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EXISTENCE OF PERIODIC SOLUTIONS UNDER
SADDLE POINT TYPE CONDITIONS

NORIMICHI HIRANO AND NAOKI SHIOJI

Abstract. We study the existence of periodic solutions for nonlinear evolution
equations. We do not assume either coercive conditions or variational structures.
Under saddle point type conditions, we show the existence of periodic solutions
by degree theory.

1. Introduction

Let H be a Hilbert space, let A be a maximal monotone subset of H × H, let
f : [0, T ] × V → H be a function, where V is a suitable subset of H, and let
h ∈ L1(0, T ;H). We study the existence of T -periodic solution for the equation

(1.1) u′(t) + Au(t) 3 f(t, u(t)) + h(t) for 0 ≤ t ≤ T .

Problems of this kind have been studied by many authors; see [1, 3, 8, 10, 12, 13,
14, 17]. To get the existence of periodic solutions, it is usually assumed that A−f is
coercive. In the case that A− f is not coercive, the first author and Mizoguchi [10]
obtained an existence result under the assumption that A − f is the derivative of
a functional on H and A − f satisfies a saddle point type condition. That is the
conditions for A and f were very restricted.

In this paper, we study the case that A− f is not coercive and A− f is not the
derivative of a functional but A− f satisfies some kind of saddle point type condi-
tion. In the elliptic case, the first author obtained an existence result under these
conditions in [9]. Our typical result is the following which is a direct consequence
of Propositions 1, 2 and Remark in Section 3:

Theorem 1. Let (V, ‖·‖) be a Hilbert space which is densely and compactly imbedded
into a Hilbert space (H, | · |) with an inner product 〈·, ·〉 and let L be the canonical
isomorphism from V onto its topological dual (V ∗, ‖ · ‖∗). Let A : D(A) → H be
a single-valued, maximal monotone operator such that 0 ∈ D(A), D(A) is a dense
subset of V with respect to the topology of V and

〈Ax−Ay, x− y〉 ≥ ω‖x− y‖2 and ‖Ax‖∗ ≤ c(‖x‖+ 1)

for every x, y ∈ D(A), where ω and c are some positive constants. Let T > 0 and
let f be a mapping from [0, T ]× V into H such that f(t, ·) is continuous for almost
every t ∈ (0, T ), f(·, x) is strongly measurable for every x ∈ V and

|f(t, x)| ≤ a1‖x‖2−ρ + a2(t) for almost every t ∈ (0, T ) and for every x ∈ V ,
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where ρ is some constant with 0 < ρ < 2, a1 is some positive constant and a2 is some
function in L1(0, T ;R+). Assume that there exist a finite dimensional subspace H1

of H and b ∈ L1(0, T ;R+) such that

H1 ⊂ D(L ∩ (H ×H)), LH1 ⊂ H1

and for every x ∈ D(A),

〈Ax− f(t, x), x− 2Px〉 ≥ ω‖x‖2 − b(t) for almost every t ∈ (0, T ),

where P is the orthogonal projection from H onto H1. Then for every g ∈
L2(0, T ;H), there exists δ > 0 such that for every h ∈ L1(0, T ;H) with

∫ T
0 |h(t) −

g(t)| dt ≤ δ, there exists at least one T -periodic integral solution of (1.1). Further,
if A0 = 0, f(·, 0) ≡ 0 and there exist a finite dimensional subspace H2 of H and
ε > 0 such that

H2 ⊂ D(L ∩ (H ×H)), LH2 ⊂ H2,

for every x ∈ D(A) with |x| ≤ ε,

〈Ax− f(t, x), x− 2Qx〉 ≥ ω‖x‖2 for almost every t ∈ (0, T ),

where Q is the orthogonal projection from H onto H2, and dimH2−dimH1 is odd,
then there exists δ > 0 such that for every h ∈ L1(0, T ;H) with

∫ T
0 |h(t)| dt ≤ δ,

there exist at least two T -periodic integral solutions of (1.1).

This paper is organized as follows: Section 2 is devoted to some preliminaries and
notations. We state our main results in Section 3 and we prove them in Section 4.
Finally, we study an example to which our results are applicable.

2. Preliminaries

Throughout this paper, all vector spaces are real. Let X be a Banach space, let
Ω be an open, bounded subset of X, let Γ be a compact mapping from Ω into X and
let y ∈ X with y 6∈ (I − Γ)(∂Ω). We denote by deg(I − Γ,Ω, y) the Leray-Schauder
degree. For the Leray-Schauder degree, see [6].

Let (H, | · |) be a Hilbert space with an inner product 〈·, ·〉 and let A be a maximal
monotone subset of H×H. We know from [2, 5, 11] that the negative of A generates
a semigroup {S(t) : t ≥ 0}. We say the semigroup {S(t)} is compact if for every
t > 0, S(t) : D(A) → D(A) is compact. Let f ∈ L1(a, b;H) and let x ∈ D(A). We
say a function u : [a, b] → H is an integral solution of the initial value problem

(2.1) u(a) = x, u′(t) + Au(t) 3 f(t) for a ≤ t ≤ b,

if u is continuous on [a, b], u(a) = x, u(t) ∈ D(A) for every a ≤ t ≤ b and

|u(t)− y|2 ≤ |u(s)− y|2 + 2
∫ t

s
〈f(τ)− z, u(τ)− y〉 dτ

for every (y, z) ∈ A and s, t with a ≤ s ≤ t ≤ b. We know from [2, 4] that the initial
value problem (2.1) has a unique integral solution.

Let (V, ‖ · ‖) be a reflexive Banach space which is continuously imbedded into
H. We identify V with a subspace of H. Let ω > 0 and let A be a maximal
monotone subset of H ×H such that D(A) ⊂ V and 〈y − q, x− p〉 ≥ ω‖x− p‖2 for
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every (x, y), (p, q) ∈ A. In this case, if u and v are the integral solutions of (2.1)
corresponding to (x, f), (y, g) ∈ D(A)× L1(a, b;H) respectively, then

(2.2) |u(t)− v(t)| ≤ e−ωη(t−s)|u(s)− v(s)|+
∫ t

s
e−ωη(t−τ)|f(τ)− g(τ)| dτ

for a ≤ s ≤ t ≤ b, where η is a positive constant satisfying | · ‖ ≤ η‖ · ‖, and

|u(t)− v(t)|2 − |u(s)− v(s)|2 + 2ω

∫ t

s
‖u(τ)− v(τ)‖2 dτ

≤ 2
∫ t

s
〈u(τ)− v(τ), f(τ)− g(τ)〉 dτ

(2.3)

for a ≤ s ≤ t ≤ b.

To prove our theorems, we use the following, which are special cases of [6, Theo-
rem 8.10] and [17, Theorem 2], respectively.

Theorem A (Leray and Schauder). Let X be a Banach space, let Γ be a compact
linear operator on X such that one is not an eigenvalue of Γ and let Ω be a bounded,
open subset of X with 0 ∈ Ω. Then deg(I − Γ,Ω, 0) = (−1)n, where n is the sum of
the algebraic multiplicities of the eigenvalues µ satisfying µ > 1 if Γ has eigenvalues
µ of this kind and n = 0 if Γ does not have those.

Theorem B (Vrabie). Let H be a Hilbert space and let A be a maximal monotone
subset of H×H whose negative generates a compact semigroup. Let B be a bounded
subset of D(A), let T > 0 and let G be a uniformly integrable subset of L1(0, T ;H).
Let S be the set of all integral solutions u of

u(0) = x, u′(t) + Au(t) 3 f(t), 0 ≤ t ≤ T

for x ∈ B and f ∈ G. Then {u(T ) : u ∈ S} is relatively compact in H. Further, if
B is relatively compact in H, then S is relatively compact in C(0, T ;H).

3. Main results

We begin this section with hypotheses and notations which we will use in the
sequel:

(H1) (V, ‖·‖) is a reflexive Banach space which is densely and compactly imbed-
ded into a Hilbert space (H, | · |) with an inner product 〈·, ·〉;

(H2) ω > 0, c > 0 and L ⊂ H × H is a symmetric linear operator such that
D(L) is a dense subset of V with respect to the topology of V and

(3.1) 〈Lx, x〉 ≥ ω‖x‖2 and ‖Lx‖∗ ≤ c‖x‖ for every x ∈ D(L),

where ‖ · ‖∗ is the norm of the topological dual V ∗ of V ;
(H3) A is a maximal monotone subset of H × H such that D(A) is a dense

subset of V with respect to the topology of V , D(A) ∩D(L) 6= ∅,
(3.2) 〈y − q, x− p〉 ≥ ω‖x− p‖2 for every (x, y), (p, q) ∈ A

and

(3.3) ‖y‖∗ ≤ c(‖x‖+ 1) for every (x, y) ∈ A;
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(H4) T > 0 and f is a mapping from [0, T ] × V into H such that the map-
ping u(·) 7→ f(·, u(·)) : L2(0, T ;V ) → L1(0, T ;H) is continuous and it
maps a bounded subset of L2(0, T ;V ) to a uniformly integrable subset of
L1(0, T ;H).

Now we show our main results.

Theorem 2. Assume (H1)–(H4). Assume also that there exist a finite dimensional
subspace H1 of H and b ∈ L1(0, T ;R+) which satisfy

(3.4) H1 ⊂ D(L), LH1 ⊂ H1

and for every (x, y) ∈ A,

(3.5) 〈y − f(t, x), x− 2Px〉 ≥ ω‖x‖2 − b(t) for almost every t ∈ (0, T ),

where P is the orthogonal projection from H onto H1. Then for every g ∈
L2(0, T ;H), there exists δ > 0 such that for every h ∈ L1(0, T ;H) with

∫ T
0 |h(t) −

g(t)| dt ≤ δ, there exists at least one T -periodic integral solution of (1.1).

Theorem 3. Assume (H1)–(H4). Assume also that (0, 0) ∈ A, f(·, 0) ≡ 0 and
there exist a finite dimensional subspace H2 of H and ε > 0 such that

H2 ⊂ D(L), LH2 ⊂ H2

and for every (x, y) ∈ A with |x| ≤ ε,

〈y − f(t, x), x− 2Qx〉 ≥ ω‖x‖2 for almost every t ∈ (0, T ),

where Q is the orthogonal projection from H onto H2. Then there exists δ > 0
such that for every h ∈ L1(0, T ;H) with

∫ T
0 |h(t)| dt ≤ δ, there exists at least one

T -periodic integral solution of (1.1).

Remark. In the theorems above, the condition that D(A) and D(L) are dense in V
can be replaced by the condition that αA+(1−α)L is maximal monotone in H×H
for every α ∈ [0, 1], since the proofs in the next section work with αA + (1 − α)L
instead of A(α) in (4.2). The condition (H2) or (H4) can be also replaced by the
following condition (H2′) or (H4′), respectively:

(H2′) ω > 0, c > 0 and L ⊂ H × H has an extension LV ⊂ V × V ∗ such that
D(LV ) = V , LV is symmetric linear and

〈LV x, x〉 ≥ ω‖x‖2 and ‖LV x‖∗ ≤ c‖x‖ for every x ∈ D(LV );

(H4′) T > 0 and f is a mapping from [0, T ] × V into H such that f(t, ·) is
continuous for almost every t ∈ (0, T ), f(·, x) is strongly measurable for
every x ∈ V and |f(t, x)| ≤ a1‖x‖2−ρ + a2(t) for almost every t ∈ (0, T )
and for every x ∈ V , where ρ is some constant with 0 < ρ < 2, a1 is some
positive constant and a2 is some function in L1(0, T ;R+).

As a consequence of Theorem 2, we can get a solution of an elliptic problem as
follows:

Corollary . Assume (H1)–(H3). Let f be a continuous mapping from V into H
such that |f(x)| ≤ a(‖x‖2−ρ + 1) for every x ∈ V , where ρ and a are some positive
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constants with 0 < ρ < 2. Assume also that there exist a finite dimensional subspace
H1 of H and b > 0 which satisfy (3.4) and

〈y − f(x), x− 2Px〉 ≥ ω‖x‖2 − b for every (x, y) ∈ A,

where P is the orthogonal projection from H onto H1. Then for every y ∈ H, there
exists x ∈ D(A) which satisfies Ax 3 f(x) + y.

4. Proofs of Theorems

In this section, we give the proofs for our results.

Lemma 1. Let T > 0, let n be a natural number and let M be a positive, symmetric
n× n-matrix. Let Γ be a function from L2(0, T ;Rn) into itself defined by Γu = v if
v is the unique T -periodic solution of v′(t) + Mv(t) = 2Mu(t) for 0 ≤ t ≤ T . Let Ω
be an open, bounded subset in L2(0, T ;Rn) containing 0. Then deg(I − Γ,Ω, 0) =
(−1)n.

Proof. Since M is positive and symmetric, we may assume

M =




λ1 0
. . .

0 λn


 with λ1, . . . , λn > 0.

It is easy to see that Γ is a compact operator. We will show one is not an eigenvalue of
Γ. Assume that u ∈ L2(0, T ;Rn) satisfies Γu = u. Then for every i with 1 ≤ i ≤ n,
the i-th coordinate ui of u is T -periodic and it satisfies u′i(t) − λiui(t) = 0 for
0 ≤ t ≤ T . So we have ui ≡ 0 for every i, i.e., u ≡ 0. Hence one is not an eigenvalue
of Γ. Similarly, we can show that two is the only eigenvalue of Γ greater than one
and its corresponding eigenspace consists of all constant functions on [0, T ]. So the
dimension of the eigenspace is just n. Next we will show

(4.1) {u ∈ L2(0, T ;Rn) : (2I − Γ)2u = 0} = {u ∈ L2(0, T ;Rn) : (2I − Γ)u = 0}.
Let u be a function such that (2I − Γ)2u = 0. Put v = (2I − Γ)u. Then v is a
constant function and 2u′ − Mv = 0 for 0 ≤ t ≤ T . Since v is constant and u is
T -periodic, we have v ≡ 0, i.e., (2I − Γ)u = 0. So we have shown (4.1) and the
algebraic multiplicity of the eigenvalue two is n. Hence by Theorem A, we obtain
the desired result. ¤

We show a condition that the negative of a maximal monotone operator generates
a compact semigroup; see also [15, Theorem 6.3].

Lemma 2. Let (V, ‖ · ‖) be a reflexive Banach space which is compactly imbedded
into a Hilbert space (H, | · |) with an inner product 〈·, ·〉 and let A be a maximal
monotone subset of H ×H which satisfies D(A) ⊂ V and

〈y − q, x− p〉 ≥ ω‖x− p‖2 for every (x, y), (p, q) ∈ A.

Then the negative of A generates a compact semigroup.
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Proof. Let {S(t) : t ≥ 0} be the semigroup generated by −A and let F be the
closure of D(A) with respect to the topology of H. Fix t > 0 and y ∈ D(A). Let
{xn} be a sequence in F which is bounded in H. By (2.3), there exists M > 0 such
that

∫ t
0 ‖S(τ)xn − S(τ)y‖2 dτ ≤ M for every n. Set En = {τ ∈ [0, T ] : ‖S(τ)xn −

S(τ)y‖2 ≤ 2M/t}. Since each Lebesgue measure of En is greater than or equal
to t/2,

⋂∞
n=1

⋃∞
m=n Em has a positive Lebesgue measure. Let τ ∈ ⋂∞

n=1

⋃∞
m=n Em.

Then there exists a subsequence {xni} of {xn} such that ‖S(τ)xni−S(τ)y‖2 ≤ 2M/t
for every i. Since V is compactly imbedded into H, there exists z ∈ H which is
a cluster point of {S(τ)xni − S(τ)y} with respect to the topology of H. So we
may assume |S(τ)xni − S(τ)y − z| → 0 as i → ∞. Since S(τ)y − z ∈ F , we know
|S(t)xni − S(t− τ)(S(τ)y − z)| → 0 as i →∞. Hence S(t) is compact with respect
to the topology of H. ¤

Till the end of this section, we assume the conditions (H1)–(H4) and we also
assume | · | ≤ ‖ · ‖ for the sake of simplicity. We identify H with its topological
dual and we denote by 〈·, ·〉 not only the inner product on H but also the dual pair
of V ∗ × V . We know that the natural mapping from H into V ∗ is one to one and
continuous. So we identify H with a subset of V ∗.

We define monotone subsets LV and AV of V ×V ∗ as follows: LV is the closure of
L in V ×V ∗ with respect to the strong topology of V ×V ∗, D(AV ) = V and for each
x ∈ D(AV ), AV x is the closure of the convex hull of the set which consists of all
limit points of {yn} with respect to the weak topology of V ∗ such that (xn, yn) ∈ A
for every n and {xn} converges strongly to x in V .

Lemma 3. LV is single-valued, linear, maximal monotone in V ×V ∗, AV is maxi-
mal monotone in V ×V ∗, and (3.1), (3.2) and (3.3) are satisfied with the replacement
of L and A by LV and AV , respectively.

Proof. First, we remark that ‖y‖∗ ≤ c(‖x‖+ 1) for every (x, y) ∈ AV . Assume that
there exists (x, y) 6∈ AV such that 〈q−y, p−x〉 ≥ 0 for every (p, q) ∈ AV . Then there
exist z ∈ V and C > 0 such that 〈q− y, z〉 ≤ −C for every q ∈ AV x. Let u = z + x.
For every t ∈ (0, 1), set pt = tx+(1−t)u and choose qt ∈ AV pt. We may assume {qt}
converges weakly to q ∈ AV x as t ↑ 1. Since 0 ≤ 〈qt−y, pt−x〉 = (1−t)〈qt−y, u−x〉,
we have

0 ≤ 〈q − y, u− x〉 = 〈q − y, z〉 ≤ −C,

which is a contradiction. Hence AV is maximal monotone in V × V ∗. It is easy to
see that other assertions hold. ¤

We set a subset A(α) of H ×H by

(4.2) A(α) = (αAV + (1− α)LV ) ∩ (H ×H) for α ∈ [0, 1].

Lemma 4. For every α ∈ [0, 1], A(α) is maximal monotone in H × H and its
negative generates a compact semigroup.

Proof. Let α ∈ [0, 1] and let y ∈ H. Since αAV + (1− α)LV is maximal monotone
in V ×V ∗, there exists x ∈ D(αAV + (1−α)LV ) with y ∈ x + αAV x + (1−α)LV x.
Then we have (x, y − x) ∈ A(α). So we get y ∈ R(I + A(α)). Since y ∈ H is
arbitrary, A(α) is maximal monotone in H×H. By Lemma 2, we know that −A(α)
generates a compact semigroup. ¤



EXISTENCE OF PERIODIC SOLUTIONS 121

Lemma 5. For every α ∈ [0, 1] and g ∈ L1(0, T ;H), there exists a unique T -
periodic, integral solution u of

(4.3) u′(t) + A(α)u(t) 3 g(t) for 0 ≤ t ≤ T .

Proof. Let α ∈ [0, 1] and let g ∈ L1(0, T ;H). Let F be the closure of D(A(α)) with
respect to the topology of H. We define a mapping U : F → F by Ux = u(T ) for
x ∈ F , where u is the unique integral solution of the initial value problem (4.3) with
u(0) = x. From (2.2), we have |Ux− Uy| ≤ e−ωT |x− y| for every x, y ∈ F . By the
Banach contraction principle, U has the unique fixed point x. Then the integral
solution u of (4.3) with u(0) = x satisfies u(0) = u(T ). ¤

We define a mapping G : L1(0, T ;H)× [0, 1] → C(0, T ;H) ∩ L2(0, T ;V ) by

G(g, α) = u for (g, α) ∈ L1(0, T ;H)× [0, 1],

where u is the unique T -periodic, integral solution of (4.3).
Let C(0, T ;H) ∩ L2(0, T ;V ) be endowed with the norm ‖ · ‖ = ‖ · ‖C(0,T ;H) +

‖ · ‖L2(0,T ;V ).

Lemma 6. For every bounded subset B of L1(0, T ;H), G(B × [0, 1]) is bounded in
C(0, T ;H) ∩ L2(0, T ;V ).

Proof. Let B be a bounded subset of L1(0, T ;H). Fix x ∈ D(A)∩D(L) and y ∈ Ax.
Let (g, α) ∈ B × [0, 1] and let u = G(g, α). Set m = min{|u(t) − x| : 0 ≤ t ≤ T}
and M = max{|u(t)− x| : 0 ≤ t ≤ T}. Then we have M ≤ m + T max{|y|, |Lx|}+∫ T
0 |g(t)| dt and

ωTm2 ≤ ω

∫ T

0
|u(t)− x|2 dt ≤ ω

∫ T

0
‖u(t)− x‖2 dt

≤
∫ T

0
〈g(t)− (αy + (1− α)Lx), u(t)− x〉 dt

≤ M

(
T max{|y|, |Lx|}+

∫ T

0
|g(t)| dt

)
.

So C ≡ sup{|G(g, α)(t)| : g ∈ B,α ∈ [0, 1], t ∈ [0, T ]} < ∞. Since we have

ω

∫ T

0
‖u(t)− x‖2 dt ≤

∫ T

0
〈g(t)− (αy + (1− α)Lx), u(t)− x〉 dt

≤ (C + |x|)
(

T max{|y|, |Lx|}+
∫ T

0
|g(t)| dt

)
,

G(B × [0, 1]) is bounded in C(0, T ;H) ∩ L2(0, T ;V ). ¤
Lemma 7. For every bounded subset B of L1(0, T ;H), G is a uniformly continuous
mapping from B × [0, 1] into C(0, T ;H) ∩ L2(0, T ;V ).

Proof. Let g, h ∈ L1(0, T ;H) and let α, β ∈ [0, 1]. Set u = G(g, α) and v = G(h, β).
Let η > 0. Choose xη ∈ D(A(α)), yη ∈ D(A(β)) and gη, hη ∈ W 1,1(0, T ;H) such
that

|u(0)−xη| < η, |v(0)− yη| < η,

∫ T

0
|g(t)− gη(t)| dt < η and

∫ T

0
|h(t)−hη(t)| dt < η.
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Let uη and vη be the strong solutions of the initial value problems
{

uη(0) = xη, u′η(t) + A(α)uη(t) 3 gη(t) for 0 ≤ t ≤ T ;

vη(0) = yη, v′η(t) + A(β)vη(t) 3 hη(t) for 0 ≤ t ≤ T ,

respectively. We choose functions wη and zη which satisfy
{

wη(t) ∈ AV uη(t), u′η(t) + αwη(t) + (1− α)LV uη(t) = gη(t);

zη(t) ∈ AV vη(t), v′η(t) + βzη(t) + (1− β)LV vη(t) = hη(t)

for almost every t ∈ [0, T ], respectively. Since

u′η(t)− v′η(t) + α(wη(t)− zη(t)) + (1− α)(LV uη(t)− LV vη(t))

= gη(t)− hη(t) + (β − α)(zη(t)− LV vη(t))

for almost every t ∈ [0, T ], we have

1
2
|uη(T )− vη(T )|2 − 1

2
|xη − yη|2 + ω

∫ T

0
‖uη(t)− vη(t)‖2 dt

≤ sup
0≤τ≤T

|uη(τ)− vη(τ)|
∫ T

0
|gη(t)− hη(t)| dt

+ 2|α− β|
(∫ T

0
(c‖vη(t)‖+ 1)2 dt

) 1
2
(∫ T

0
‖uη(t)− vη(t)‖2 dt

) 1
2

.

Since u is T -periodic and η > 0 is arbitrary, we obtain

ω

∫ T

0
‖u(t)− v(t)‖2 dt

≤ sup
0≤τ≤T

|u(τ)− v(τ)|
∫ T

0
|g(t)− h(t)| dt

+ 2|α− β|
(∫ T

0
(c‖v(t)‖+ 1)2 dt

) 1
2
(∫ T

0
‖u(t)− v(t)‖2 dt

) 1
2

≤ C

∫ T

0
|g(t)− h(t)| dt + C|α− β|,

where C is some constant which can be chosen by Lemma 6. So G : B × [0, 1] →
L2(0, T ;V ) is uniformly continuous.

By the similar way, we have

|u(0)− v(0)|2 = |u(T )− v(T )|2

≤ e−2ωT |u(0)− v(0)|2 + C

∫ T

0
|g(t)− h(t)| dt + C|α− β|,

and hence we obtain

|u(t)− v(t)|2 ≤ C

(
e−2ωt

1− e−2ωT
+ 1

)(∫ T

0
|g(t)− h(t)| dt + |α− β|

)

for every t ∈ [0, T ]. Hence G : B × [0, 1] → C(0, T ;H) is also uniformly continuous.
¤
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Lemma 8. For every uniformly integrable subset B of L1(0, T ;H), G(B× [0, 1]) is
relatively compact in C(0, T ;H) ∩ L2(0, T ;V ).

Proof. Let B be a uniformly integrable subset of L1(0, T ;H). Fix α ∈ [0, 1]. We
know that {G(g, α)(0) : g ∈ B} is bounded in H by Lemma 6. By Theorem B,
{G(g, α)(0) : g ∈ B} = {G(g, α)(T ) : g ∈ B} is relatively compact in H. Using
Theorem B again, we know G(B,α) is relatively compact in C(0, T ;H). Next, we
will show that G(B,α) is relatively compact in L2(0, T ;V ) by the method employed
in the proof of [16, Theorem 3.1]. Fix η > 0. Then there exists {f1, . . . , fn} ⊂ B
such that for every g ∈ B, there exists i such that |G(g, α)(t) − G(fi, α)(t)| ≤ η

for every t ∈ [0, T ]. Since ω
∫ T
0 ‖G(g, α)(t)−G(fi, α)(t)‖2 dt ≤ η

∫ T
0 |g(t)− fi(t)| dt

and B is bounded in L1(0, T ;H), G(B,α) is totally bounded in L2(0, T ;V ). So
G(B,α) is relatively compact in C(0, T ;H)∩L2(0, T ;V ). From the previous lemma,
G(B × [0, 1]) is relatively compact in C(0, T ;H) ∩ L2(0, T ;V ). ¤

We denote by Br the open ball in L2(0, T ;V ) with center 0 and radius r > 0.
Theorem 2 is a direct consequence of the following proposition.

Proposition 1. Assume the assumptions in Theorem 2. Then for every g ∈
L2(0, T ;H), there exists R0 > 0 such that for every R ≥ R0, there exists δ > 0
such that

deg(I −Hh(·, 1), BR, 0) = (−1)dim H1

for every h ∈ L1(0, T ;H) with
∫ T
0 |h(t) − g(t)| dt ≤ δ, where Hh : L2(0, T ;V ) ×

[0, 1] → L2(0, T ;V ) is defined by

Hh(u, α)(t) = G(αf(·, u) + (1− α)2LPu + αh, α)(t)

for (u, α) ∈ L2(0, T ;V )× [0, 1].

Proof. First, we remark that Hh : L2(0, T ;V ) × [0, 1] → L2(0, T ;V ) is compact
from the assumption (H4) and Lemma 8 and that (3.5) is satisfied by AV with the
replacement of A. We also remark that 〈LV x−2LPx, x−2Px〉 ≥ ω‖x‖2/2 for every
x ∈ V . Indeed, we have

〈Lx− 2LPx, x− 2Px〉 = 〈L(x− Px), x− Px〉+ 〈LPx, Px〉 ≥ ω

2
‖x‖2

for every x ∈ D(L) and P is continuous with respect to the strong topology of
V by the finite dimensionality of H1. Let g ∈ L2(0, T ;H). Choose R0 > 0 such
that ωR2

0/4 − ∫ T
0 |b(t)| dt − ∫ T

0 |g(t)|2 dt/ω > 0. Fix R ≥ R0. By Lemma 6, there
exists M > 0 such that supt |G(αf(·, u)+(1−α)2LPu+αg, α)(t)| ≤ M/2 for every
(u, α) ∈ BR × [0, 1]. Fix δ > 0 satisfying

ω

4
R2 −

∫ T

0
|b(t)| dt− 1

ω

∫ T

0
|g(t)|2 dt−Mδ > 0

and
sup

0≤t≤T

∣∣G(αf(·, u) + (1− α)2LPu + αh, α)(t)
∣∣ ≤ M

for every (u, α, h) ∈ BR × [0, 1] × L1(0, T ;H) with
∫ T
0 |h(t) − g(t)| dt ≤ δ. Fix

h ∈ L1(0, T ;H) with
∫ T
0 |h(t)− g(t)| dt ≤ δ. We will show that there is no (u, α) ∈
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∂BR× [0, 1] with Hh(u, α) = u. Suppose not. Then there exists (u, α) ∈ ∂BR× [0, 1]
such that u is a T -periodic, integral solution of u′(t) + A(α)u(t) 3 αf(t, u(t)) +
(1 − α)2LPu(t) + αh(t). We remark supt |u(t)| ≤ M . Let η > 0. We can choose
xη ∈ D(A(α)) and kη ∈ W 1,1(0, T ;H) such that |xη−u(0)| < η and

∫ T
0 |αf(t, u(t))+

(1−α)2LPu(t)+αh(t)−kη(t)| dt < η. For this pair (xη, kη), there exists the strong
solution uη of the initial value problem

(4.4) uη(0) = xη, u′η(t) + A(α)uη(t) 3 kη(t) for 0 ≤ t ≤ T .

By (2.2), we have |uη(t)| ≤ |u(t)|+|u(t)−uη(t)| ≤ M+2η for every t ∈ [0, T ]. We set
u2

η = (I−P )uη and u1
η = Puη. Since uη is the strong solution of (4.4), there exists a

function wη such that wη(t) ∈ AV uη(t) and u′η(t)+αwη(t)+(1−α)LV uη(t)−kη(t) =
0 almost everywhere on [0, T ]. From
〈
u′η(t) + αwη(t) + (1− α)LV uη(t)− kη(t), u2

η(t)− u1
η(t)

〉

=
1
2
(|u2

η(t)|2 − |u1
η(t)|2

)′ + α〈wη(t)− f(t, uη(t)), u2
η(t)− u1

η(t)〉
+ (1− α)〈LV uη(t)− 2LPuη(t), u2

η(t)− u1
η(t)〉

+
〈
αf(t, uη(t)) + (1− α)2LPuη(t)− αf(t, u(t))− (1− α)2LPu(t), u2

η(t)− u1
η(t)

〉

+
〈
αf(t, u(t)) + (1− α)2LPu(t) + αh(t)− kη(t), u2

η(t)− u1
η(t)

〉

− α〈h(t)− g(t), u2
η(t)− u1

η(t)〉 − α〈g(t), u2
η(t)− u1

η(t)〉,
we have

0 ≥ 1
2
|u2

η(T )|2 − 1
2
|u2

η(0)|2 +
1
2
|u1

η(0)|2 − 1
2
|u1

η(T )|2

+
ω

2

∫ T

0
‖uη(t)‖2 dt−

∫ T

0
|b(t)| dt

− (M + 2η)
(∫ T

0
|f(t, uη(t))− f(t, u(t))| dt + 2

∫ T

0
|LPuη(t)− LPu(t)| dt + η

)

− (M + 2η)δ − ω

4

∫ T

0
‖uη(t)‖2 dt− 1

ω

∫ T

0
|g(t)|2 dt.

Since u is T -periodic and η > 0 is arbitrary, we have

0 ≥ ω

4
R2 −

∫ T

0
|b(t)| dt− 1

ω

∫ T

0
|g(t)|2 dt−Mδ > 0,

which is a contradiction. So we have shown that for every (u, α) ∈ ∂BR × [0, 1],
Hh(u, α) 6= u. By the properties of the Leray-Schauder degree and Lemma 1, we
obtain

deg(I −Hh(·, 1), BR, 0) = deg(I −Hh(·, 0), BR, 0) = (−1)dim H1 ,

which is the desired result. ¤

Theorem 3 is a direct consequence of the following proposition.
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Proposition 2. Assume the assumptions in Theorem 3. Then there exists r0 > 0
such that for every r ∈ (0, r0], there exists ρ > 0 such that

deg(I −Kh(·, 1), Br, 0) = (−1)dim H2

for every h ∈ L1(0, T ;H) with
∫ T
0 |h(t)| dt ≤ ρ, where Kh : L2(0, T ;V ) × [0, 1] →

L2(0, T ;V ) is defined by

Kh(u, α)(t) = G(αf(·, u) + (1− α)2LQu + αh, α)(t)

for (u, α) ∈ L2(0, T ;V )× [0, 1].

Proof. There exists r0 > 0 such that supt |G(αf(·, u) + (1 − α)2LQu, α)(t)| ≤ ε/2
for every (u, α) ∈ Br0 × [0, 1] by Lemma 7. Fix r ∈ (0, r0]. Choose ρ > 0 such
that ωr2/2− ερ > 0 and supt |G(αf(·, u) + (1− α)2LQu + αh, α)(t)| ≤ ε for every
(u, α, h) ∈ Br0 × [0, 1] × L1(0, T ;H) with

∫ T
0 |h(t)| dt ≤ ρ. Fix h ∈ L1(0, T ;H)

with
∫ T
0 |h(t)| dt ≤ ρ. We will show that there is no (u, α) ∈ ∂Br × [0, 1] with

Kh(u, α) = u. Suppose not. Then there exists (u, α) ∈ ∂Br×[0, 1] such that u is a T -
periodic, integral solution of u′(t)+A(α)u(t) 3 αf(t, u(t))+(1−α)2LQu(t)+αh(t).
We remark supt |u(t)| ≤ ε. By the same lines as those in the proof of Proposition 1,
we obtain

0 ≥ ω

2

∫ T

0
‖u(t)‖2 dt− ε

∫ T

0
|h(t)| dt ≥ ω

2
r2 − ερ > 0,

which is a contradiction. Hence there is no (u, α) ∈ ∂Br × [0, 1] with Kh(u, α) = u.
Therefore we have

deg(I −Kh(·, 1), Br, 0) = deg(I −Kh(·, 0), Br, 0) = (−1)dim H2

by the properties of the Leray-Schauder degree and Lemma 1. ¤

We give the proof of Corollary.

Proof of Corollary. Let y ∈ H. From Theorem 2, for every n, there exists a 1/2n-
periodic integral solution un of

u′n(t) + Aun(t) 3 f(un(t)) + y for 0 ≤ t ≤ 1.

By the same lines as those in the proof of Proposition 1, we have
∫ 1
0 ‖un(t)‖2 dt ≤

|y|/ω2 + 2b/ω for every n, and hence {f(un(·)) + y} is uniformly integrable in
L1(0, 1;H). So {un} is relatively compact in C(0, 1;H) ∩ L2(0, 1;V ) by Lemma 8.
Hence there exists a constant function u ∈ C(0, 1;H)∩L2(0, 1;V ) which is a cluster
point of {un}. Set x = u(0). Since

〈f(x) + y − q, x− p〉 =
∫ 1

0
〈f(u(t)) + y − q, u(t)− p〉 dt ≥ |u(1)− p| − |u(0)− p| = 0

for every (p, q) ∈ A, we have (x, f(x) + y) ∈ A. ¤
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5. An example

Let Ω(⊂ RN ) be a bounded domain with smooth boundary ∂Ω. We consider the
nonlinear differential equation





∂u

∂t
=

N∑

i=1

∂

∂xi
ai

(
∂u

∂xi

)
+ g(t, x, u,∇u) + h(t, x) in [0, T ]× Ω,

u(t, x) = 0 on [0, T ]× ∂Ω,

where ai ∈ C1(R) such that ai(0) = 0 and 0 < infs a′i(s) ≤ sups a′i(s) < ∞,
h : [0, T ] × Ω → R is measurable with

∫ T
0 (

∫
Ω |h(t, x)|2 dx)1/2 dt < ∞, and g :

[0, T ]×Ω×R×RN → R such that for almost every (t, x) ∈ [0, T ]×Ω, g(t, x, ·, ·) is
continuous and for every (u, v) ∈ R× RN , g(·, ·, u, v) is measurable.

Let λ1 < λ2 ≤ λ3 ≤ · · · be the eigenvalues of the operator −∆ with homogeneous
Dirichlet boundary condition.

Theorem 4. Let ε > 0. Assume that

1− ε < a′i(s) < 1 + ε for every i = 1, . . . , N and s ∈ R,

g(·, ·, 0, ·) ≡ 0, and

α ≤ g(t, x, u, v)
u

≤ β for every (t, x, u, v) ∈ [0, T ]× Ω× R× RN with u 6= 0,

where α and β are some constants. Assume also that there exist natural numbers k
and l such that k − l is odd,

(1 + 2ε)λk < lim
|u|→∞

g(t, x, u, v)
u

< (1− 2ε)λk+1 uniformly in (t, x, v), and

(1 + 2ε)λl < lim
|u|→0

g(t, x, u, v)
u

< (1− 2ε)λl+1 uniformly in (t, x, v).

If
∫ T
0 (

∫
Ω |h(x, t)|2 dx)1/2 dt is sufficiently small, then the problem has at least two

T -periodic solutions.

Proof. We define operators A and L on (L2(Ω), | · |) and f : [0, T ]×H1
0 (Ω) → L2(Ω)

as follows:




Au = −
N∑

i=1

∂

∂xi
ai

(
∂u

∂xi

)
, u ∈ D(A) = H2(Ω) ∩H1

0 (Ω);

Lu = −∆u, u ∈ D(L) = H2(Ω) ∩H1
0 (Ω);

f(t, u)(x) = g(t, x, u(x),∇u(x)), (t, u) ∈ [0, T ]×H1
0 (Ω).

Let ϕ1, ϕ2, ϕ3, · · · be eigenfunctions for L corresponding to λ1, λ2, λ3, · · · , respec-
tively. Let H1 = span{ϕ1, . . . , ϕk} and let P be the orthogonal projection from
L2(Ω) onto H1. Let u ∈ H2(Ω)∩H1

0 (Ω). Then, putting u2 = u−Pu and u1 = Pu,
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we have

〈Au, u2 − u1〉 ≥ (1− ε)|∇u2|2 − (1 + ε)|∇u1|2
= ε|∇u|2 + (1− 2ε)|∇u2|2 − (1 + 2ε)|∇u1|2
≥ ε|∇u|2 + (1− 2ε)λk+1|u2|2 − (1 + 2ε)λk|u1|2

and

−
∫

Ω
g(t, x, u,∇u)(u2 − u1) dx ≥ (1 + 2ε)λk|u1|2 − (1− 2ε)λk+1|u2|2 − C,

where C is some constant which is independent of u. So we have

〈Au− f(t, u), u2 − u1〉 ≥ ε|∇u|2 − C.

Let H2 = span{ϕ1, . . . , ϕl} and let Q be the orthogonal projection from L2(Ω) onto
H2. Fix m ≥ l with (1− 2ε)λm+1 > β and let R be the orthogonal projection from
L2(Ω) onto span{ϕl+1, . . . , ϕm}. For each v ∈ H2(Ω) ∩ H1

0 (Ω), we set v1 = Qv,
v2 = Rv and v3 = v −Qv −Rv. Then we can show

〈Av, v3 + v2 − v1〉 ≥ ε|∇v|2 + (1− 2ε)λm+1|v3|2
+ (1− 2ε)λl+1|v2|2 − (1 + 2ε)λl|v1|2

and

lim
|v|→0

1
|v|2

(
−

∫

Ω
g(t, x, v,∇v)(v3 + v2 − v1) dx

− (1 + 2ε)λl|v1|2 + (1− 2ε)λl+1|v2|2 + β|v3|2
)
≥ 0

by the same lines as those in the proof of [7, Lemma 4]. So we have

〈Av − f(t, v), v3 + v2 − v1〉 ≥ ε

2
|∇v|2

if |v| is sufficiently small. Hence from Theorem 1, we obtain the desired result. ¤
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