
in M if and only if it is locally compact and Cx(A) = Cx(M) for every x ∈ A.

3) Let A,B ⊂ IRn and let f : A → B be a diffeomorphism. If A is open then B
is open.

Proof. 1) The proof can be found in Tierno [9, Prop. 7].
2) This is an easy generalization of part 1).
3) Since A is open we have that it is locally compact and Cp(A) = IRn for every

p ∈ A. Therefore B is locally compact and Cy(B) = IRn for every y ∈ B. This, by
part 1), implies that B is open. ¤

Remark Proposition 3.6-3 can also be proved using the Inverse Function Theorem
but it is important for us not to use it because we want to obtain it as a consequence
of our results (Section 3.3).

We have the following characterization of the C1-submanifolds of IRm.

Theorem 3.7. A set X ⊂ IRm is a C1-submanifold of IRm of dimension n if and
only if it is locally compact and Cp(X) = Sp(X) ' IRn for every p ∈ X.

Proof. We only have to prove the “if-part” (the contrary is easy and follows from
the property of stability of cones shown in Proposition 4.5).

Since X is locally compact and Sp(X) ' IRn for every p ∈ X we have that
∆p(X) = Sp(X) for every p ∈ X. Now fix p ∈ X. Since dim(∆p(X)) = n, there
is, by Corollary 3.5, a C1-submanifold M of IRm of dimension n that contains an
open neighborhood U of p in X. Since U is locally compact and Cx(U) ' IRn for
every x ∈ U , we have, by Proposition 3.6, that U is open in M and therefore it
is a C1-submanifold of IRm of dimension n. It follows that each point of X has a
neighborhood diffeomorphic to IRn, that is, X is an n-dimensional C1-submanifold
of IRm. ¤

As we pointed out in [9] what is interesting in Theorem 3.7 is that it gives a
geometrical characterization of the C1-submanifolds of IRm that does not rely upon
the concept of diffeomorphism.

We also want to observe that the hypotheses of Theorem 3.7 are not redundant.
In a sense Cp(X) ' IRn avoids the presence of “boundary lines” (where Cp(X)
is not isomorphic to IRn): think, for instance, of the set {x ∈ IR2 : ‖x‖ ≤ 1}.
The condition Sp(X) ' IRn avoids the presence of “bifurcation points” (where
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Cp(X) ' IRn but dim(Tp(X)) > n): think, for example, of the set {(x, y) ∈ IR2 :
y = ±x2}. The local compactness of X avoids the presence of infinitely many
“holes” accumulating at a point of X (a “hole” is a point of bdX ∩ CX), think, for
instance, of the set {x ∈ IR : −1 < x < 1, x 6= 1/n, n ∈ N} or the set Q ⊂ IR.

We now give an application of our characterization of manifolds.

Theorem 3.8. Let δ > 0, A ⊂ IRn and set X = bdB(A, δ) = {x ∈ IRn : d(x,A) =
δ}. Assume that for every x ∈ X there exists a unique y ∈ Ā (denoted πA(x)) such
that d(x, y) = δ. Then X is a C1-submanifold of IRn of dimension n− 1.

Proof. Since X is closed we only need to show that Cx(X) = Sx(X) ' IRn−1 for
every x ∈ X. Let (xk) and (yk) be two sequences of points of X converging to
x ∈ X, such that xk 6= yk and (xk − yk)/ ‖xk − yk‖ → v ∈ Sx(X). Set pk = πA(xk),
qk = πA(yk) and p = πA(x). From the uniqueness of the “projection” it easily
follows that pk, qk → p (that is, πA is continuous).

We have

pk ∈ bdB(xk, δ) ∩ CB(yk, δ), qk ∈ bdB(yk, δ) ∩ CB(xk, δ),

therefore

〈pk − xk + yk

2
,

xk − yk

‖xk − yk‖〉 ≥ 0, 〈qk − xk + yk

2
,

xk − yk

‖xk − yk‖〉 ≤ 0,

and taking the limit (for k →∞)

〈p− x, v〉 ≥ 0, 〈p− x, v〉 ≤ 0,

hence 〈p− x, v〉 = 0 and therefore Sx(X) ⊂ 〈p− x〉⊥.
We now prove that Cx(X) ⊃ 〈p−x〉⊥. Let v ∈ 〈p−x〉⊥ and consider points of the

form xtλ = x + tv + λ(x− p) for t > 0 and λ ∈ IR. We have that for any sufficiently
small t there exists λ so that d(xtλ, A) > δ and there exists λ so that d(xtλ, A) < δ,
hence there exists also λt so that d(xtλt , A) = δ, that is, xtλt ∈ X. Let tn → 0+ and
set λn = λtn and xn = xtnλn . Now observe that λn/tn must converge to 0 because
otherwise, by extracting a subsequence, we could assume tn/λn → a ∈ [0,+∞) so
that 1

λn
(xn−x) = tn

λn
v + (x− p) → av + (x− p) ∈ Cx(X) and this would contradict

what we showed above. Hence 1
tn

(xn − x) = v + λn
tn

(x− p) → v ∈ Cx(X).
This concludes the proof since dim(〈p− x〉⊥) = n− 1. ¤

Remark Every convex set satisfies the hypotheses of Theorem 3.8 for any positive
δ.

A similar and related result has been previously proved by Federer [4, Theorem
9.5]: Let d denote the distance function from the set A, let U(A) denote the set
{x ∈ IRn : x has a unique closest point in Ā} and let π : U(A) → A denote the
“projection” on A; then d is C1 on the interior part of U(A) \A.

This result is related to ours since it implies that the set d−1(δ) = {x ∈ IRn :
d(x,A) = δ} is a C1-submanifold of IRm whenever δ > 0 is such that d−1(δ) is
contained in the interior part of U(A) \ A (the result derives from the Implicit
Function Theorem observing that δ must be a regular value of d).
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We can observe that our hypotheses are somewhat weaker since we don’t require
d−1(δ) to be contained in the set where we know that d is C1 but only on the set
where we have unique projection.

3.3. Application 3: The differential for C1-maps defined on arbitrary sets
and the Inverse Function Theorem. In this Section we use the properties of
the paratingent space to define the differential for C1-maps defined on arbitrary
sets and to show that the definition we give is the best possible. We then use this
generalized definition of differential to prove a generalized version of the Inverse
Function Theorem. Moreover, we don’t use the Inverse Function Theorem to reach
this generalization so that we are able to obtain it as a true corollary.

Definition Let X ⊂ IRn, Y ⊂ IRm and let f : X → Y be a C1
X -map. We define

the differential, dfX,Y
p : ∆p(X) → ∆f(p)(Y ) , of f at p ∈ X, as the restriction to

∆p(A) of the differential of a C1-map defined on an open neighborhood U of p and
coinciding with f on U ∩X.

Remark 1) By the property shown in Proposition 4.5 the above definition does not
depend on the choice of the map extending f . Moreover, again by Proposition 4.5,
the image of dfX,Y

p is actually contained in ∆f(p)(Y ) so that the definition makes
sense.

2) Observe also that this definition of differential extends the usual one.
3) We shall see that this differential admits also a constructive definition (property

3 below).
4) We shall show in a while that the differential of a C1

X -map f : X → Y can
not be defined on a bigger space than ∆p(X).

Some properties of the generalized differential:
1) The usual (functorial) properties of the differential can easily be proved:

• If I is the identity map of X ⊂ IRn then dIX,X
x is the identity map of ∆x(X),

• d(g ◦ f)X,Z
p = dgY,Z

f(p) ◦ dfX,Y
p (where f is a C1

X -map, g is a C1
Y -map and

f(X) ⊂ Y ).
2) Using the properties above and Proposition 4.5 we obtain that if f : X → Y is a
diffeomorphism, then the differential dfX,Y

x : ∆x(X) →∆f(x)(Y ) is an isomorphism
such that dfX,Y

x (Cx(X)) = Cf(x)(Y ) and dfX,Y
x (Sx(X)) = Sf(x)(Y ).

If, in particular, M is an n-dimensional C1-submanifold of IRm we have

∆x(M) = Sx(M) = Cx(M) ' IRn

for every x ∈ M .
3) Consider a C1

X -map f : X → Y . In this case x 7→ (x, f(x)) is a diffeomorphism
between X and Gf and therefore ∆(p,f(p))(Gf ) is the graph of dfX,Y

p , S(p,f(p))(Gf )
is the graph of dfX,Y

p restricted to Sp(X) and C(p,f(p))(Gf ) is the graph of dfX,Y
p

restricted to Cp(X). Since the paratingent space can be constructed by topological-
geometrical means (Section 4.1) so does ∆(p,f(p))(Gf ) and therefore this shows that
our generalized differential admits a constructive definition.
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We now give a new characterization of the paratingent space. This characteriza-
tion will also show that we cannot define the differential of a given map on a bigger
space than the paratingent space. To this end we need the following definition.

Definition Let A ⊂ IRm and p ∈ A. Set

Z(A, p) =
{

f : U →IR : U is a nbd of p in IRm, f is C1, f(A ∩ U) = {0}
}

.

The set
T 1

p (A) =
⋂

f∈Z(A,p)

Ker(dfp)

is called the C1-tangent space of A at p.

Remark T 1
p (A) is a subspace of IRm.

Remark If f ∈ Z(A, p), then the set-valued map H(x) = Ker(dfx) has a closed
graph, is subspace-valued and H(x) ⊃ Sx(A) for every x on a neighborhood of p in
Ā, therefore, by definition of ∆p(A), we have that ∆p(A) ⊂ T 1

p (A).
(This fact also follows from Proposition 4.5. Indeed if f(A ∩ U) = {0}, then

∆p(A) ⊂ Ker(dfp).)

Proposition 3.9. Let f : U → IRm be a C1-map defined on an open set U of IRn.
If X ⊂ U and p ∈ X then

dfp(T 1
p (X)) ⊂ T 1

f(p)(f(X)).

Proof. Let v ∈ T 1
p (X). We have to prove that if g : V → IR is a C1-map defined on a

neighborhood V of f(p) in IRm such that g(V ∩f(X)) = {0} then dgf(p)(dfp(v)) = 0.
But dgf(p)(dfp(v)) = d(g ◦ f)p(v) = 0, since g ◦ f is C1 on a neighborhood of p and
zero on X. ¤

Remark If M is an n-dimensional C1-submanifold of IRm, then T 1
p (M) ' IRn for

every p ∈ M .

We are now able, using the differential dimension, to obtain the announced char-
acterization of the paratingent space. We prove that T 1

p (A) and ∆p(A) always
coincide.

Theorem 3.10. Let A ⊂ IRm and p ∈ Ā, then

T 1
p (A) = ∆p(A).

Proof. Set n = dim(∆p(A)) and let M be an n-dimensional C1-submanifold of IRm

containing a neighborhood of p in A (see Corollary 3.5). We have

∆p(A) = ∆p(M) = T 1
p (M) ⊃ T 1

p (A).

The reversed inclusion is the content of a prevoius Remark. ¤

Theorem 3.10 tells us that a C1-map that is zero on A is not obliged, by this
fact, to have zero differential on a bigger space than ∆p(A).
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The discussion above shows also that it is not possible to define the differential of
a C1

X -map f : X →Y on a bigger space than ∆p(X). Indeed ∆p(X) = T 1
p (X) and

T 1
p (X) is just the space where all the differentials of the C1-extensions of f coincide.

The definition of differential we have given, in connection with our main result,
leads to a generalized Inverse Function Theorem. The next result generalizes the
Inverse Function Theorem to C1-maps defined on arbitrary subsets of IRn.

Theorem 3.11 (Generalized Inverse Function Theorem). Let X ⊂ IRn, Y ⊂ IRm,
p ∈ X and let f : X → Y be a C1

X-map. If dfX,Y
p : ∆p(X) → ∆f(p)(Y ) is

injective, there exists a neighborhood U of p in X such that f|U : U → f(U) is a
diffeomorphism.

Proof. Set A = IRn × 0 and B = 0 × IRm. Since dfX,Y
p is injective we have that

G
dfX,Y

p
∩A = {0} and since G

dfX,Y
p

= ∆(p,f(p))(Gf ), we have ∆(p,f(p))(Gf )∩A = {0}.
Therefore, by Theorem 3.4, there is a neighborhood of (p, f(p)) in Gf that may be
regarded as the graph of a map g : V → A defined on a subset V of B and of class
C1

V . The map g is a C1
V -inverse of f and U = f−1(V ) is a neighborhood of p in A.

¤

Theorem 3.11 is a veritable generalization of the Inverse Function Theorem in
the sense that the Inverse Function Theorem can be deduced from it (note that we
never used the Inverse Function Theorem in our path and that we will not use it in
the proof of Theorem 3.1).

Corollary 3.12 (Inverse Function Theorem). Let f : A → IRn be a C1-map defined
on an open set A ⊂ IRn and let p ∈ A. If dfp : IRn → IRn is injective, then there
exists an open neighborhood U of p such that f(U) is open and f|U : U → f(U) is
a diffeomorphism.

Proof. According to Theorem 3.11 there exists an open neighborhood U of p (in A)
such that f|U : U → f(U) is a diffeomorphism and by Proposition 3.6-3 f(U) is
open. ¤

It is interesting to observe that Theorem 3.11 and Proposition 3.6-3 split the
Inverse Function Theorem in two different statements. The first gives conditions
for a C1-map to be a local diffeomorphism. The second specifies conditions ensuring
that this map is locally open.

Observe also that our proof of the Inverse Function Theorem is not based, as
usual, on any fixed point theorem but on the use of tangent cones and, implicitly,
on Whitney’s Extension Theorem.

In [9] we gave another proof of the Inverse Function Theorem based on the use
of tangent cones. That proof had the advantage of being very simple (we only used
there the contingent and paratingent cones) but it was not extendible to the case
of arbitrary subset of IRn.

It is not difficult to see that the only way to extend the Inverse Function Theorem
to C1-maps defined on arbitrary sets is to use the generalized definition of differential
we gave (i.e. if we define the differential on a smaller space than ∆p(X), a result as
Theorem 3.11 does not hold).
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4. Properties of the contingent cone, the paratingent cone and the
paratingent space

In this Section we prove many basic properties of tangent cones. Some of them
have already been used and this Section should stay among the first ones but since
it is quite long and somewhat technical we have postponed it in order to reach the
main results sooner.

4.1. Construction of the Paratingent Space. In this section we give a geomet-
rical characterization of ∆p(A).

Let H : X ⇒Y be a set-valued map of a set X into a set Y , the graph of H (as
a set-valued map) is the set ΓH = {(x, y) ∈ X × Y : y ∈ H(x)}.

Let now X be a topological space, Y a topological vector space and set H =
{H : X ⇒Y }. We define the following maps:

• Λ : H →H, Λ(H)(x) = 〈H(x)〉 (〈H(x)〉 is the subspace spanned by H(x) in
Y ).

• Ω : H →H, Ω(H)(x) = {y ∈ Y : (x, y) ∈ Γ̄H} (Γ̄H is the closure of ΓH in
X × Y ; Ω(H) is “the closed-graph regularization” of H).

• Φ : H →H, Φ(H) = Λ(Ω(H)), Φ0(H) = H, Φj+1(H) = Φ(Φj(H)).

We obviously have that Λ(H) is subspace-valued, Ω(H) has a closed graph, Ω(H) ⊃
H and Λ(H) ⊃ H.

The next proposition gives a somewhat constructive definition of ∆p(A). It shows
in fact that ∆p(A) can be obtained by repeatedly “closing and spanning” the set-
valued map p 7→ Sp(A) a finite number of times, where “closing and spanning”
means “applying Ω and applying Λ”(compare Glaeser [6, Chapter 2, Prop. 7]).

Theorem 4.1. Let A ⊂ IRm and set H(p) = Sp(A) for p ∈ Ā. Set also Rk = {x ∈
Ā : Φk(H)(x) 6= Φk−1(H)(x)} for k ≥ 2. Then

(1) Rk ⊂ R̄j for k ≥ j.
(2) If x ∈ R2k then dim(Φ2k(H)(x)) ≥ k + 1.
(3) ∆x(A) = Φ2m−1(H)(x) for x ∈ Ā.

Proof. 1) If x ∈ Ā \ R̄j then there is an open neighborhood U of x in Ā such that
Φj(H)(y) = Φj−1(H)(y) for y ∈ U and therefore Φj−1(H) has a closed graph and
is subspace-valued in U . It follows that Φk(H)(y) = Φj−1(H)(y) for k ≥ j − 1 and
y ∈ U and therefore x /∈ Rk for k ≥ j. Thus Rk ⊂ R̄j for k ≥ j.

2) We prove the result by induction. If x ∈ R2 then x is not an isolated point
of Ā (since in that case Sx(A) = {0} = Φj(H)(x) for every j ∈ N), therefore
dim(Φ2(H)(x)) > dim(Φ1(H)(x)) ≥ 1, that is, dim(Φ2(H)(x)) ≥ 2. If x ∈
R2k then, according to 1) x ∈ R̄2k−2. From the induction hypothesis we have
dim(Φ2k−2(H)(y)) ≥ k for y ∈ R2k−2 and since Ω(Φ2k−2(H)) has closed graph we
obtain dim(Φ2k−1(H)(y)) ≥ k for y ∈ R̄2k−2. Therefore

dim(Φ2k(H)(x)) > dim(Φ2k−1(H)(x)) ≥ k,

that is, dim(Φ2k(H)(x)) ≥ k + 1.



144 GUZMAN TIERNO

3) Since dim(Φ2k(H)(x)) ≥ k + 1 for x ∈ R2k we have R2m = ∅. Therefore
Φ2m(H)(x) = Φ2m−1(H)(x) for x ∈ Ā, so that Φ2m−1(H)(x) is with closed graph
and subspace-valued. This implies that Φ2m−1(H)(x) ⊃ ∆x(A).

The reversed inclusion is obtained considering that from ∆x(A) ⊃ Sx(A) it easily
follows that ∆x(A) ⊃ Φj(H)(x) for every j ∈ N. ¤

4.2. Tangent cones to graphs. We prove now some results relating the paratin-
gent cone with the properties of maps.

Recall that a map f : X → IRm defined on X ⊂ IRn is said to be locally
Lipschitz (respectively, locally radially Lipschitz) at x ∈ X if there exist L, % > 0
such that ‖f(y)− f(z)‖ ≤ L ‖y − z‖ for every y, z ∈ B(x, %) ∩ X (respectively,
‖f(y)− f(x)‖ ≤ L ‖y − x‖ for every y ∈ B(x, %) ∩X).

Proposition 4.2. Let X ⊂ IRn and assume that f : X → IRm is continuous at
p ∈ X. If S(p,f(p))(Gf ) (respectively, C(p,f(p))(Gf )) is a graph, then f is locally
Lipschitz (respectively, locally radially Lipschitz ) at p.

Proof. Let us assume that f is not locally Lipschitz at p. There exist then two
sequences of elements xk, yk ∈ X converging to p, such that ‖f(xk)− f(yk)‖ >
k ‖xk − yk‖ for every k ∈ N. By extracting a subsequence we may assume that

1
‖f(xk)− f(yk)‖ (xk − yk , f(xk)− f(yk)) → (0, w) ∈ S(p,f(p))(Gf ),

with ‖w‖ = 1, so that S(p,f(p))(Gf ) is not a graph. This contradicts our hypotheses.
In the same way one proves the result concerning C(p,f(p))(Gf ). ¤

The following proposition gives an interesting condition for a C1-map to have a
local continuous inverse.

Proposition 4.3. Let f : U → IRm be a C1-map defined on an open set U ⊂ IRn.
Let X ⊂ U and p ∈ X. If dfp is injective on Sp(X) then there exists a neighborhood
V of p in X such that f|V : V → f(V ) is a homeomorphism.

Proof. First we want to show that there exists a neighborhood W of p in X̄ on
which f is injective. Assume it is false and let (pk) and (qk) be two sequences in X̄
converging to p such that pk 6= qk and f(pk) = f(qk) for every k ∈ N. We may also
suppose that (pk − qk)/ ‖pk − qk‖ → v ∈ Sp(X̄) = Sp(X). Since f is C1 we have

0 =
f(pk)− f(qk)
‖pk − qk‖ → dfp(v)

and this contradicts the fact that dfp is injective on Sp(X).
Let now W be a compact neighborhood of p in X̄ on which f is injective. The

map f|W : W → f(W ) is continuous and invertible on a compact set, hence it is a
homeomorphism. We complete the proof by setting V = W ∩X. ¤

From Proposition 4.3 we derive the following condition for a map to be continuous
on a neighborhood of a given point. We have seen, or at least stated, that if a map
f : X → IRm is continuous at p ∈ X and ∆(p,f(p))(Gf ) is a graph then that map is C1

on a neighborhood of p in X. Analogously, Proposition 4.4 below asserts that if the



THE PARATINGENT SPACE AND A CHARACTERIZATION 145

map f is continuous at p and S(p,f(p))(Gf ) is a graph, then f is actually continuous
on a neighborhood of p. This constitutes a first step in proving Theorem 3.1. In
both cases it is interesting that we can deduce information about the local behavior
of a map from the fact that a tangent cone nicely behaves at a single point.

In the next proposition we also show that when S(p,f(p))(Gf ) is the graph of a
map, that map may be considered a sort of differential of f at p.

Proposition 4.4. Let f : X → IRm be a map defined on X ⊂ IRn and let p ∈ X.
If f is continuous at p and S(p,f(p))(Gf ) is the graph of a map L, then

(1) there exist a neighborhood K of p in X̄ and a continuous map f̄ : K → IRm

such that f̄ = f on K ∩X. (Consequently, because of Tiezte’s Theorem (see
Section 5), there exists a continuous map g : IRn → IRm coinciding with f
on a neighborhood of p.)

(2) if

X 3 xk, yk → p and
xk − yk

‖xk − yk‖ → v,

we have that
f(xk)− f(yk)
‖xk − yk‖ → L(v).

Proof. 1) Let π : IRn × IRm → IRn and µ : IRn × IRm → IRm be the projections
onto the first and the second factor, respectively. Since π is injective on S(p,f(p))(Gf ),
there exists, by Proposition 4.3, a compact neighborhood C of (p, f(p)) in Ḡf such
that g = π|C : C →π(C) is a homeomorphism. Thus, if we set K = π(C) and
f̄ = µ ◦ g−1 : K →IRm we have that f̄ is continuous and that C is the graph of f̄ .
Considering that f is bounded on a neighborhood of p, it is not difficult to see that
K is a neighborhood of p in X̄.

2) Set

Bk =
f(xk)− f(yk)
‖xk − yk‖ .

By Proposition 4.2, the sequence (Bk) is bounded. To prove that Bk → L(v),
we prove that every convergent subsequence of (Bk) converges to L(v). In fact, if
Bkr → z ∈ IRm then

1
‖xkr − ykr‖

(
xkr − ykr , f(xkr)− f(ykr)

)
→ (v, z) ∈ S(p,f(p))(Gf )

and therefore L(v) = z = limr→∞Bkr . ¤

It would be interesting to study the relations between some results of this work
(for instance, Prop. 4.4 or Theorem 3.1) and results of Bessis [2] (for instance, Prop.
1.2.8).

4.3. Tangent cones to direct images. We now consider a C1-map f and we
study the relationships between ∆p(A) and ∆f(p)(f(A)). That is, roughly speaking,
we deform A and we ask what happens to ∆p(A).
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Proposition 4.5. Let f : U → IRm be a C1-map defined on an open set U ⊂
IRn and let X ⊂ IRn. If X̄ ⊂ U and p ∈ X̄ then dfp(Cp(X)) ⊂ Cf(p)(f(X)),
dfp(Sp(X)) ⊂ Sf(p)(f(X)) and dfp(∆p(X)) ⊂ ∆f(p)(f(X)).

Consequently, if g : U → IRm is C1 and coincides with f on X, then dfx(v) =
dgx(v) for every x ∈ X and v ∈ ∆x(X).

Remark Since f is continuous we have f(X̄) ⊂ f(X). In particular f(p) ∈ f(X)
so that we can talk of ∆f(p)(f(X)).

Proof. We begin by treating the case of the paratingent cone. Let v ∈ Sp(X).
We have to prove that dfp(v) ∈ Sf(p)(f(X)), so we may assume that ‖v‖ = 1.
There exist then two sequences of elements xk, yk ∈ X converging to p, such that
(xk − yk)/ ‖xk − yk‖ → v. Since f is C1 we have

f(xk)− f(yk)
‖xk − yk‖ → dfp(v),

and therefore dfp(v) ∈ Sf(p)(f(X)).
In the same way one proves dfp(Cp(X)) ⊂ Cf(p)(f(X)).
Let’s now turn our attention to the paratingent space. We set H(x) = Sx(X)

and N(y) = Sy(f(X)) and we use the notations of Section 4.1. The result is easily
obtained considering that ∆p(X) = Φ2n−1(H)(p), ∆f(p)(f(X)) = Φ2m−1(N)(p) and

dfp(Φj(H)(p)) ⊂ Φj
(
dfp(H(p))

) ⊂ Φj(N)(f(p)),

for every j ∈ N. The first inclusion can be proved by induction considering that
dfp(Ω(H)(p)) ⊂ Ω(dfp(H(p))); the second derives from Proposition 4.5.

This result can also be proved using the very definition of ∆p(X) (the proof below
has also the advantage that it works in arbitrary normed spaces, provided we extend
the definition of ∆p(X)).

Set Y = f(X) and

Ψ(X) =
{

H : X̄ ⇒IRn : H has closed graph, is subspace-valued

and H(x) ⊃ Sx(X) for every x ∈ X̄
}

,

Ψ(Y ) =
{

G : Ȳ ⇒IRm : G has closed graph, is subspace-valued

and G(y) ⊃ Sy(Y ) for every y ∈ Ȳ
}

.

Let G ∈ Ψ(Y ) and consider the set-valued map HG(x) = df−1
x (G(f(x))). It is not

difficult to see that HG ∈ Ψ(X). Thus

∆p(X) =
⋂

H∈Ψ(X)

H(p) ⊂
⋂

G∈Ψ(Y )

HG(p) =
⋂

G∈Ψ(Y )

df−1
p

(
G

(
f(p)

))

and hence

dfp(∆p(X)) ⊂ dfp

{ ⋂

G∈Ψ(Y )

HG(p)

}
⊂

⋂

G∈Ψ(Y )

dfp

{
df−1

p

(
G

(
f(p)

))}
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⊂
⋂

G∈Ψ(Y )

G
(
f(p)

)
= ∆f(p)(Y ). ¤

We now identify conditions ensuring that dfp(∆p(X)) = ∆f(p)(f(X)). Let us
begin with Cp(X) and Sp(X).

Let X and Y be metric spaces. A set valued map H : X ⇒ Y is said to be
pseudo-continuous at (x, y) ∈ ΓH if for any sequence of elements xk ∈ X converging
to x there exists a sequence of elements yk ∈ H(xk) such that yk → y. (The map
H is lower-semicontinuous at x ∈ X if it is pseudo-continuous at (x, y) for every
y ∈ H(x).)

A selection of a set-valued map H : X ⇒ Y is a map h : X → Y such that
h(x) ∈ H(x) for every x ∈ X.

Proposition 4.6. Let X, Y be metric spaces. Let H : X ⇒ Y be a set-valued map
and let (p, y) ∈ ΓH . The following properties are equivalent

(1) H is pseudo-continuous at (p, y),
(2) lim

z→p
d(H(z), y) = 0,

(3) H has a selection h continuous at p and with h(p) = y,
(4) For every neighborhood W of y in Y , H−1(W ) = {x ∈ X : H(x)∩W 6= ∅}

is a neighborhood of p in X.

The proof is easy and left to the reader.

Proposition 4.7. Let f : U → IRm be a C1-map defined on an open set U of
IRn. Let X ⊂ U and p ∈ X. Assume that the set-valued map (f|X)−1 (where
(f|X)−1(y) = {f−1(y)∩X}) is pseudo-continuous at (f(p), p) and that dfp is injective
on Cp(X) (respectively, on Sp(X)). Then dfp(Cp(X)) = Cf(p)(f(X)) (respectively
dfp(Sp(X)) = Sf(p)(f(X))).

Proof. Let g : f(X) → X denote a selection of (f|X)−1 continuous at f(p) and
with g(f(p)) = p (see Proposition 4.6).

Let w ∈ Sf(p)(f(X)) with ‖w‖ = 1 and let ak, bk ∈ f(X) be two sequences
converging to f(p) such that (ak − bk)/ ‖ak − bk‖ → w.

Set xk = g(ak) and yk = g(bk). We have that xk, yk → p and therefore we may
assume that (xk − yk)/ ‖xk − yk‖ converges to a vector v ∈ Sp(X). Since f is C1

we have
f(xk)− f(yk)
‖xk − yk‖ =

ak − bk

‖xk − yk‖ → dfp(v).

Considering that dfp is injective on Sp(X) and that ‖v‖ = 1 we deduce that dfp(v) 6=
0 and therefore

w =
dfp(v)
‖dfp(v)‖ = dfp

( v

‖dfp(v)‖
)
∈ dfp

(
Sp(X)

)
.

The result concerning Cp(X) can be proved in a similar way. ¤

To prove the analogous result for ∆p(X) we need some preliminaries.
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Lemma 4.8. Let f : U → IRm be a C1-map defined on an open set U ⊂ IRn. Let
X ⊂ U be locally compact. If for every x ∈ X, (f|X)−1 is pseudo-continuous at
(f(x), x) and dfx is injective on ∆x(X), then dfx(∆x(X)) = ∆f(x)(f(X)).

Proof. (Notations as in Section 4.1) We prove by induction that

dfx(ΦjSx(X)) = ΦjSf(x)(f(X)),

for x ∈ X and j ∈ N; the result will then follow from Proposition 4.1. The base of
the induction derives from Proposition 4.7.

Set H(x) = ΦjSx(X) and N(y) = ΦjSy(f(X)), then fix x ∈ X and let g : f(X) →
X be a selection of (f|X)−1 continuous at f(x) and with g(f(x)) = x. We first want
to show that dfx(ΩH(x)) = ΩN(f(x)). We know that dfx(ΩH(x)) ⊂ ΩN(f(x)); let
then v ∈ ΩN(f(x)) with v 6= 0.

Observe that N is defined on f(X) but since f(X) is locally compact (use Propo-
sition 4.6(4)) there exist yk ∈ f(X) and vk ∈ N(yk) such that (yk, vk) → (f(x), v).
Set xk = g(yk) and observe that xk → x. From the induction hypothesis we have
that dfxk

(H(xk)) = N(f(xk)), so that vk may be written as vk = dfxk
(wk) with

wk ∈ H(xk). By extracting a subsequence we may assume that
• ‖wk‖ → a ∈ (0,+∞) ∪ {+∞} (a = 0 is excluded since v 6= 0),
• wk

‖wk‖ → w ∈ ΩH(x).

Therefore

dfxk

( wk

‖wk‖
)

=
dfxk

(wk)
‖wk‖ =

vk

‖wk‖ → dfx(w) =

{
0 if a = +∞,
v
a if a 6= +∞.

Since ‖w‖ = 1 and dfx is injective on ∆x(X) we have dfx(w) 6= 0 and therefore
v = dfx(aw) ∈ dfx(ΩH(x)).

To conclude the proof observe that

dfx(Φj+1Sx(X)) = dfx(ΛΩH(x)) = Λdfx(ΩH(x)) =

= ΛΩN(f(x)) = Φj+1Sf(x)(f(X)). ¤

As for Proposition 4.5, Lemma 4.8 may also be proved using the definition of
∆p(X) and not relying upon Proposition 4.1. We don’t give such a proof (which
unfortunately, and contrarily to the second proof of Proposition 4.5, does not hold
in arbitrary normed spaces).

We also need the following simple lemmas.

Lemma 4.9. Let U ⊂ IRn be open and let f : U → IRm be a C1-map. Let X
be a subset of IRm such that X̄ ⊂ U and let p ∈ X. Assume that (f|X)−1 is
pseudo-continuous at (f(p), p) and that dfp is injective on Sp(X), then there exists
a neighborhood V of p in X̄ such that (f|X)−1 is pseudo-continuous at (f(x), x) for
every x ∈ V .

Proof. By Proposition 4.3, there exists a neighborhood V of p in X̄ such that
f|V : V → f(V ) is a homeomorphism. By Proposition 4.6, f(V ) is a neighborhood
of f(p) in f(X̄), we may therefore assume that it is open in f(X̄). Let h : f(X̄) →
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X̄ be a selection of (f|X)−1 and define g : f(X̄) → X̄ with g(y) = (f|V )−1(y)

if y ∈ f(V ) and g(y) = h(y) otherwise. We have that g is a selection of (f|X)−1,
continuous on f(V ) and with g(f(x)) = x for every x ∈ V . By Proposition 4.6, this
concludes the proof. ¤

Lemma 4.10. Let f : X → IRm be defined on X ⊂ IRn and let p ∈ X. Assume
that f−1 is pseudo-continuous at (f(p), p). If V is a neighborhood of p in X then
the map (f|V )−1 is pseudo-continuous at (f(p), p).

Proof. Let g : f(X) → X be a selection of f−1, continuous at f(p) and with
g(f(p)) = p and let h : f(V ) → V be a selection of (f|V )−1. Define r : f(V ) → V
with r(y) = g(y) if g(y) ∈ V and r(y) = h(y) otherwise. The map r is a selection
of (f|V )−1, moreover it is continuous at f(p), in fact g−1(V ) is a neighborhood of
f(p) in f(X) and therefore r(y) = g(y) on a neighborhood of f(p). ¤

And now the announced result for ∆p(X).

Theorem 4.11. Let f : U → IRm be a C1-map defined on an open set U ⊂ IRn,
let X ⊂ U and p ∈ X and assume that (f|X)−1 is pseudo-continuous at (f(p), p). If
dfp is injective on ∆p(X) then dfp(∆p(X)) = ∆f(p)(f(X)).

Proof. Let V be an open neighborhood of p in X̄ such that

• (f|X)−1 is pseudo-continuous at (f(x), x) for every x ∈ V (Lemma 4.9),
• dfx is injective on ∆x(X) for every x ∈ V (observe that Ker(dfx) is a sub-

space-valued map with a closed graph and the existence of such a neighbor-
hood easily follows).

By Lemma 4.10, (f|V )−1 is pseudo-continuous at (f(x), x) for every x ∈ V and by
Proposition 4.6, f(V ) is open in f(X̄).

Since V is locally compact we have, by Lemma 4.8, that

dfp(∆p(X)) = dfp(∆p(V )) = ∆f(p)(f(V )) = ∆f(p)(f(X)). ¤

The next proposition points out a particular case of Proposition 4.7 and Theo-
rem 4.11.

Proposition 4.12. Let f : X → IRm be a map defined on X ⊂ IRn and let
π : IRn × IRm → IRn denote the projection onto the first factor. If f is continuous
at p ∈ X and C(p,f(p))(Gf ) (respectively, S(p,f(p))(Gf ) or ∆(p,f(p))(Gf )) is a graph
then

π(C(p,f(p))(Gf )) = Cp(X)

(respectively, π(S(p,f(p))(Gf )) = Sp(X) or π(∆(p,f(p))(Gf )) = ∆p(X)).

Proof. Just observe that π is C1 and that (π|Gf
)−1(x) = (x, f(x)) is (pseudo-)

continuous at p. Then apply Proposition 4.7 and Theorem 4.11. ¤
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5. Proof of the main result and Whitney’s Extension Theorem

Using the properties of the paratingent space obtained in the previous Section
and Whitney’s Extension Theorem we are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1
We begin by recalling Tiezte’s Theorem: Let X be a metric space (or, more

generally, a normal topological space) and let f : A → [0, 1] be a continuous map
defined on a closed subset A of X. Then f can be continuously extended to X.

From Tiezte’s Theorem one easily derives the following result: Let X be a metric
space and let f : A → M be a continuous map defined on a closed subset A of
X and with values on a topological manifold M . Let p ∈ A. Then there exist a
neighborhood U of p in X and a continuous map g : U → M such that g = f on
U ∩A.

We also need the following proposition due to Glaeser [6, Chapter 2, Prop. 3].
The proof of Glaeser uses the Inverse Function Theorem. We modified it a little to
avoid the use of the Inverse Function Theorem that we want to obtain as a corollary
(Section 3.3).

Denote by G(m, s) the topological manifold (called Grassmann Manifold) of the
s-dimensional subspaces of IRm. We consider it also as the quotient space of the
space of s-tuples of indipendent vectors of IRm under the equivalence relation that
identifies two such s-tuples if they span the same subspace of IRm(for more details
on Grassmann Manifolds see, for instance, Wells [10]).

Lemma 5.1. If G : X ⇒ IRm is a subspace-valued map with a closed graph whose
values are subspaces of IRm of a constant dimension s, then G is continuous (as a
set-valued map).

Moreover if we define H : X ⇒ G(m, s) by setting H(x) = G(x) ∈ G(m, s) we
have that H is continuous too.

Proof. Fix x ∈ X and observe that the orthogonal projection of IRm into G(x)
(denoted πG(x)) is injective on G(y) for any y in a neighborhood of x: if not,
there would exist a sequence xn ∈ X converging to x and a sequence vn ∈ G(xn)
such that ‖vn‖ = 1 and πG(x)(vn) = 0 for every n; we may also assume that vn

converges to a vector v which, since G has a closed graph, belongs to G(x) but then
πG(x)(v) = v = 0 (by the continuity of πG(x)) and this contradicts ‖v‖ = 1.

Since the values of G have all the same dimension we have that the orthogonal
projection of G(y) into G(x) is an isomorphism for every y in a neighborhood of x.

We have to prove that G is lower semicontinuous at x. Let v ∈ G(x) (v 6= 0)
and let xn ∈ X, xn → x. For every n let vn ∈ G(xn) be such that πG(x)(vn) = v
(this is possible for any large enogh n by what we showed above). We want to prove
that vn → v. First observe that ‖vn‖ is bounded: otherwise we could consider a
subsequence vkn such that ‖vkn‖ → ∞ and (vkn/ ‖vkn‖) → w ∈ G(x) but then we
would have w = πG(x)(w) = πG(x)(lim

vkn
‖vkn‖) = lim 1

‖vkn‖πG(x)(vkn) = lim v
vkn

= 0
which contradicts ‖w‖ = 1. We now prove that every convergent subsequence of vn

converges to v and this proves the claim. Let then vkn be a convergent subsequence
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of vn. We have vkn ∈ G(xkn), vkn → w, w ∈ G(x), πG(x)(vkn) = v and taking the
limit w = πG(x)(w) = v.

Let us now prove that H is continuous. Let vx
1 , · · · , vx

s ∈ G(x) be a basis of G(x)
and set vy

i = πG(y)(vx
i ). For any y in a neighborhood of x, vy

1 , · · · , vy
s is a basis of

G(y). Reasoning as before we have that vy
i is a continuous function of y and this

is enogh to prove our claim since H(y) = [(vy
1 , · · · , vy

s )] (where the brackets denote
the class of equivalence with respect to the relation that gives rise to G(m, s)). ¤

Proposition 5.2. Let C ⊂ IRm be closed and let H : C ⇒ IRm be a subspace-valued
map with a closed graph. Let p ∈ C and assume dim(H(p)) = s. Then there exist
a neighborhood U of p in C and a subspace-valued map H̄ : U ⇒ IRm with a closed
graph such that dim(H̄(x)) = s and H̄(x) ⊃ H(x) for every x ∈ U .

Proof. 1) If dim(H(x)) = s on a neighborhood of p in C then there is nothing to be
proved.

2) Suppose dim(H(x)) takes on only two values on a neighborhood V of p in C
and let them be s and s1 (since H has a closed graph we obviously have s1 < s).
We may suppose that V is closed. Set

Cd =
{
x ∈ V : dim(H(x)) = d

}

and observe that Cs is closed. The set valued map H|Cs
may be regarded as a map

from Cs into G(m, s), we hence define G = H|Cs
: Cs →G(m, s). Since H has a

closed graph and dim(H(x)) is constant on Cs the map G is continuous in virtue
of the Lemma above. There exist then (use the above generalization of Tiezte’s
Theorem), a closed neighborhood V ′ of p in C and a continuous map L : V ′ →
G(m, s) that extends G.

It is not difficult (reasoning as in Lemma 5.1) to see that L⊥ has a closed graph
and since H has a closed graph too, we have that H(x) ∩ L(x)⊥ = {0} on a neigh-
borhood U ⊂ V ′ of p in C.

Let πL(x) denote the orthogonal projection onto L(x). It can be easily shown
that πL(x)(H(x))⊥ ∩ L(x) = H(x)⊥ ∩ L(x). We hence define

{
H̄ : U ⇒IRm

H̄(x) = 〈H(x) , πL(x)(H(x))⊥ ∩ L(x)〉 = 〈H(x) , H(x)⊥ ∩ L(x)〉
Observe that H̄(x) = H(x) for x ∈ U ∩ Cs.

Let x ∈ U . Since the projection of H(x) into L(x) is injective, we have that
πL(x)(H(x))⊥ ∩ L(x) has dimension s − dim(H(x)) and since H(x) and H(x)⊥ ∩
L(x) are orthogonal spaces, we deduce that H̄(x) = 〈H(x) , H(x)⊥ ∩ L(x)〉 has
dimension s.

We have to prove that H̄ has a closed graph. Assume that pk ∈ U , pk → p ∈ U ,
vk ∈ H̄(pk) and vk → v. We have to show that v ∈ H̄(p). If p ∈ Cs1 then on
a neighborhood of p we have dim(H(x)) = s1 and therefore H is continuous at p
and this easily implies that 〈H(x) , H(x)⊥ ∩ L(x)〉 is continuous at p. If p ∈ Cs

we write vk = v′k + v′′k with v′k ∈ H(pk) and v′′k ∈ H(pk)⊥ ∩ L(pk). Since H(pk)
and H(pk)⊥ ∩L(pk) are orthogonal spaces we have that ‖vk‖ = ‖v′k‖+ ‖v′′k‖ so that
v′k and v′′k are bounded. We may then assume, by extracting a subsequence, that



152 GUZMAN TIERNO

v′k → v′ and v′′k → v′′. Since H and L have a closed graph, we derive that v′ ∈ H(p)
and v′′ ∈ L(p) = H(p) and therefore v = v′ + v′′ ∈ H(p).

3) Suppose that dim(H(x)) takes on the values s > s1 > . . . > sN on a closed
neighborhood V of p in C. Set C1 = {x ∈ V : dim(H(x)) ≥ s1} and observe that
it is closed. We now apply part 2) to the map H|C1

to construct a map H ′ : V ′ →
G(m, s) , defined on a neighborhood V ′ of p in C1, such that H ′(x) ⊃ H(x) and
dim(H ′(x)) = s for every x ∈ V ′. We then set V1 = V ′ ∪ (V \ C1) and define
H1 : V1 ⇒ IRm by

H1(x) =

{
H ′ on V ′,
H on V \ C1.

The set V1 is a neighborhood of p in C and the map H1 has a closed graph on V1

and takes on only the values s > s2 > . . . > sN .
Proceeding this way we construct the required map H̄. ¤

We shall need Whitney’s Extension Theorem which gives conditions for a map
defined on a closed subset of IRn to have a C1-extension defined on IRn. We state
it here in the form we shall use it (for a proof see, for instance, Evans-Gariepy [3]).

Whitney’s Extension Theorem Let K ⊂ IRn be compact, f : K → IRm a
continuous map and d : K × IRn → IRm a continuous map that is linear with
respect to the second variable. Set

%(δ) = sup
{‖f(y)− f(x)− d(x, y − x)‖

‖y − x‖ : x, y ∈ K, 0 < ‖x− y‖ ≤ δ

}
.

If %(δ) → 0 as δ → 0, then there exists a map f̄ : IRn → IRm such that
• f̄ is C1,
• f̄ = f on K,
• df̄x(v) = d(x, v) for every (x, v) ∈ K × IRn.

We are now in a position to complete the proof of Theorem 3.1. The idea is
as follows: Proposition 4.4-2 says, in a sense, that the map Lx whose graph is
S(x,f(x))(Gf ) is the differential of f at x restricted to Sx(X). We then use Propo-
sition 5.2 to extend L to a map d defined on X × IRn and we apply Whitney’s
Extension Theorem to f and d to get the required C1-extension of f .

Assume now that we are under the hypotheses of Theorem 3.1 and let g : K →
IRm be a continuous map defined on a compact neighborhood K of p in X̄ such
that g = f on K ∩X and ∆(x,g(x))(Gg) is the graph of a map Lx : ∆x(K) → IRm

for every x ∈ K (see Propositions 4.4, 4.12). Consider now the set-valued map
L : K ⇒ IRn × IRm defined by L(x) = ∆(x,g(x))(Gg).

If dim(L(p)) < n we find an n-dimensional subspace S of IRn× IRm that contains
∆(x,g(x))(Gg) and that injectively projects onto the first factor and we set, with little
abuse of notation, L(p) = S.

The map L thus defined satisfies the hypotheses of Proposition 5.2, there exist
therefore a compact neighborhood C of p in K and a subspace-valued map with
closed graph L̄ : C ⇒ IRn × IRm such that dim(L̄(x)) = n and L̄(x) ⊃ L(x) for
every x ∈ C. Since L̄ has a closed graph and L̄(p) is a graph, we may also suppose
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that for every x ∈ C, L̄(x) is the graph of a map L̄x : IRn → IRm . Consider
now the map d : K × IRn → IRm defined by d(x, v) = L̄x(v) and observe that d
is continuous (L̄ has a closed graph and values of constant dimension, hence it is
continuous) and linear with respect to the second variable.

We want to show that g and d satisfy the hypotheses of Whitney’s Extension
Theorem. Set

%(δ) = sup
{‖g(y)− g(x)− d(x, y − x)‖

‖y − x‖ : x, y ∈ C, 0 < ‖x− y‖ ≤ δ

}
.

Suppose that %(δ) does not converge to zero as δ → 0. There exist then ε > 0 and
two sequences of elements xk, yk ∈ C such that ‖xk − yk‖ < 1/k and

‖g(yk)− g(xk)− d(xk, yk − xk)‖
‖yk − xk‖ > ε,

for every k ∈ N. We may also suppose that xk, yk → x ∈ C and that
yk − xk

‖yk − xk‖ → v.

By Proposition 4.4 we have∥∥∥∥
g(yk)− g(xk)− d(xk, yk − xk)

‖yk − xk‖

∥∥∥∥ =

=
∥∥∥∥
g(yk)− g(xk)
‖yk − xk‖ − d

(
xk,

yk − xk

‖yk − xk‖
)∥∥∥∥ → ‖L(x, v)− d(x, v)‖ = 0,

which contradicts our assumption.
We conclude the proof invoking Whitney’s Extension Theorem. ¤

As we have already observed, this theorem allows us to decide if a map is C1

by checking only the properties of its graph (i.e. by checking the properties of its
values) and not relying upon the existence of other functions as Whitney’s Extension
Theorem does. In this sense Theorem 3.1 may be considered an improvement of
Whitney’s Extension Theorem itself. The next result shows a deeper and surprising
connection between these two theorems.

Theorem 5.3. The following assertions are equivalent
(1) The statement of Whitney’s Extension Theorem holds true.
(2) Let A ⊂ IRm and p ∈ A. Let F be a subspace of IRm such that ∆p(A)∩F =

{0}. Then in a neighborhood of p the set A may be regarded as the graph of
a C1-map defined on a subset of F⊥ (Theorem 3.4).

(3) T 1
p (A) = ∆p(A) for every A ⊂ IRm and p ∈ Ā.

Proof. We have seen that 1) ⇒ 2) ⇒ 3).
3) ⇒ 2). Set k = dim(F ) and let F = 〈v1, · · · , vk〉. For i = 1, · · · , k let fi : Ui →

IR be a C1-map defined on an open neighborhood Ui of p and null on A ∩ Ui,
such that vi /∈ Ker(dfip) (this can be done since vi /∈ ∆p(A) = T 1

p (A)). Set f =
(f1, · · · , fk). We have that v1, · · · , vk /∈ Ker(dfp) = ∩iKer(dfip). Therefore, by the
Implicit-Function Theorem, f−1(0) is, around p, the graph of a C1-map defined on
a subset of F⊥. This concludes the proof since A ⊂ f−1(0).
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2) ⇒ 1). (Sketch) We leave to the reader to check that the hypotheses of Whit-
ney’s Extension Theorem imply that ∆(p,f(p))(Gf ) is contained in the graph of d(p, · )
(the map in the statement of Whitney’s Extension Theorem). Therefore f has a
C1 extension around p. The proof can be concluded by means of the partitions of
unity. ¤

In view of the previous theorem, proving that T 1
p (A) = ∆p(A) without using

Whitney’s Extension Theorem would lead to a new proof of Whitney’s Theorem.
Proving that T 1

p (A) = ∆p(A) consists in proving that if v /∈ ∆p(A) then there exists
a C1-map f defined on an open neighborhood U of p such that f(A∩U) = {0} and
dfp(v) 6= 0.

I want to thank the referee for many important suggestions.
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