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CORE EQUIVALENCE IN TOPOLOGICAL RIESZ SPACES
WITHOUT CONVEXITY

HIDETOSHI KOMIYA AND TAKAYUKI TAMURA

Abstract. The paper studies exchange economies with infinite-dimensional com-
modity spaces in the setting of Riesz spaces. A core equivalence theorem is
presented under conditions without convexity of preferences of consumers.

1. Introduction

Debreu and Scarf[3] proved a limit theorem on the core of an economy rigorously
for an arbitrary finite number of consumers with a convexity condition for prefer-
ences of consumers. The limit theorem asserts the following: Consider exchange
economies consisting of r consumers of each type for r = 1, 2, 3 . . . ; then an alloca-
tion which assigns the same commodity bundles to all consumers of the same type
and which is in the core for all r must be a Walrasian equilibrium.

McKenzie[5] pointed out that the convexity assumption supposed in [3] is not
necessarily essential to obtain the limit theorem on the core and proved it under
some types of conditions without convexity, see also [6] and [7].

It is our purpose to remove convexity assumption for the limit theorem on the
core in infinite-dimensional commodity spaces in the setting of Riesz spaces.

2. Definitions

Let E be a locally solid-convex topological Riesz space with the lattice partial
order ≥, and let m be a positive integer. For each i = 1, . . . , m, let ωi > 0 and
ºi a symmetric, complete and transitive binary relation in E. We call the pair
(E, {ωi,ºi: i = 1, . . . , m}) of E and {ωi,ºi: i = 1, . . . , m} an exchange economy
and denote it by E . We call i = 1, . . . , m a consumer of the economy E , the binary
relation ºi the preference of the consumer i, and ωi the initial endowment of the
consumer i. The sum ω =

∑m
i=1 ωi is called the total endowment of the exchange

economy E . Define a new binary relation Âi in E by x Âi y ⇔ x ºi y and y �i x.
We list some properties of preferences ºi:
(1) Monotonicity

x ≥ y implies x ºi y for each x, y ∈ E.
(2) Strict monotonicity

x > y implies x Âi y for each x, y ∈ E.
(3) Algebraic continuity

the sets {y ∈ E : y Âi x} is algebraicly open in E for all x ∈ E+.
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A preference ºi on E is said to be uniformly proper whenever there exists some
vi > 0 and some neighborhood Vi of 0 such that for any arbitrary x ∈ E satisfying
x− αvi + z º x in E with α > 0 we have z /∈ αVi.

For a positive integer r, the r-fold replica economy Er of an exchange economy
E is a new exchange economy having the following characteristics. The economy
Er has rm consumers indexed by (i, j), (i = 1, . . . , m; j = 1, . . . , r) such that each
consumer (i, j) has

(1) a preference ºij equal to ºi; and
(2) an initial endowment ωij equal to ωi, and so the total endowment of the

r-fold replica economy Er is
∑r

j=1

∑m
i=1 ωij = rω.

A tuple (xij : i = 1, . . . , m; j = 1, . . . , r) of elements of E is said to be an allocation
of r-fold replica economy Er whenever

co{xij : j = 1, . . . , r} ∩ E+ 6= ∅ and
m∑

i=1

r∑

j=1

xij = r
m∑

i=1

ωi = rω.

Note that an allocation is not restricted to be non-negative elements in our definition
and only required that, for each i, some convex combination of x′ijs is non-negative.

An allocation (xij : i = 1, . . . , m; j = 1, . . . , r) of Er is said to be a core allocation if
there are no subsets S1, . . . , Sm of {1, . . . , r} and no allocation (yij : i = 1, . . . , m; j =
1, . . . , r) of Er such that ∪m

i=1Si 6= ∅, and yij Âi xij for i = 1, . . . , m and j ∈ Si.
¿From any allocation (x1, . . . , xm) of an exchange economy E we can construct an

allocation of any r-fold replica economy Er of E by letting xij = xi for i = 1, . . . , m
and j = 1, . . . , r. This type of allocations are referred to as r-equal treatment
allocations and denoted by etr(x1, . . . , xm), that is,

etr(x1, . . . , xm) = (
rm terms︷ ︸︸ ︷

x1, . . . , x1︸ ︷︷ ︸
r terms

, . . . , xm, . . . , xm︸ ︷︷ ︸
r terms

).

An allocation in an exchange economy is said to be a strong Edgeworth equilibrium
whenever its r-equal treatment allocation is a core allocation of the r-fold replica
economy Er for every r = 1, 2, 3, . . . .

An allocation (x1, . . . , xm) of an exchange economy E is said to be a Walrasian
(or competitive) equilibrium of E if there is a non-zero continuous linear functional
p on E such that

p(x) ≤ p(ωi) implies xi ºi x,

and a quasiequilibrium of E if there is a non-zero continuous linear functional p on
E such that

x ºi xi implies p(x) ≥ p(ωi).

3. Results

The following theorem is our main result. It is easily seen that if an allocation
is a Walrasian equilibrium of an exchange economy then it is a strong Edgeworth
equilibrium. The theorem with its corollary asserts the inverse of this result and
this type of theorems are sometimes called core equivalence theorems as well as
limit theorems of cores.



CORE EQUIVALENCE IN TOPOLOGICAL RIESZ SPACES WITHOUT CONVEXITY 91

Theorem 1. Suppose that in an exchange economy E = (E, {ωi,ºi i = 1, . . . , m})
all preferences ºi are uniformly proper and monotone. Then every strong Edgeworth
equilibrium is a quasiequilibrium.

Proof. Suppose that (x1, . . . , xm) is a strong Edgeworth equilibrium of the exchange
economy E . Define

Pi = {x ∈ E+ : x ºi xi} and Gi = Pi − ωi = {x ∈ E : x + ωi ºi xi},
and let G = co

⋃m
i=1 Gi.

By the uniform properness of the preferences, for each i there is a convex, solid,
open neighborhood Vi of 0 and some vi > 0 such that x − αvi + z ºi x in E with
α > 0 imply z /∈ αVi. Put V = ∩m

i=1Vi and v = v1 + · · · + vm, and consider a
non-empty, convex, open cone C

C =
⋃

α>0

α(
1
2
V − v)

We claim that C ∩ G = ∅. Assume by way of contradiction that C ∩ G 6= ∅
and let a ∈ C ∩ G. Since a ∈ C, there is α > 0 such that a + αv ∈ (α/2)V .
On the other hand, since a ∈ G There are a positive integer l, zij ºi xi(i =
1, . . . , m; j = 1, . . . , l), λj ≥ 0(j = 1, . . . , l), µij ≥ 0(i = 1, . . . , m; j = 1, . . . , l),
such that a =

∑m
i=1

∑l
j=1 λiµij(zij − ωi),

∑q
i=1 λi = 1,

∑l
j=1 µij = 1(i = 1, . . . , m).

By approximating λi and µij by rational numbers, we can find positive rational
numbers bij(i = 1, . . . , m; j = 1, . . . , l), positive integers n and ni(i = 1, . . . , m)
such that

m∑

i=1

l∑

j=1

ni

n
bij(zij − ωi)− a ∈ α

2
V,

∑m
i=1 ni = n,

∑l
j=1 bij = 1(i = 1, . . . , m), and each nibij is a positive integers.

Consequently, it follows that
m∑

i=1

l∑

j=1

nibij(zij − ωi) + αnv ∈ αnV,

and put

y =
m∑

i=1

l∑

j=1

nibijωi − αnv and z =
m∑

i=1

l∑

j=1

nibijzij .

Since z − y = z + αnv −∑m
i=1

∑l
j=1 nibijωi ≤ z + αnv, it follows that

(y − z)− = (z − y)+ ≤ z + αnv =
m∑

i=1

( l∑

j=1

nibijzij + αnvi

)
.

Therefore, by the Riesz decomposition property, there are ui ∈ E+(i = 1, . . . , m)
with 0 ≤ ui ≤

∑l
j=1 nibijzij + αnvi and

∑m
i=1 ui = (y − z)−. Now let

yij = zij +
αn

ni
vi − 1

ni
ui for i = 1, . . . , m and j = 1, . . . , l.
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It is easily seen that
∑l

j=1 bijyij ≥ 0 for all i, that is, co{yij : j = 1, . . . , l}∩E+ 6= ∅.
It follows that yij Âi zij for all i and j. Indeed, if this is not true, then we must have
yij ¹i zij = yij − (αn/ni)vi + (1/ni)ui for some i and j, which implies 1

ni
ui /∈ αn

ni
V ,

or ui /∈ αnV . On the other hand, since

0 ≤ ui ≤ (y − z)− ≤ |y − z| =
∣∣∣∣∣∣

m∑

i=1

l∑

j=1

nibijωi − αnv −
m∑

i=1

l∑

j=1

nibijzij

∣∣∣∣∣∣
∈ αnV,

we see that ui ∈ αnV , which contradicts ui /∈ αnV . Thus, yij Âi zij holds for all i
and j.

Then we have yij Âi zij ºi xi and
m∑

i=1

l∑

j=1

nibijyij =
m∑

i=1

l∑

j=1

nibijzij +
m∑

i=1

l∑

j=1

αnbijvi −
m∑

i=1

l∑

j=1

bijui

= z +
m∑

i=1

αnvi −
m∑

i=1

ui

= z +
m∑

i=1

αnvi − (y − z)−

≤ z + αnv − (z − y)
= y + αnv

=
m∑

i=1

l∑

j=1

nibijωi.

Therefore, setting

e = (
m∑

i=1

l∑

j=1

nibijωi −
m∑

i=1

l∑

j=1

nibijyij)/
m∑

i=1

l∑

j=1

nibij

= (
m∑

i=1

niωi −
m∑

i=1

l∑

j=1

nibijyij)/n ≥ 0,

we have yij + e Âi xi for i = 1, . . . , m and j = 1, . . . , l and
m∑

i=1

l∑

j=1

nibij(yij + e) =
m∑

i=1

l∑

j=1

nibijωi.

Moreover, it follows that

1
ni

l∑

j=1

nibij(yij + e) =
l∑

j=1

bijyij + e ≥ 0,

for i = 1, . . . , l. Therefore, putting r = max1≤i≤m
∑l

j=1 nibij = max1≤i≤m ni, we
have constructed an allocation (yij) of Er which prevent etr(x1, . . . , xm) from being
a core allocation of Er, and this contradicts the hypothesis that (x1, . . . , xm) is a
strong Edgeworth equilibrium and hence C ∩G = ∅.



CORE EQUIVALENCE IN TOPOLOGICAL RIESZ SPACES WITHOUT CONVEXITY 93

Since C ∩G = ∅ and C is open, it follows from the separation theorem that there
is some non-zero continuous linear functional p satisfying p · g ≥ p · w for all g ∈ G
and w ∈ C. Since w ∈ C implies αw ∈ C for all α > 0, we see that p ·g ≥ 0 holds for
each g ∈ G. Thus, if x ºi xi, then x−ωi ∈ G, and so p · (x−ωi) = p · x− p ·ωi ≥ 0
implies p · x ≥ p · ωi. This means that (x1, . . . , xm) is a quasiequilibrium of the
exchange economy E . ¤

Corollary 1. Suppose that in an exchange economy E = (E, {ωi,ºi i = 1, . . . , m})
all preferences ºi are uniformly proper and monotone. If each preferences ºi is
algebraicly open and one of the following assumptions is satisfied,

(1) each initial endowment ωi is strictly positive;
(2) each preference ºi is strictly monotone and the total endowment ω =

∑m
i=1 ωi

is strictly positive;
then every strong Edgeworth equilibrium is a Walrasian equilibrium.

Proof. Let (x1, . . . , xm) be a strong Edgeworth equilibrium. By Theorem 1, (x1, . . . ,
xm) is a quasiequilibrium and there is a non-zero continuous linear functional p on
E such that x ºi xi implies p(x) ≥ p(ωi) for i = 1, . . . , m. Then, since p(xi) ≥ p(ωi)
and

∑m
i=1 xi =

∑m
i=1 ωi, it follows that p(xi) = p(ωi) for i = 1, . . . , m. Moreover,

we have p ≥ 0 by the monotonicity of ºi.
Note that, if p(ωi) > 0 for some i, then it follows that p(x) ≤ p(ωi) implies

x ¹i xi. Indeed, if there were x ∈ E such that p(x) ≤ p(ωi), but x Âi xi. Since
{y ∈ E : y Âi xi} is algebraicly open, there is a number α such that 0 < α < 1
and αx Âi xi. Therefore, p(αx) ≥ p(ωi) ≥ p(x) and hence p(x) ≤ 0 and p(ωi) ≤ 0,
which is a contradiction.

In case of (1), it is clear that p(ωi) > 0 for all i = 1, . . . , m and (x1, . . . , xm) is a
Walrasian equilibrium.

In case of (2), it is clear that p(ωi) > 0 for some i. For any i′ with i′ 6= i, we
have xi +ωi′ Âi xi and hence p(xi +ωi′) > p(xi). Therefore, we have p(ωi′) > 0 and
(x1, . . . , xm) is a Walrasian equilibrium. ¤

A preference ºi on E is said to be irreducible whenever, for any allocation
(x1, . . . , xm) of E and for each pair of nonempty subsets I1 and I2 of {1, . . . , m}
with I1 ∪ I2 = {1, . . . , m} and I1 ∩ I2 = ∅, there exists a subset {yj : j ∈ I2} of E+

such that
∑

j∈I2
yj ≤

∑
i∈I1

ωi and xj + yj Âj xj for some j ∈ I2.

Corollary 2. Suppose that in an exchange economy E = (E, {ωi,ºi i = 1, . . . , m})
all preferences ºi are uniformly proper, monotone and irreducible. If each prefer-
ences ºi is algebraicly open　 and the total　 endowment ω =

∑m
i=1 ωi is strictly

positive, then every strong Edgeworth equilibrium is a Walrasian equilibrium.

Proof. Let (x1, . . . , xm) be a strong Edgeworth equilibrium. By Theorem 1, (x1, . . . ,
xm) is a quasiequilibrium and there is a non-zero continuous linear functional p on E
such that x ºi xi implies p(x) ≥ p(ωi) for i = 1, . . . , m. it follows that p(xi) = p(ωi)
for i = 1, . . . , m. Moreover, we have p ≥ 0 by the monotonicity of ºi. To prove
this corollary, by the proof of Corollary 1, it is sufficient that p(ωi) > 0 for each i ∈
{1, . . . , m}. Since p(ω) > 0, then there exists i0 ∈ {1, . . . , m} such that p(ωi0) > 0.
Let I1 = {i ∈ {1, . . . , m} : p(ωi) = 0} and I2 = {j ∈ {1, . . . , m} : p(ωj) > 0}. We
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assume that I1 is nonempty. Since I1 and I2 are nonempty with I1∪I2 = {1, . . . , m}
and I1 ∩ I2 = ∅, by the irreducibility assumption, there exists a subset {yj : j ∈ I2}
of E+ such that

∑
j∈I2

yj ≤
∑

i∈I1
ωi and xj0 + yj0 Âj0 xj0 for some j0 ∈ I2. Since,

for each j ∈ I2, p(yj) ≥ 0 and

0 ≤
∑

j∈I2

p(yj) ≤
∑

j∈I1

p(ωi) = 0,

then we have p(yj) = 0 for all j ∈ I2. Since p(ωj0) > 0 and xj0 + yj0 Âj0 xj0 , by the
same method with the proof of Corollary 1, we have

p(xj0) < p(xj0 + yj0) = p(xj0) + p(yj0) = p(xj0).

This is contradiction. Then we have I1 is empty. Therefore we obtain that p(ωj) > 0
for each j ∈ {1, . . . , m}. ¤
Remark 1. Note that if ºi is strictly monotone for each i ∈ {1, . . . , m}, then ºi

is irreducible. Indeed, let (x1, . . . , xm) be any allocation of E, and I1 and I2 be
nonempty subsets of {1, . . . , m} such that I1 ∪ I2 = {1, . . . , m} and I1 ∩ I2 = ∅. Put
yj = 1

#I2

∑
i∈I1

ωi > 0 for all j ∈ I2. The set {yj : j ∈ I2} satisfies that
∑

j∈I2
yj ≤∑

i∈I1
ωi and xj + yj Âj xj for each j ∈ I2. Thus the second half of Corollary 1

is a corollary of Corollary 2, but we have listed the two kinds of assumptions of
Corollary 1 in order to make a comparison between the two assumptions.
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