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STRONG CONVERGENCE THEOREMS FOR
ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS IN

BANACH SPACES

NAOKI SHIOJI AND WATARU TAKAHASHI

Abstract. Let S be a semigroup and let C be a closed, convex subset of a
Banach space E. Let {an} and {bn} be real sequences such that 0 < an ≤ 1,
an → 0, 0 ≤ bn ≤ 1 and bn → 0, let {µn} be a sequence of means on a subspace
X of the Banach space of all bounded real-valued functions on S, and let S =
{Tt : t ∈ S} be an asymptotically nonexpansive semigroup on C such that the
set of common fixed points of S is nonempty. Let x and y0 be elements of C.
In this paper, we study the strong convergence of the sequences {xn} and {yn}
respectively defined by

xn = anx + (1− an)Tµnxn for all sufficiently large n,

and
yn+1 = bnx + (1− bn)Tµnyn for n = 0, 1, 2, . . .,

where for u ∈ C and a mean µ on X, Tµu is a unique element of C satisfying
〈Tµu, u∗〉 = µt〈Ttu, u∗〉 for all u∗ ∈ E∗.

1. Introduction

Let C be a closed, convex subset of a Hilbert space and let T be a nonexpansive
mapping from C into itself such that the set F (T ) of fixed points of T is nonempty.
Let x be an element of C and for each t with 0 < t < 1, let xt be a unique point of
C satisfying

xt = tx + (1− t)Txt.

Browder [3] showed that {xt} converges strongly to the element of F (T ) which is
nearest to x in F (T ) as t ↓ 0. This result was extended to those of a Banach space by
Reich [11] and Takahashi and Ueda [25]. Since {xt} converges strongly, Halpern [7]
and Reich [12] considered the following iteration process:

yn+1 = bnx + (1− bn)Tyn for n = 0, 1, 2, . . .,

where y0 is an element of C and {bn} is a real sequence satisfying 0 ≤ bn ≤ 1
and bn → 0. Recently, Wittmann [26] showed that {yn} converges strongly to the
element of F (T ) which is nearest to x if

∑∞
n=0 bn = ∞ and

∑∞
n=0 |bn+1 − bn| < ∞.

The authors [16] extended his result to that of a Banach space, which gives an
answer to Reich’s problem [12]. On the other hand, using ideas of Browder [3]
and Wittmann [26], Shimizu and Takahashi [14, 15] studied the convergence of the
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following sequences {xn} and {yn}:

(1.1) xn = anx + (1− an)
1

n + 1

n∑

i=0

T ixn for n = 0, 1, 2, . . .;

(1.2) yn+1 = bnx + (1− bn)
1

n + 1

n∑

i=0

T iyn for n = 0, 1, 2, . . .,

where {an} is a real sequence satisfying 0 < an ≤ 1 and an → 0. The authors [19, 20]
also extended these results to those of a Banach space.

In this paper, we study strong convergence theorems for an asymptotically nonex-
pansive semigroup on a Banach space by the use of a sequence of means, which has
been developed in the study of nonlinear ergodic theorems (cf. [1, 5, 6, 8, 13, 22, 23]).
In the framework of a Hilbert space, we introduced two iteration processes which
generalize (1.1) and (1.2) and we discussed strong convergence of the iterative pro-
cesses in [18]. Though the proofs in this paper and those in [18] are considerably
different, Theorems 2 and 3 below are straight generalizations of those in [18]. How-
ever, to prove Theorems 4 and 5 below, we need the concept of monotone conver-
gence for means. The reason is that the duality mapping is not weakly continuous
on a Banach space.

This paper is organized as follows: Section 2 is devoted to some preliminaries
and notations. In Section 3, we state our main results and in Section 4, we prove
them. Finally, we investigate some theorems which can be deduced from our main
results.

2. Preliminaries and notations

Throughout this paper, all vector spaces are real and we denote by N the set of
all nonnegative integers. For a real number a, we also denote max{a, 0} by (a)+.

Let E be a Banach space and let r > 0. We denote by Br the closed ball in E
with center 0 and radius r. E is said to be uniformly convex if for each ε > 0, there
exists δ > 0 such that ‖(x + y)/2‖ ≤ 1 − δ for each x, y ∈ B1 with ‖x − y‖ ≥ ε.
Let C be a subset of E, let T be a mapping from C into E and let ε > 0. We
denote by coC the closed convex hull of C and we denote by F (T ) and Fε(T ) the
sets {x ∈ C : x = Tx} and {x ∈ C : ‖x− Tx‖ ≤ ε}, respectively.

Let E∗ be the topological dual of E. The value of x∗ ∈ E∗ at x ∈ E will be
denoted by 〈x, x∗〉. We also denote by J the duality mapping from E into 2E∗ , i.e.,

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} for each x ∈ E.

Let U = {x ∈ E : ‖x‖ = 1}. E is said to be smooth if for each x, y ∈ U , the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists. The norm of E is said to be uniformly Gâteaux differentiable if for each
y ∈ U , the limit (2.1) exists uniformly for x ∈ U . We know that if E is smooth
then the duality mapping is single-valued and norm to weak star continuous and
that if the norm of E is uniformly Gâteaux differentiable then the duality mapping
is norm to weak star uniformly continuous on each bounded subset of E.
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Let C be a convex subset of E, let K be a nonempty subset of C and let P be
a retraction from C onto K, i.e., Px = x for each x ∈ K. P is said to be sunny if
P (Px + t(x− Px)) = Px for each x ∈ C and t ≥ 0 with Px + t(x− Px) ∈ C. We
know from [4, Theorem 3] or [10, Lemma 2.7] that if E is smooth, then a retraction
P from C onto K is sunny and nonexpansive if and only if

(2.2) 〈x− Px, J(y − Px)〉 ≤ 0 for all x ∈ C and y ∈ K,

and hence there is at most one sunny, nonexpansive retraction from C onto K. If
there is a sunny, nonexpansive retraction from C onto K, K is said to be a sunny,
nonexpansive retract of C.

Let S be a semigroup. Let B(S) be the space of all bounded real-valued functions
defined on S with supremum norm. For s ∈ S and f ∈ B(S), we define an element
lsf in B(S) by

(lsf)(t) = f(st) for each t ∈ S.
Let X be a subspace of B(S) containing 1 and let X∗ be its topological dual. An
element µ of X∗ is said to be a mean on X if ‖µ‖ = µ(1) = 1. We know that µ
is a mean on X if and only if inf f(S) ≤ µ(f) ≤ sup f(S) for all f ∈ X. We often
write µt(f(t)) instead of µ(f) for µ ∈ X∗ and f ∈ X. Let X be ls-invariant, i.e.,
ls(X) ⊂ X for each s ∈ S. A mean µ on X is said to be left invariant if µ(lsf) = µ(f)
for each s ∈ S and f ∈ X. A sequence of means {µn} on X is said to be strongly
left regular if ‖µn − l∗sµn‖ → 0 for each s ∈ S, where l∗s is the adjoint operator
of ls. In the case when S is commutative, a left invariant mean is said to be an
invariant mean and a strongly left regular sequence is said to be a strongly regular
sequence [8, 9]. We remark that an invariant mean on B(N) is said to be a Banach
limit [2]. Further, let X be satisfied that for each bounded subset {fn : n ∈ N} of
X, the mappings t 7→ infn fn(t) and t 7→ supn fn(t) are elements of X. A mean µ
on X is said to be monotone convergent if µt(limn fn(t)) = limn µt(fn(t)) for each
bounded sequence {fn : n ∈ N} of X such that 0 ≤ f1 ≤ f2 ≤ · · · .

Let E be a reflexive Banach space, let X be a subspace of B(S) containing 1 and
let µ be a mean on X. Let f be a bounded function from S into E such that the
mapping t 7→ 〈f(t), x∗〉 is an element of X for each x∗ ∈ E∗. We know from [8]
that there exists a unique element x0 ∈ E such that 〈x0, x

∗〉 = µt〈f(t), x∗〉 for all
x∗ ∈ E∗. Following [8], we denote such x0 by

∫
f(t) dµ(t).

Let C be a closed, convex subset of a reflexive Banach space E. A family S =
{Tt : t ∈ S} is said to be a uniformly Lipschitzian semigroup on C with Lipschitz
constants {kt : t ∈ S} if

(i) kt is a nonnegative real number for each t ∈ S and supt∈S kt < ∞;
(ii) for each t ∈ S, Tt is a mapping from C into itself and ‖Ttx−Tty‖ ≤ kt‖x−y‖

for each x, y ∈ C;
(iii) Tts = TtTs for each t, s ∈ S.

A uniformly Lipschitzian semigroup S = {Tt : t ∈ S} on C with Lipschitz constants
{kt : t ∈ S} is said to be asymptotically nonexpansive if infs∈S supt∈S kst ≤ 1, and
it is said to be nonexpansive if kt = 1 for all t ∈ S. We denote by F (S) the set of
common fixed points of S, i.e.,

⋂
t∈S{x ∈ C : Ttx = x}. Let S = {Tt : t ∈ S} be a

uniformly Lipschitzian semigroup on C with Lipschitz constants {kt : t ∈ S} such
that {Ttu : t ∈ S} is bounded for some u ∈ C and let X be a subspace of B(S) such
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that 1 ∈ X and the mappings t 7→ kt and t 7→ 〈Ttx, x∗〉 are elements of X for each
x ∈ C and x∗ ∈ E∗. Following [13], we also write Tµx instead of

∫
Ttx dµ(t) for a

mean µ on X and x ∈ C.

3. Main results

Now we state our main results.

Theorem 1. Let C be a closed, convex subset of a uniformly convex Banach space
E whose norm is uniformly Gâteaux differentiable. Let S be a semigroup and let
S = {Tt : t ∈ S} be an asymptotically nonexpansive semigroup on C with Lipschitz
constants {kt : t ∈ S} such that F (S) is nonempty. Let X be a subspace of B(S)
such that 1 ∈ X, X is ls-invariant for each s ∈ S and the mappings t 7→ kt and
t 7→ 〈Ttx, x∗〉 are elements of X for each x ∈ C and x∗ ∈ E∗. If there is a left
invariant mean on X, then F (S) is a sunny, nonexpansive retract of C.

We show a strong convergence theorem which generalizes the results in [14, 19,
18]:

Theorem 2. Let C, E, S, S and X be as in Theorem 1. Assume that there is a
left invariant mean on X. Let P be the sunny, nonexpansive retraction from C onto
F (S) and let {µn} be a strongly left regular sequence of means on X. Let {an} be
a real sequence satisfying 0 < an ≤ 1, an → 0 and

(3.1) lim
n→∞

(µn)t(kt)− 1
an

< 1.

Let x be an element of C and let {xn} be the sequence defined by

(3.2) xn = anx + (1− an)Tµnxn

for n ≥ n0, where n0 is a sufficiently large natural number. Then {xn} converges
strongly to Px.

Remark 1. The inequality (3.1) implies that there exists n0 ∈ N such that (1 −
an) (µn)t(kt) < 1 for n ≥ n0. So for n ≥ n0, there exists a unique point xn ∈ C
satisfying xn = anx + (1 − an)Tµnxn, since the mapping Tn from C into itself
defined by Tnu = anx + (1 − an)Tµnu is a contraction, i.e., ‖Tnu − Tnv‖ ≤ (1 −
an) (µn)t(kt) ‖u− v‖ for each u, v ∈ C.

Remark 2. By [24], we know that the condition F (S) 6= ∅ can be replaced by the
condition that there exists u ∈ C such that {Ttu : t ∈ S} is bounded.

In the case when S is nonexpansive, we have the following:

Theorem 3. Let C, E, S, S, X, P and {µn} be as in Theorem 2. Assume that
S is nonexpansive. Let {an} be a real sequence satisfying 0 < an ≤ 1 and an → 0.
Let x be an element of C and let {xn} be the sequence defined by (3.2) for n ∈ N.
Then {xn} converges strongly to Px.

Next, we show another strong convergence theorem which generalizes the results
in [15, 20, 18]:
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Theorem 4. Let C, E, S, S, X and P be as in Theorem 2. Assume that for each
bounded subset {fn : n ∈ N} of X, the mappings t 7→ supn fn(t) and t 7→ infn fn(t)
are elements of X. Let {µn} be a strongly left regular sequence of monotone con-
vergent means on X. Let {bn} be a real sequence satisfying 0 ≤ bn ≤ 1, bn → 0,∑∞

n=0 bn = ∞ and

(3.3)
∞∑

n=0

(
(1− bn)((µn)t(kt))2 − 1

)
+

< ∞.

Let x and y0 be elements of C and let {yn} be the sequence defined by

(3.4) yn+1 = bnx + (1− bn)Tµnyn for n ∈ N.

Then {yn} converges strongly to Px.

In the case when S is nonexpansive, we also have the following:

Theorem 5. Let C, E, S, S, X, P and {µn} be as in Theorem 4. Assume that
S is nonexpansive. Let {bn} be a real sequence satisfying 0 ≤ bn ≤ 1, bn → 0 and∑∞

n=0 bn = ∞. Let x and y0 be elements of C and let {yn} be the sequence defined
by (3.4). Then {yn} converges strongly to Px.

4. Proofs of Theorems

For the sake of completeness, we give the proof of the following lemma.

Lemma 1. Let C be a closed, convex subset of a reflexive Banach space E. Let
S be a semigroup and let S = {Tt : t ∈ S} be a uniformly Lipschitzian semigroup
on C with Lipschitz constants {kt : t ∈ S} such that F (S) is nonempty. Let X
be a subspace of B(S) such that 1 ∈ X, X is ls-invariant for each s ∈ S and the
mappings t 7→ kt and t 7→ 〈Ttx, x∗〉 are elements of X for each x ∈ C and x∗ ∈ E∗.
Let µ be a mean on X. Then

(i) if x ∈ F (S), then Tµx = x;
(ii) ‖Tµy − Tµz‖ ≤ µt(kt)‖y − z‖ for each y, z ∈ C.

Proof. Let x ∈ F (S). Then we have 〈Tµx, x∗〉 = µt〈Ttx, x∗〉 = 〈x, x∗〉 for all x∗ ∈
E∗, and hence we get (i). Let y, z ∈ C and let x∗ ∈ J(Tµy − Tµz). Then we have

‖Tµy − Tµz‖2 = µt〈Tty − Ttz, x∗〉 ≤ µt(kt)‖y − z‖‖x∗‖,
and hence we get (ii). ¤

The following is crucial to prove our theorems.

Lemma 2. Let C be a closed, convex subset of a uniformly convex Banach space E.
Let S be a semigroup and let S = {Tt : t ∈ S} be an asymptotically nonexpansive
semigroup on C with Lipschitz constants {kt : t ∈ S} such that F (S) is nonempty.
Let X be a subspace of B(S) such that 1 ∈ X, X is ls-invariant for each s ∈ S
and the mappings t 7→ kt and t 7→ 〈Ttx, x∗〉 are elements of X for each x ∈ C and
x∗ ∈ E∗. Let {µn} be a strongly left regular sequence of means on X. Then for each
r > 0,

inf
s∈S

max
{
sup
t∈S

(kst − 1)+, sup
t∈S

lim
n→∞

sup
u∈C∩Br

‖Tµnu− Tst(Tµnu)‖} = 0.
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Proof. Let r > 0. Set d = sup{‖Ttu‖ : u ∈ C ∩ Br, t ∈ S} and set R =
max{d, sup{‖Ttu‖ : u ∈ C ∩ Bd, t ∈ S}}. We may assume d > 0. Fix ε > 0.
From [19, Lemma 1], there exists δ > 0 satisfying(

co(Fδ(U) ∩BR) + Bδ

) ∩ C ⊂ Fε(U)

for all mappings U from C into E such that ‖Ux− Uy‖ ≤ (1 + δ)‖x− y‖ for each
x, y ∈ C; see also [6, Theorem 1.2]. From [19, Lemma 3], there also exist η > 0
and a positive natural number N such that for each mapping U from C into itself
satisfying sup{‖Unx‖ : n ∈ N, x ∈ C ∩ Bd} ≤ R and ‖Ux − Uy‖ ≤ (1 + η)‖x − y‖
for each x, y ∈ C, there holds

∥∥∥∥
1

m + 1

m∑

i=0

U ix− U

(
1

m + 1

m∑

i=0

U ix

)∥∥∥∥ ≤ δ

for all m ≥ N and x ∈ C ∩Bd. We may assume max{δ, η} ≤ ε. From infs supt kst ≤
1, there exists s0 ∈ S such that ks0t ≤ 1 + min{δ, η} for all t ∈ S. Fix t ∈ S. Then
we have

∥∥∥∥
1

N + 1

N∑

i=0

(Ts0t)i(Tsu)− Ts0t

(
1

N + 1

N∑

i=0

(Ts0t)i(Tsu)
)∥∥∥∥ ≤ δ

for all s ∈ S and u ∈ C ∩Br. Hence for each mean µ on X, we have
∫

1
N + 1

N∑

i=0

T(s0t)isu dµ(s) ∈ co
{

1
N + 1

N∑

i=0

T(s0t)isu : s ∈ S

}
⊂ coFδ(Ts0t) ∩BR

for all u ∈ C ∩ Br, where (s0t)0s represents s. From the strong left regularity of
{µn}, there exists nN

s0t ≥ n0 such that ‖µn − l∗
(s0t)iµn‖ < δ/d for all n ≥ nN

s0t and
i = 1, . . . , N . Since

∥∥∥∥Tµnu−
∫

1
N + 1

N∑

i=0

T(s0t)isu dµn(s)
∥∥∥∥

= sup
‖u∗‖=1

∣∣∣∣(µn)s〈Tsu, u∗〉 − 1
N + 1

N∑

i=0

(µn)s〈T(s0t)isu, u∗〉
∣∣∣∣

≤ 1
N + 1

N∑

i=1

sup
‖u∗‖=1

∣∣(µn)s〈Tsu, u∗〉 − (l∗(s0t)iµn)s〈Tsu, u∗〉
∣∣

≤ 1
N + 1

N∑

i=1

‖µn − l∗(s0t)iµn‖ · d ≤ δ,

we get Tµnu ∈ (co(Fδ(Ts0t) ∩BR)+Bδ) ∩C for all u ∈ C ∩Br and n ≥ nN
s0t. So we

have Tµnu ∈ Fε(Ts0t) for all u ∈ C ∩Br and n ≥ nN
s0t, and hence we get

inf
s∈S

max
{
sup
t∈S

(kst − 1)+, sup
t∈S

lim
n→∞

sup
u∈C∩Br

‖Tµnu− Tst(Tµnu)‖}

≤ max
{
sup
t∈S

(ks0t − 1)+, sup
t∈S

lim
n→∞

sup
u∈C∩Br

‖Tµnu− Ts0t(Tµnu)‖} ≤ ε.

Since ε > 0 is arbitrary, we obtain the conclusion. ¤
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Till the end of Lemma 5, we assume that C, E, S, S, X, P , {µn}, {an}, n0, x
and {xn} are as in Theorem 2 and we set a = limn

(
(µn)t(kt) − 1

)/
an. For n ∈ N

with 1 ≤ n ≤ n0 − 1, we set xn = x.

Lemma 3. Let ν be a Banach limit and let {xni} be a subsequence of {xn}. Then
there exists a unique point z of C satisfying

(4.1) νi‖xni − z‖2 = min
y∈C

νi‖xni − y‖2

and the point z is an element of F (S).

Proof. From Lemma in [24], there exists a unique point z of C satisfying (4.1). We
shall show infs∈S supt∈S ‖Tstz − z‖ = 0. Suppose not. Then there exists ε > 0
such that for each s ∈ S, there exists t ∈ S satisfying ‖Tstz − z‖ ≥ ε. Set R =
max{‖z‖, sup{‖Ttz‖ : t ∈ S}}. From Lemma in [24] and its proof, we can choose
δ > 0 such that

νi

∥∥∥∥xni −
u + v

2

∥∥∥∥
2

≤ 1
2
(
νi‖xni − u‖2 + νi‖xni − v‖2

)− δ

for all u, v ∈ C ∩ BR with ‖u− v‖ ≥ ε. By the property of ε, infs supt kst ≤ 1 and
Lemma 2, there also exists s ∈ S such that ‖Tsz − z‖ ≥ ε, (k2

s − 1)νi‖xni − z‖2 < δ
and νi‖xni − Tsz‖2 ≤ νi‖Tsxni − Tsz‖2 + δ. Then we have

νi

∥∥∥∥xni −
Tsz + z

2

∥∥∥∥
2

≤ 1
2
(
νi‖xni − Tsz‖2 + νi‖xni − z‖2

)− δ

≤ νi‖xni − z‖2 +
1
2
(
(k2

s − 1)νi‖xni − z‖2 − δ
)

< νi‖xni − z‖2.

So we get a contradiction. Hence we have infs supt ‖Tstz− z‖ = 0. From the strong
left regularity of {µn}, there is a left invariant mean µ on X. Fix w ∈ S. For each
s ∈ S, we have

‖Twz − z‖2 = 〈Twz − z, J(Twz − z)〉
= µt〈Twz − Ttz, J(Twz − z)〉+ µt〈Ttz − z, J(Twz − z)〉
= µt〈Twz − Twstz, J(Twz − z)〉+ µt〈Tstz − z, J(Twz − z)〉
≤ sup

t∈S
‖Twz − Twstz‖‖J(Twz − z)‖+ sup

t∈S
‖Tstz − z‖‖J(Twz − z)‖

≤ (kw + 1) sup
t∈S

‖Tstz − z‖‖J(Twz − z)‖.

Since infs supt ‖Tstz − z‖ = 0, we get ‖Twz − z‖2 = 0. Therefore we obtain z ∈
F (S). ¤

Lemma 4.

〈xn − x, J(xn − z)〉 ≤ ((µn)t(kt)− 1)+
an

‖xn − z‖2 for all n ≥ n0 and z ∈ F (S).
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Proof. Let n ≥ n0 and let z ∈ F (S). Since an(xn − x) = (1− an)(Tµnxn − xn) and
Tµnz = z, we get

〈xn − x, J(xn − z)〉 =
1− an

an
〈Tµnxn − xn, J(xn − z)〉

=
1− an

an

(〈Tµnxn − Tµnz, J(xn − z)〉+ 〈z − xn, J(xn − z)〉)

≤ 1− an

an

(
(µn)t(kt)‖xn − z‖2 − ‖xn − z‖2

)

≤ ((µn)t(kt)− 1)+
an

‖xn − z‖2. ¤

Lemma 5. Each subsequence {xni} of {xn} contains a subsequence of {xni} con-
verging strongly to an element of F (S).

Proof. Let {xni} be a subsequence of {xn} and let ν be a Banach limit. Then there
exists z ∈ F (S) satisfying (4.1). By Lemma 4, we get νi〈xni − x, J(xni − z)〉 ≤
(a)+νi‖xni − z‖2. This inequality, a < 1 and [25, Lemma 1] yield

νi‖xni − z‖2 ≤ 1
1− (a)+

νi〈xni − x, J(xni − z)〉 ≤ 0.

Hence there exists a subsequence of {xni} converging strongly to z. ¤

Now we can prove Theorems 1 and 2.

Proof of Theorem 1. Assume that there is a left invariant mean µ on X. From
infs supt kst ≤ 1, we know that µt(kt) ≤ 1. Let x be an element of C and let {xn}
be the sequence defined by

xn =
1

n + 1
x +

(
1− 1

n + 1

)
Tµxn for each n ∈ N.

First we shall show that {xn} converges strongly to an element of F (S). By
Lemma 5, we know that each subsequence {xni} of {xn} contains a subsequence of
{xni} converging strongly to an element of F (S). Let {xni} and {xmi} be subse-
quences of {xn} converging strongly to elements y and z of F (S), respectively. From
Lemma 4 and µt(kt) ≤ 1, we have 〈y − x, J(y − z)〉 ≤ 0 and 〈z − x, J(z − y)〉 ≤ 0,
which implies y = z. So {xn} converges strongly to an element of F (S). Hence
we can define a mapping P from C onto F (S) by Px = limn xn. By the argument
above, we have 〈x − Px, J(z − Px)〉 ≤ 0 for all x ∈ C and z ∈ F (S). Therefore P
is the sunny, nonexpansive retraction from C onto F (S). ¤

Proof of Theorem 2. Let {xni} be a subsequence of {xn} converging strongly to an
element y of F (S). By Lemma 4, we have 〈y − x, J(y − Px)〉 ≤ (a)+‖y − Px‖2.
Hence we obtain

(1− (a)+)‖y − Px‖2 ≤ 〈x− Px, J(y − Px)〉 ≤ 0

by (2.2). From a < 1, we have y = Px. Hence by Lemma 5, {xn} converges strongly
to Px. ¤
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Proof of Theorem 3. Since S is nonexpansive, we have limn

(
(µn)t(kt) − 1

)/
an =

0 < 1. So we obtain the desired result by Theorem 2. ¤

Next, we give the proofs of Theorems 4 and 5. Till the end of Lemma 8, we
assume that C, E, S, S, X, P , {µn}, {bn}, x and {yn} are as in Theorem 4.

By the standard measure theory argument, we have the following:

Lemma 6. Let µ be a monotone convergent mean on X and let {fn : n ∈ N} be a
bounded sequence of X. Then limn fn ∈ X and

lim
n→∞µt(fn(t)) ≤ µt

(
lim

n→∞ fn(t)
)
.

Since each µn is monotone convergent, the following holds:

Lemma 7. lim
m→∞ lim

n→∞ ‖Tµmyn − yn‖ = 0.

Proof. Set R = sup
({‖Tµnyn‖ : n ∈ N} ∪ {‖Tt(Tµnyn)‖ : t ∈ S, n ∈ N}). Let ε > 0.

By Lemma 2, there exists s0 ∈ S such that limn ‖Ts0t(Tµnyn)−Tµnyn‖ ≤ ε for each
t ∈ S. From the strong left regularity of {µm}, there also exists ms0 ∈ N such that
‖l∗s0

µm − µm‖ ≤ ε for all m ≥ ms0 . So by Lemma 6, we get

lim
n→∞‖Tµmyn − yn‖2 = lim

n→∞(µm)t〈Tt(Tµnyn)− Tµnyn, J(Tµm(Tµnyn)− Tµnyn)〉
≤ (µm)t

(
lim

n→∞〈Tt(Tµnyn)− Tµnyn, J(Tµm(Tµnyn)− Tµnyn)〉)

≤ (l∗s0
µm)t

(
lim

n→∞〈Tt(Tµnyn)− Tµnyn, J(Tµm(Tµnyn)− Tµnyn)〉) + 4R2ε

= (µm)t

(
lim

n→∞〈Ts0t(Tµnyn)− Tµnyn, J(Tµm(Tµnyn)− Tµnyn)〉) + 4R2ε

≤ (2R + 4R2)ε

for all m ≥ ms0 , and hence we have limm limn ‖Tµmyn− yn‖2 ≤ (2R + 4R2)ε. Since
ε > 0 is arbitrary, we obtain the conclusion. ¤

The following is crucial to prove Theorem 4.

Lemma 8. lim
n→∞〈x− Px, J(yn − Px)〉 ≤ 0.

Proof. From infs supt kst ≤ 1 and Lemma 7, we can choose a positive real sequence
{βm} such that limm βm = 0, limm

(
(µm)t(kt) − 1

)/
βm < 1, and ((µm)t(kt))2 ≤

1 + β2
m and limn ‖Tµmyn − yn‖ ≤ β2

m for all m ∈ N. Without loss of generality, we
may assume βm ≤ 1/2 for all m ∈ N. By Remark 1, there exists a unique point xm

of C satisfying xm = βmx+(1−βm)Tµmxm for all sufficiently large m. Without loss
of generality, we may also assume that xm is defined for all m ∈ N. We know that
{xm} converges strongly to Px by Theorem 2. Set R = sup

({‖Tµmxm‖}∪{‖xm‖}∪
{‖Tµmyn‖} ∪ {‖yn‖}

)
. From (1− βm)(Tµmxm − yn) = (xm − yn)− βm(x− yn), we

have

(1− βm)2‖Tµmxm − yn‖2 ≥ ‖xm − yn‖2 − 2βm〈x− yn, J(xm − yn)〉
= (1− 2βm)‖xm − yn‖2 + 2βm〈x− xm, J(yn − xm)〉
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for each m,n ∈ N. Then we get

〈x− xm, J(yn − xm)〉 ≤ 1
2βm

(
(1− βm)2‖Tµmxm − yn‖2 − (1− 2βm)‖xm − yn‖2

)

=
1− 2βm

2βm

(‖Tµmxm − yn‖2 − ‖xm − yn‖2
)

+
βm

2
‖Tµmxm − yn‖2

≤ 1− 2βm

2βm

(
(‖Tµmxm − Tµmyn‖+ ‖Tµmyn − yn‖)2 − ‖xm − yn‖2

)
+ 2R2βm

≤ 1
2βm

(
β2

m‖xm − yn‖2 + 6R‖Tµmyn − yn‖
)

+ 2R2βm

≤ 4R2βm +
3R

βm
‖Tµmyn − yn‖

for each m,n ∈ N. So we have

lim
n→∞〈x− xm, J(yn − xm)〉 ≤ (4R2 + 3R)βm

for each m ∈ N. Since {xm} converges strongly to Px and the norm of E is uniformly
Gâteaux differentiable, we obtain the conclusion. ¤

Now we can prove Theorem 4.

Proof of Theorem 4. Fix ε > 0. By Lemma 8, there exists n ∈ N such that 2〈x −
Px, J(ym−Px)〉 ≤ ε for each m ≥ n. Since (1−bm)(Tµmym−Px) = (ym+1−Px)−
bm(x− Px), we have

(1− bm)2‖Tµmym − Px‖2 ≥ ‖ym+1 − Px‖2 − 2bm〈x− Px, J(ym+1 − Px)〉
for each m ∈ N. So we get

‖ym+1 − Px‖2 ≤ bmε + (1− bm)2((µm)t(kt))2‖ym − Px‖2

for each m ≥ n. Set pm = ‖ym−Px‖2, cm = ((µm)t(kt))2 and dm = ((1−bm)cm−1)+
for each m ∈ N. We remark that

∑∞
m=0 dm < ∞ by (3.3). Then for each m ∈ N,

we have

pn+m ≤ (
bn+m−1 + (1− bn+m−1)2cn+m−1bn+m−2 + · · ·
+ (1− bn+m−1)2cn+m−1(1− bn+m−2)2cn+m−2 · · · (1− bn+1)2cn+1bn

)
ε

+ (1− bn+m−1)2cn+m−1(1− bn+m−2)2cn+m−2 · · · (1− bn)2cnpn

≤ (1 + dn+m−1)(1 + dn+m−2) · · · (1 + dn+1)

· (bn+m−1 + (1− bn+m−1)bn+m−2 + · · ·+ (1− bn+m−1) · · · (1− bn+1)bn

)
ε

+ (1 + dn+m−1)(1 + dn+m−2) · · · (1 + dn)

· (1− bn+m−1)(1− bn+m−2) · · · (1− bn)pn

≤ e
P∞

l=0 dl
(
ε + e−

Pn+m−1
l=n blpn

)
.

Hence we get
lim

m→∞ pm = lim
m→∞ pn+m ≤ e

P∞
l=0 dl · ε.

Since ε > 0 is arbitrary, {yn} converges strongly to Px. ¤
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Proof of Theorem 5. Since S is nonexpansive, we have
∑∞

n=0

(
(1− bn)((µn)t(kt))2−

1
)
+

= 0 < ∞. So we obtain the desired result by Theorem 5. ¤

5. Deduced theorems from main results

Throughout this section, we assume that C is a closed, convex subset of a uni-
formly convex Banach space E whose norm is uniformly Gâteaux differentiable.
Since we use a sequence of abstract means in our main results, we can deduce many
theorems from them. We give the proofs for some theorems in this section. For
others, see [8, 18, 17].

Theorem 6. Let T be an asymptotically nonexpansive mapping from C into itself
with Lipschitz constants {kn : n ∈ N} such that F (T ) 6= ∅ and let P be the sunny,
nonexpansive retraction from C onto F (T ). Let {an} be a real sequence such that
0 < an ≤ 1, an → 0 and limn

(∑n
j=0 kj/(n + 1) − 1

)/
an < 1, and let {bn} be

a real sequence such that 0 ≤ bn ≤ 1, bn → 0,
∑∞

n=0 bn = ∞ and
∑∞

n=0

(
(1 −

bn)(
∑n

j=0 kj/(n + 1))2− 1
)
+

< ∞. Let x and y0 be elements of C and let {xn} and
{yn} be the sequences defined by

xn = anx + (1− an)
1

n + 1

n∑

j=0

T jxn for all sufficiently large n,

and

yn+1 = bnx + (1− bn)
1

n + 1

n∑

j=0

T jyn for n ∈ N,

respectively. Then both {xn} and {yn} converge strongly to Px.

Theorem 7. Let T and U be asymptotically nonexpansive mappings from C into
itself with Lipschitz constants {kn : n ∈ N} and {κn : n ∈ N}, respectively such
that TU = UT and F (T )∩ F (U) 6= ∅. Let P be the sunny, nonexpansive retraction
from C onto F (T ) ∩ F (U). Let {an} be a real sequence such that 0 < an ≤ 1,
an → 0 and limn

(
2

∑n
l=0

∑
i+j=l kiκj/(n + 1)(n + 2) − 1

)/
an < 1, and let {bn}

be a real sequence such that 0 ≤ bn ≤ 1, bn → 0,
∑∞

n=0 bn = ∞ and
∑∞

n=0

(
(1 −

bn)(2
∑n

l=0

∑
i+j=l kiκj/(n + 1)(n + 2))2− 1

)
+

< ∞. Let x and y0 be elements of C

and let {xn} and {yn} be the sequences defined by

xn = anx + (1− an)
2

(n + 1)(n + 2)

n∑

l=0

∑

i+j=l

T iU jxn for all sufficiently large n,

and

yn+1 = bnx + (1− bn)
2

(n + 1)(n + 2)

n∑

l=0

∑

i+j=l

T iU jyn for n ∈ N,

respectively. Then both {xn} and {yn} converge strongly to Px.

The following is a generalization of Theorem 6. For simplicity, we state it for a
nonexpansive mapping.
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Theorem 8. Let T be a nonexpansive mapping from C into itself such that F (T ) 6=
∅ and let P be the sunny, nonexpansive retraction from C onto F (T ). Let {αn,j :
n, j ∈ N} be a real sequence such that αn,j ≥ 0,

∑∞
j=0 αn,j = 1 and limn

∑∞
j=0 |αn,j+1

− αn,j | = 0. Let {an} be a real sequence such that 0 < an ≤ 1 and an → 0 and let
{bn} be a real sequence such that 0 ≤ bn ≤ 1, bn → 0 and

∑∞
n=0 bn = ∞. Let x and

y0 be elements of C and let {xn} and {yn} be the sequences defined by

xn = anx + (1− an)
∞∑

j=0

αn,jT
jxn for n ∈ N,

and

yn+1 = bnx + (1− bn)
∞∑

j=0

αn,jT
jyn for n ∈ N,

respectively. Then both {xn} and {yn} converge strongly to Px.

Proof. For each n ∈ N, define a mean µn on B(N) by µn(f) =
∑∞

j=0 αn,jfj for
f = (f0, f1, · · · ) ∈ B(N). Then {µn} is strongly regular; see [8]. We shall show that
each µn is monotone convergent. Fix n ∈ N. For A ∈ 2N, set m(A) =

∑
j∈A αn,j .

Then (N, 2N,m) is a measure space. Let f ∈ B(N) with f ≥ 0 and let {f i : i ∈ N}
be a nonnegative, monotone increasing sequence of B(N) such that limi f

i
j = fj for

each j ∈ N. By the monotone convergence theorem, we have

lim
i→∞

µn(f i) = lim
i→∞

∫

N
f i dm =

∫

N
f dm = µn(f).

So µn is monotone convergent. Hence by Theorems 3 and 5, we obtain the conclu-
sion. ¤

Theorem 9. Let S = {S(t) : t ≥ 0} be an asymptotically nonexpansive semigroup
on C with Lipschitz constants {k(t) : t ≥ 0} such that F (S) 6= ∅ and the mappings
t 7→ k(t) and t 7→ 〈S(t)x, x∗〉 are measurable for each x ∈ C and x∗ ∈ E∗, and let P
be the sunny, nonexpansive retraction from C onto F (S). Let {γn} be a sequence of
positive real numbers with γn →∞, let {an} be a real sequence such that 0 < an ≤ 1,
an → 0 and limn

(∫ γn

0 k(t) dt/γn − 1
)/

an < 1, and let {bn} be a real sequence such
that 0 ≤ bn ≤ 1, bn → 0,

∑∞
n=0 bn = ∞ and

∑∞
n=0

(
(1−bn)(

∫ γn

0 k(t) dt/γn)2−1
)
+

<

∞. Let x and y0 be elements of C and let {xn} and {yn} be the sequences defined
by

xn = anx + (1− an)
1
γn

∫ γn

0
S(t)xn dt for all sufficiently large n,

and

yn+1 = bnx + (1− bn)
1
γn

∫ γn

0
S(t)yn dt for n ∈ N,

respectively. Then both {xn} and {yn} converge strongly to Px.

Remark 3. Theorem 9 is also applicable to the case when the mappings t 7→ k(t)
and t 7→ S(t)x are continuous for each x ∈ C. In this case, the corresponding result
was obtained in [21].
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Theorem 10. Let S and P be as in Theorem 9. Let {λn} be a sequence of positive
real numbers with λn → 0, let {an} be a real sequence such that 0 < an ≤ 1, an → 0
and limn

(
λn

∫∞
0 e−λntk(t) dt− 1

)/
an < 1, and let {bn} be a real sequence such that

0 ≤ bn ≤ 1, bn → 0,
∑∞

n=0 bn = ∞ and
∑∞

n=0

(
(1−bn)(λn

∫∞
0 e−λntk(t) dt)2−1

)
+

<

∞. Let x and y0 be elements of C and let {xn} and {yn} be the sequences defined
by

xn = anx + (1− an)λn

∫ ∞

0
e−λntS(t)xn dt for all sufficiently large n,

and
yn+1 = bnx + (1− bn)λn

∫ ∞

0
e−λntS(t)yn dt for n ∈ N,

respectively. Then both {xn} and {yn} converge strongly to Px.

The following is a generalization of the above two theorems. For simplicity, we
state it for a nonexpansive semigroup.

Theorem 11. Let S and P be as in Theorem 9. Assume that S is nonexpan-
sive. Let {αn} be a sequence of measurable functions from [0,∞) into itself such
that

∫∞
0 αn(t) dt = 1 for each n ∈ N, limn αn(t) = 0 for almost every t ≥ 0,

limn

∫∞
0 |αn(t + s) − αn(t)| dt = 0 for each s ≥ 0 and there exists β ∈ L1

loc[0,∞)
such that supn αn(t) ≤ β(t) for almost every t ≥ 0, where β ∈ L1

loc[0,∞) means
the restriction of β on [0, s] belongs to L1[0, s] for each s > 0. Let {an} be a real
sequence such that 0 < an ≤ 1 and an → 0 and let {bn} be a real sequence such that
0 ≤ bn ≤ 1, bn → 0 and

∑∞
n=0 bn = ∞. Let x and y0 be elements of C and let {xn}

and {yn} be the sequences defined by

xn = anx + (1− an)
∫ ∞

0
αn(t)S(t)xn dt for n ∈ N,

and
yn+1 = bnx + (1− bn)

∫ ∞

0
αn(t)S(t)yn dt for n ∈ N,

respectively. Then both {xn} and {yn} converge strongly to Px.

Proof. Let X be the subspace of B([0,∞)) which consists of all bounded, measurable
functions. We remark that an element f in X is not an equivalence class with the
usual equivalence relation, where the usual equivalence relation g ∼ h means the
Lebesgue measure of the set {t ∈ [0,∞) : g(t) 6= h(t)} is zero. The reason is that
we consider that X is a subspace of B([0,∞)) with the supremum norm. For each
n ∈ N, define a mean µn on X by µn(f) =

∫∞
0 αn(t)f(t) dt for each f ∈ X. Then

for each s ≥ 0, we have

lim
n→∞‖µn − l∗sµn‖

= lim
n→∞ sup

{∣∣∣∣
∫ ∞

0
αn(t)f(t) dt−

∫ ∞

0
αn(t)f(s + t) dt

∣∣∣∣ : f ∈ X, |f | ≤ 1
}

= lim
n→∞ sup

{∣∣∣∣
∫ s

0
αn(t)f(t) dt +

∫ ∞

s
(αn(t)− αn(t− s))f(t) dt

∣∣∣∣ : f ∈ X, |f | ≤ 1
}
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≤ lim
n→∞

(∫ s

0
αn(t) dt +

∫ ∞

s
|αn(t)− αn(t− s)| dt

)
= 0.

So {µn} is strongly regular. Next, we shall show that each µn is monotone conver-
gent. Fix n ∈ N. Let A be the Lebesgue measurable field on [0,∞). For A ∈ A, set
m(A) =

∫
A αn(t) dt. Then ([0,∞),A,m) is a measure space. Let f be an element of

X with f ≥ 0 and let {fj : j ∈ N} be a nonnegative, monotone increasing sequence
of X such that limj fj(t) = f(t) for each t ≥ 0. Then by the monotone convergence
theorem, we have

lim
j→∞

µn(fj) = lim
j→∞

∫ ∞

0
αn(t)fj(t) dt =

∫ ∞

0
αn(t)f(t) dt = µn(f).

Hence by Theorems 3 and 5, we obtain the conclusion. ¤
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