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DUNFORD-PETTIS-TYPES THEOREM AND CONVERGENCES
IN SET-VALUED INTEGRATION

CHARLES CASTAING AND MOHAMMED SAADOUNE

Abstract. We present new weak compactness results and convergences for
bounded sequences of convex weakly compact valued integrably bounded mul-
tifunctions as well as we give applications to Multivalued biting-types lemma
and Fatou-types lemma in Mathematical Economics.

1. Introduction

Let E be a Banach space and L1
E(µ) the Banach space of (equivalence classes of)

Lebesgue-Bochner integrable functions over a complete probability space (Ω,F , µ).
Ülger-Diestel-Ruess-Shachermayer [26, 17] presented a characterization of weakly
relatively compact subsets H of L1

E(µ) as bounded uniformly integrable subsets for
which :

(∗) given any sequence (un) inH, there exists a sequence (vn), with vn ∈ co{um :
m ≥ n} such that (vn(ω)) is weakly convergent in E for almost all ω ∈ Ω.

In the present paper we state several results of convergence in the space L1
cwk(E)(µ) of

convex weakly compact integrably bounded multifunctions [9, 10, 11, 12, 14] where
cwk(E) denotes the collection of all nonempty convex weakly compact subsets in
a separable Banach space E. In Section 3 we provide some necessary conditions
for which given a bounded sequence (Xn) in L1

cwk(E)(µ) there exists a sequence

(X̃n) with X̃n ∈ co{Xm : m ≥ n} (i.e. X̃n has the form X̃n = Σνn
i=nλn

i Xi with
0 ≤ λn

i ≤ 1, Σνn
i=nλn

i = 1) such that (X̃n) converges in the linear topology [4] to
a multifunction X ∈ L1

cwk(E)(µ) for almost all ω ∈ Ω. These results (Theorem 3.2
and Theorem 3.3) provide the analogs of (∗) in view of the weak convergence in
L1

cwk(E)(µ) : a sequence (Xn) in L1
cwk(E)(µ) weakly converges to X∞ ∈ L1

cwk(E)(µ)
if

∀h ∈ L∞E∗(µ), lim
n→∞

∫

Ω
δ∗(h,Xn) dµ =

∫

Ω
δ∗(h,X∞) dµ

where E∗ is the dual of E, x∗ 7→ δ∗(x∗,K) denotes the support function of an
element K ∈ cwk(E). Afterwards we give (Theorem 3.4) two characterizations of
weak convergence in L1

cwk(E)(µ) via the preceding mode of convergence (shortly
Mazur τL-convergence). In section 4 we present two Komlós convergence-types
theorem (Theorems 4.1-4.2) for bounded weak tight sequences in both L1

E(µ)
and L1

cwk(E)(µ). In section 5 we deal with Mazur convergence-types for bounded
sequences in L1

cwk(E)(µ) (Theorem 5.1, Propositions 5.2-5.2′) and weak Komlós
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convergence in measure (Proposition 5.3). In section 6 we state a multivalued
version of biting lemma for bounded sequences in L1

cwk(E)(µ) (Theorem 6.1) with
application to Fatou-types lemma in Mathematical Economics (Theorems 6.2-6.3).
Our results provide new Dunford-Pettis-types theorem in L1

cwk(E)(µ) via unusual
modes of convergence, extending the classical weak compactness results in L1

E(µ)
(see, for example, [2, 5, 6, 8, 10, 11, 14, 17, 24, 26]).

2. Notations and terminology

Throughout E is a separable Banach space, E∗ is the topological dual of E and
BE∗ is the closed unit ball in E∗. We denote by s (resp. w) the topology defined
by the norm of E (resp. the weak topology on E). By cwk(E) (resp. cbc(E))
(resp. Lwk(E)) (resp. Rwk(E)) we denote the collection of all nonempty convex
weakly compact subsets of E (resp. convex bounded closed subsets of E) (resp.
closed convex weakly locally compact subsets of E which contain no lines) (resp.
convex closed subsets of E such that their intersections with any closed ball are
weakly compact, shortly ball-wc). The support function (resp. distance function)
of a subset A in E is defined by

δ∗(x∗, A) := sup
x∈A

〈x∗, x〉 (x∗ ∈ E∗) (resp. d(x,A) := inf
y∈A

||x− y|| (x ∈ E)).

On cwk(E) we will consider the following limiting notions. A sequence (Cn) in
cwk(E) converges in the Linear topology [4] (shortly τL topology) to C ∈ cwk(E)
if the following two conditions are satisfied :

∀x∗ ∈ E∗, lim
n→∞ δ∗(x∗, Cn) = δ∗(x∗, C) and ∀x ∈ E, lim

n→∞ d(x,Cn) = d(x,RC).

We also use the following limits

s-li Cn = {x ∈ E : ||xn − x|| → 0; xn ∈ Cn}
and

w-ls Cn = {x ∈ E : x = w- lim
j

xnj ; xnj ∈ Cnj}.
Let A and B be two convex weakly compact subsets of E, H(A,B) denotes the

Hausdorff distance between A and B. The gap [4] between A and B is denoted by
D(A,B) := inf{d(x, y) : x ∈ A; y ∈ B}.

Let (Ω,F , µ) be a complete probability space, L1
E(Ω,F , µ) (shortly L1

E(µ)) the
space (classes of equivalence) of Bochner integrable E-valued functions. A sequence
(un) in L1

E(µ) is cwk(E)-tight if, for every ε > 0, there is a cwk(E)-valued
measurable multifunction Γε : Ω → E such that

sup
n

µ({ω ∈ Ω : un(ω) /∈ Γε(ω)}) ≤ ε.

A subset H of L1
E(µ) has the weak Talagrand property (WTP) if, given any

bounded sequence (un) in H, there exist a sequence (ũn) with ũn ∈ co{um : m ≥ n}
and u ∈ L1

E(µ) such that (ũn) weakly converges a.e to u. We refer to [5, 6, 13] for the
study of WTP subsets of L1

E(µ). Let us mention some useful results. Any bounded
cwk(E)-tight sequence in L1

E(µ) has the WTP. If (un) is a bounded WTP sequence
in L1

E(µ), then there exist a sequence (ũn) in L1
E(µ) with ũn ∈ co{um : m ≥ n} and
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u ∈ L1
E(µ) such that (ũn) converges a.e to u for the norm of E. Furthermore L1

E(µ)
has the WTP iff E reflexive.

Let us recall the following version of the biting lemma [21, 18, 23, 25, 13].

Biting lemma. Suppose that (un) is a bounded sequence in L1
R(µ), then there

exists a subsequence (u′n) and an increasing sequence (An) in F with limn µ(An) = 1
such that the sequence (1Anu′n) is uniformly integrable.

By L1
cwk(E)(µ) we denote the space of all nonempty convex weakly compact valued

F-measurable and integrably bounded multifunctions (see, for example, [10, 11,
14]). A sequence (Xn) in L1

cwk(E)(µ) is bounded (resp. uniformly integrable) if the
sequence (|Xn|) is bounded (resp. uniformly integrable) where

|Xn| : ω 7→ sup
x∗∈BE∗

|δ∗(x∗, Xn(ω))|.

If X ∈ L1
cwk(E)(µ) and A ∈ F , the integral of X over A is defined by

E(1AX) :=
∫

A
X dµ := {

∫

A
u dµ : u ∈ S1

X}

where S1
X denotes the set of all integrable selections [14] of X. Since S1

X is convex
weakly compact in L1

E(µ) (see, for example, [2, 5, 6, 8, 10, 17, 24, 26]),
∫
A X dµ

is convex weakly compact in E. We refer also to [1] for the weak compactness in
Pettis integration.

A sequence (Xn) in L1
cwk(E)(µ) weakly converges to X∞ ∈ L1

cwk(E)(µ), if

∀h ∈ L∞E∗(µ), lim
n→∞

∫

Ω
δ∗(h(ω), Xn(ω))µ(dω) =

∫

Ω
δ∗(h(ω), X∞(ω))µ(dω).

3. Mazur convergence in L1
cwk(E)(µ)

If (un) is a relatively weakly compact sequence in L1
E(µ), by Eberlein-Smulian

theorem and Mazur lemma, there is a sequence (ṽn) with ṽn ∈ co{um : m ≥ n}
which converges almost everywhere to a function u ∈ L1

E(µ). We aim to present
first two versions of this result in L1

cwk(E)(µ).

We begin with a technical lemma.

Lemma 3.1. Suppose that (un,j)n,j≥1 is a sequence in L1
E(µ) such that, for each

j, the sequence (un,j)n converges σ(L1, L∞) to u∞,j ∈ L1
E(µ), then there exists a

sequence (vn,j)n,j≥1 with vn,j = Σνn
i=nλn

i ui,j , where λn
i ≥ 0 and Σνn

i=nλn
i = 1 such

that, for every j, (vn,j)n converges almost everywhere to u∞,j .

Proof. Applying Mazur lemma to (un,1)n provides a subsequence (ũn,1)n with
ũn,1 ∈ co{ui,1 : i ≥ n} such that (ũn,1)n converges a.e to u∞,1. Each ũn,1 has
the form

ũn,1 = Σνn,1

n,1 λn,1
i ui,1

with λn,1
i ≥ 0 and Σνn,1

n,1 λn,1
i = 1. For every (n, j) ∈ N∗ × N∗, let us define

ũn,1,j := Σνn,1

n,1 λn,1
i ui,j .
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Hence (ũn,1,2)n converges σ(L1, L∞) to u∞,2. Again from Mazur lemma there exists
a sequence (ũn,2)n with ũn,2 ∈ co{ũm,1,2 : m ≥ n, 2} such that (ũn,2)n converges a.e
to u∞,2. Each ũn,2 has the form

ũn,2 = Σνn,2

n,2 λn,2
m ũm,1,2

with λn,2
m ≥ 0 and Σn,2

n,2λ
n,2
m = 1. For every (n, j) ∈ N∗ × N∗, let us define

ũn,2,j := Σνn,2

n,2 λn,2
m ũm,1,j .

Hence for j = 1, 2 (ũn,2,j)n converges a.e to u∞,j . By induction we find a sequence
(ũn,k,j)n ((k, j) ∈ N∗ × N∗)) where

ũn,k,j = Σνn,k

n,k λn,k
i ũi,k−1,j

with λn,k
i ≥ 0 and Σνn,k

n,k λn,k
i = 1 such that for every k ≥ 2 and every j ≤ k, (ũn,k,j)n

converges a.e to u∞,j . It is not difficult to check that each ũn,k,j has the form

ũn,k,j = Σνn,k

n,k δn,k
i ui,j

with δn,k
i ≥ 0 and Σνn,k

n,k δn,k
i = 1 and ũn,k,j ∈ co{ũi,j,j : i ≥ n, k} for j < k.

Since for every j the sequence (ũn,j,j)n converges a.e to u∞,j , the diagonal sequence
(vn,j)n = (ũn,n,j)n converges a.e to u∞,j and has the required properties. ¤

Remark. The same diagonal process used above allows us to prove the preceding
lemma when we consider a finitely indexed sequence (un,j1,j2,...,jN ); for example, if
N = 2 the diagonal process is based on applying successively Lemma 3.1 for each
j2.

Now we are able to state the following Mazur τL-convergence in L1
cwk(E)(µ).

Theorem 3.2. Suppose that E∗ is separable, E has the Radon-Nikodym property,
(Xn) is a bounded sequence in L1

cwk(E)(µ) such that, for every A ∈ F ,
⋃

n

∫
A Xn dµ

is relatively weakly compact in E, then there exist a sequence X̃n in L1
cwk(E)(µ)

with X̃n ∈ co{Xm : m ≥ n} and X∞ ∈ L1
cwk(E)(µ) such that

X∞ = τL- lim
n

X̃n a.e.

Proof. We will divide the proof in several steps.

Step 1. In view of the multivalued biting lemma in [12, Theorem 3.1], [9, Theorem
2.6], there exist an increasing sequence (Ap) in F with limn→∞ µ(Ap) = 1, a
subsequence (X ′

n) of (Xn) such that the sequence (1ApX
′
n) is uniformly integrable

for each p and X ′∞ ∈ L1
cwk(E)(µ) such that ∀p,∀A ∈ Ap ∩ F and ∀x∗ ∈ E∗, the

following holds :

lim
n→∞

∫

A
δ∗(x∗, X ′

n) dµ =
∫

A
δ∗(x∗, X ′

∞) dµ.

Now, since the sequence (|X ′
n|) is bounded there is a sequence (θn) in L1

R(µ) with
θn ∈ co {|X ′

m| : m ≥ n} such that (θn) converges a.e to an integrable function
θ. Each θn has the form θn = Σkn

i=nηn
i |X ′

i| with 0 ≤ ηn
i ≤ 1 and Σkn

i=nηn
i = 1.
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Consequently the sequence (Sn)n = (Σkn
i=nηn

i X ′
i)n is pointwise bounded almost

everywhere, that is, there is a negligible set N1 such that supn |Sn|(ω) < ∞ for
ω ∈ Ω \N1.

Step 2. Let us consider a countable dense subset D∗ := (x∗j )j∈N∗ in BE∗ . For
every j ∈ N∗ pick a maximal integrable selection un,j ∈ S1

Sn
:

〈x∗j , un,j〉 := δ∗(x∗j , Sn).

Then the sequence (1Apun,j)n is uniformly integrable for every j and every p. By
Dunford-Pettis theorem, (1Apun,j)n is relatively sequentially weakly compact in
L1

E(µ). Therefore, by using an appropriate diagonal procedure, we may suppose
for simplicity that, for every j and every p, (1Apun,j)n converges σ(L1, L∞) to
an integrable function u∞,j,p so that we can apply the Remark of Lemma 3.1 to
(1Apun,j)n,j,p≥1. Hence there exists a negligible set N2, a sequence (vn,j,p)n,j,p≥1

with vn,j,p = Σνn
i=nλn

i 1Apui,j , where λn
i ≥ 0 and Σνn

i=nλn
i = 1 such that, for every

j and every p, (vn,j,p)n pointwise converges to u∞,j,p for all ω ∈ Ω \ N2. Since
(Ap) is increasing, it is not difficult to check that, for every j, u∞,j,p = u∞,j,p+1 in
Ap∩(Ω\N2) for each p. Now set u∞,j(ω) = u∞,j,p if ω ∈ Ap∩[Ω\N2] and u∞,j(ω) = 0
if ω ∈ N3 := ∩p (Ω \Ap)∪N2. Then the sequence (vn,j)n = (Σνn

i=nλn
i ui,j)n pointwise

converges to u∞,j for all ω ∈ Ω \N3. Furthermore by Fatou lemma, we have
∫

Ω
|u∞,j | dµ ≤ lim inf

n

∫

Ω
|vn,j | dµ ≤ sup

n

∫

Ω
|un,j | dµ

≤ sup
n

∫

Ω
|Sn| dµ ≤ sup

n

∫

Ω
|Xn| dµ < ∞.

Whence we have u∞,j ∈ L1
E .

Step 3. Let us consider the multifunctions

X̃n := Σνn
i=nλn

i Si, X∞ := 1Ω\[N1∪N3] s-li X̃n.

Then (X̃n) is pointwise bounded almost everywhere, X∞ is cbc(E)-valued and
u∞,j ∈ X∞ a.e for every j. Furthermore we have

lim
n→∞ δ∗(x∗j , X̃n) = lim

n→∞〈x
∗
j , vn,j〉 = 〈x∗j , u∞,j〉 ≤ δ∗(x∗j , X∞) a.e

for every j. On the other hand it is not difficult to see that

δ∗(x∗j , X∞) ≤ lim
n→∞ δ∗(x∗j , X̃n) a.e

for every j. Hence we get

(3.2.1) δ∗(x∗j , X∞) = lim
n→∞ δ∗(x∗j , X̃n) a.e

for every j. We claim that

(3.2.2) lim
n→∞ δ∗(x∗, X̃n) = δ∗(x∗, X∞)
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for all x∗ ∈ BE∗ and for almost all ω ∈ Ω. We will use an argument in ([8], Lemma
3.2). We have

|δ∗(x∗, X̃n)− δ∗(x∗, X∞)| ≤ max{δ∗(x∗ − x∗j , X̃n), δ∗(x∗j − x∗, X̃n)}
+ |δ∗(x∗j , X̃n)− δ∗(x∗j , X∞)|
+ max{δ∗(x∗ − x∗j , X∞), δ∗(x∗j − x∗, X∞)}

(3.2.3)

for all x∗ ∈ E∗ and for all j. Now let x∗ ∈ BE∗ and ε > 0. There is x∗j ∈ D∗ such
that ||x∗ − x∗j || ≤ ε. Then we have

(3.2.4) |δ∗(x∗, X̃n)−δ∗(x∗, X∞)| ≤ ε sup
n
|X̃n|+ |δ∗(x∗j , X̃n)−δ∗(x∗j , X∞)|+ε |X∞|.

Thus, by (3.2.1) and the pointwise boundness of (X̃n) the claim follows. Now in view
of the multivalued biting lemma given in Step 1 and (3.2.2), there is a negligible set
N such that X∞(ω) = X ′∞(ω) for all ω ∈ Ω \N. It suffices to set X∞(ω) = 0 on N
to get X∞(ω) ∈ cwk(E) for all ω ∈ Ω. Consequently, by (3.2.2) X∞ is measurable
and

|X∞| ≤ lim inf
n

|X̃n| a.e

By Fatou lemma ∫

Ω
|X∞| dµ ≤

∫

Ω
lim inf

n
|X̃n| dµ < ∞

because the sequence (|Xn|) is bounded in L1
R.

Step 4. Now we claim that

lim
n→∞ d(x, X̃n) = d(x,X∞)

for all x ∈ E and almost all ω ∈ Ω. Indeed we have

lim inf
n

d(x, X̃n) = lim inf
n

sup
x∗∈BE∗

[〈x∗, x〉 − δ∗(x∗, X̃n)]

≥ sup
x∗∈BE∗

lim
n

[〈x∗, x〉 − δ∗(x∗, X̃n)]

= sup
x∗∈BE∗

[〈x∗, x〉 − δ∗(x∗, X∞)]

= d(x,X∞)

for all x ∈ E and almost all ω ∈ Ω. By definition of X∞ we have

lim sup
n

d(x, X̃n)) ≤ d(x,X∞)

for all x ∈ E and almost all ω ∈ Ω. So the claim follows. ¤
There is a useful corollary.

Corollary 3.2’. Suppose that E∗ is separable, E has the Radon-Nikodym property,
(un) is a bounded sequence in L1

E(µ) such that, for every A ∈ F ,
⋃

n

∫
A un dµ is

relatively weakly compact in E, then there exist a sequence (ũn) in L1
E(µ) with

ũn ∈ co{um : m ≥ n} and u∞ ∈ L1
E(µ) such that ||ũn(ω)− u∞(ω)|| → 0 a.e.
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In other words, (un) has the WTP. It turns out that Corollary 3.2’ provides new
applications to minimization problems in the spirit of [5, 6, 13] dealing with closed
convex bounded WTP sets which are closed in measure.

Remark. Actually the multifunction limit X∞ in Theorem 3.2 satisfies the
inclusion X∞(ω) ⊂ ∩n co [∪m≥nX̃n(ω)] a.e because τL-convergence implies Mosco
convergence. See for instance [4].

Now we proceed to establish a significant variant of the preceding result.

Theorem 3.3. Suppose that E is a separable Banach space, L : Ω → E is
a Rwk(E)-valued measurable multifunction and (Xn) is a bounded sequence in
L1

cwk(E)(µ) such that Xn(ω) ⊂ L(ω) for all n ∈ N∗ and all ω ∈ Ω, then there exist

a sequence (X̃n) in L1
cwk(E)(µ) with X̃n ∈ co{Xm : m ≥ n} and X∞ ∈ L1

cwk(E)(µ)
such that

X∞ = τL- lim
n

X̃n a.e.

Proof. We will use several arguments of the proof of Theorem 3.2 with appropriate
modifications.

A. We begin to state the theorem in the particular case when (Xn) is uniformly
integrable.

Step 1. Since the sequence (Xn) is bounded, there is a sequence (θn) in L1
R(µ) with

θn ∈ co{|Xm| : m ≥ n} such that (θn) converges a.e to an integrable function θ. Each
θn has the form θn = Σkn

i=nηi
n|Xi| with 0 ≤ ηi

n ≤ 1 and Σkn
i=nηi

n = 1. Let us consider
the cwk(E)-valued multifunctions Sn := Σkn

i=nηi
nXi and Γ(.) := L(.)∩m(.)BE where

m := supn |θn|. Then, ∀n ∈ N∗, Sn(ω) ⊂ Γ(ω) a.e.

Step 2. First we note that
⋃

n S1
Sn

is relatively σ(L1, L∞) compact by [2,
Théorème 6], [8, Théorème 4.1]. Let us consider a countable dense subset D∗ :=
(x∗j )j∈N∗ in BE∗ for the Mackey topology. For every j ∈ N∗ pick a maximal integrable
selection un,j ∈ S1

Sn
. Then for every j, the sequence (un,j)n is relatively σ(L1, L∞)

sequentially compact. Therefore by using an appropriate diagonal procedure, we
may suppose for simplicity that, for every j, (un,j)n converges σ(L1, L∞) to an
integrable function u∞,j so that we can apply Lemma 3.1 to (un,j)n,j . Hence there
exist a negligible set N, a sequence (vn,j)n,j≥1 with vn,j = Σνn

i=nλn
i ui,j , where λn

i ≥ 0
and Σνn

i=nλn
i = 1 such that, for every j, (vn,j)n pointwise converges to u∞,j for all

ω ∈ Ω \N.

Step 3. Let us consider the multifunctions

X̃n := Σνn
i=nλn

i Si, X∞ := 1Ω\N s-li X̃n.

Then by Step 1, u∞,j ∈ X∞ a.e for every j and X∞ is cwk(E)-valued. Furthermore
we have

lim
n→∞ δ∗(x∗j , X̃n) = lim

n→∞〈x
∗
j , vn,j〉 = 〈x∗j , u∞,j〉 ≤ δ∗(x∗j , X∞) a.e

and
δ∗(x∗j , X∞) ≤ lim

n→∞ δ∗(x∗j , X̃n) a.e
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for every j. Hence we get

(3.3.1) δ∗(x∗j , X∞) = lim
n→∞ δ∗(x∗j , X̃n) = a.e

for every j.

Step 3. We will use an argument in ([8], Lemma 3.2). Let x∗ ∈ BE∗ . We have

|δ∗(x∗, X̃n)− δ∗(x∗, X∞)| ≤ max{δ∗(x∗ − x∗j , X̃n), δ∗(x∗j − x∗, X̃n)}
+ |δ∗(x∗j , X̃n)− δ∗(x∗j , X∞)|
+ max{δ∗(x∗ − x∗j , X∞), δ∗(x∗j − x∗, X∞)}

or every j. Let ω ∈ Ω \N be fixed and ε > 0. Since Γ(ω) is weakly compact, there
is x∗j ∈ D∗ such that

max{δ∗(x∗ − x∗j ,Γ(ω)), δ∗(x∗j − x∗,Γ(ω))} ≤ ε.

Since X̃n(ω) ⊂ Γ(ω) for all n ∈ N∗ ∪ {∞} and for almost all ω ∈ Ω, from (3.3.1) it
follows that

(3.3.2) |δ∗(x∗, X̃n)− δ∗(x∗, X∞)| ≤ |δ∗(x∗j , X̃n)− δ∗(x∗j , X∞)|+ 2ε

showing that

(3.3.3) lim
n→∞ δ∗(x∗, X̃n) = δ∗(x∗, X∞)

for all x∗ ∈ BE∗ and almost all ω ∈ Ω. By (3.3.3) X∞ is measurable and

|X∞| ≤ lim inf
n

|X̃n| a.e.

By Fatou lemma we have∫

Ω
|X∞| dµ ≤

∫

Ω
lim inf

n
|X̃n| dµ < ∞

since the sequence (|Xn|) is bounded in L1
R(µ).

Step 4. Now we claim that

lim
n→∞ d(x, X̃n) = d(x,X∞)

for all x ∈ E and almost all ω ∈ Ω. Indeed we have

lim inf
n

d(x, X̃n) = lim inf
n

sup
x∗∈BE∗

[〈x∗, x〉 − δ∗(x∗, X̃n)]

≥ sup
x∗∈BE∗

lim
n

[〈x∗, x〉 − δ∗(x∗, X̃n)]

= sup
x∗∈BE∗

[〈x∗, x〉 − δ∗(x∗, X∞)]

= δ∗(x∗, X∞)

for all x ∈ E and almost all ω ∈ Ω. By definition of X∞, we have

lim sup
n

d(x, X̃n) ≤ d(x,X∞)

for all x ∈ E and all ω ∈ Ω.
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B. Now we pass to the general case, that is, (|Xn|) is bounded. Using the biting
lemma provides an increasing sequence (Bn) in F with limn µ(Bn) = 1 and a
subsequence (X ′

n) of (Xn) such that X ′
n = 1BnX ′

n+1Ω\Bn
X ′

n where (Y ′
n) = (1BnX ′

n)
is uniformly integrable and |Z ′n| → 0 a.e where Z ′n = 1Ω\Bn

X ′
n. Consequently

we may apply the result obtained in Step A to (Y ′
n). This gives a sequence (Ỹn)

in L1
cwk(E)(µ) with Ỹn ∈ co{Y ′

m : m ≥ n} and Y∞ ∈ L1
cwk(E)(µ) such that

Y∞ = τL- limn Ỹn a.e. Each Ỹn has the form Σνn
i=nλn

i Y ′
i with λn

i ≥ 0 and Σνn
i=nλn

i = 1.
Since the sequence (Σνn

i=nλn
i |Z ′i|) converges to 0 a.e because |Z ′n| → 0 a.e, the

sequence (Σνn
i=nλn

i X ′
i) τL-converges to Y∞ a.e. ¤

Now we proceed to an application of the preceding theorems to weak compactness
in the space L1

cwk(E)(µ).

Theorem 3.4. Suppose that E is a separable Banach space, and (Xn) is a uniformly
integrable sequence in L1

cwk(E)(µ) which satisfies one of the following two conditions :

(a) For any subsequence (Yn), there is a sequence (Ỹn) with Ỹn ∈ co{Ym : m ≥
n} such that for almost all ω ∈ Ω, co[∪nỸn(ω)] is ball-wc in E.

(b) E∗ is separable, E has the RNP and for any subsequence (Yn), there is a

sequence (Ỹn) with Ỹn ∈ co{Ym : m ≥ n} such that ∪n

∫
A Ỹn dµ is relatively

weakly compact in E for every A ∈ F .

Then there are a subsequence (X ′
n) of (Xn) and X∞ ∈ L1

cwk(E)(µ) such that

∀u ∈ L∞E∗(µ) , lim
n→∞

∫

Ω
δ∗(u,X ′

n) dµ =
∫

Ω
δ∗(u,X∞) dµ.

Proof. We will divide the proof in three steps.

Step 1. Let D∗ := (e∗p) be a dense sequence for the Mackey topology. As (Xn)
is uniformly integrable, for each p, the sequence (δ∗(e∗p, Xn))n is relatively weakly
compact in L1

R(µ). Using an appropriate diagonal procedure provides a sequence
(ϕp)p of real-valued integrable functions and a subsequence (X ′

n) of (Xn) such that
(δ∗(e∗p, X ′

n))n converges σ(L1, L∞) to ϕp for every p. Hence we have

(3.4.1) ∀p, ∀A ∈ F , lim
n

∫

A
δ∗(e∗p, X

′
n) dµ =

∫

A
ϕp dµ.

Step 2. Let u be a fixed element in L∞E∗(µ). Choose a subsequence (Yn) of (X ′
n)

such that

(3.4.2) lim
n→∞

∫

Ω
δ∗(u, Yn) dµ = lim sup

n →∞

∫

Ω
δ∗(u,X ′

n) dµ

Now suppose that (a) holds. Let (Ỹn) be the sequence associated to (Yn) according
to (a). By Theorem 3.3 there exist a multifunction Z∞ ∈ L1

cwk(E)(µ) and a sequence
(Zn) with

Zn ∈ co{Ỹm : m ≥ n} ⊂ co{Ym : m ≥ n}
such that

Z∞ = τL- lim
n

Zn a.e.
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From Lebesgue-Vitali theorem, we have

(3.4.3) lim
n→∞

∫

Ω
δ∗(v, Zn) dµ =

∫

Ω
δ∗(v, Z∞) dµ

for all v ∈ L∞E∗(µ). Since each Zn has the form

Zn = Σνn
i=nλn

i Yi with λn
i ≥ 0 and Σνn

i=nλn
i = 1,

from (3.4.1), (3.4.2), (3.4.3) it follows that

(3.4.4) lim sup
n →∞

∫

Ω
δ∗(u,X ′

n) dµ =
∫

Ω
δ∗(u,Z∞) dµ

and

(3.4.5) ∀p, ∀A ∈ F , lim
n →∞

∫

A
δ∗(e∗p, X

′
n) dµ =

∫

A
ϕp dµ =

∫

A
δ∗(e∗p, Z∞) dµ.

Similarly, we obtain a multifunction W∞ ∈ L1
cwk(E)(µ) which verifies :

(3.4.6) lim inf
n →∞

∫

Ω
δ∗(u,X ′

n) dµ =
∫

Ω
δ∗(u,W∞) dµ

and

(3.4.7) ∀p, ∀A ∈ F lim
n →∞

∫

A
δ∗(e∗p, X

′
n) dµ =

∫

A
ϕp dµ =

∫

A
δ∗(e∗p,W∞) dµ.

From (3.4.5) and (3.4.7) we get

δ∗(e∗p, Z∞) = δ∗(e∗p,W∞)

for all p and for almost all ω ∈ Ω. Hence by [14, Prop. III.35], Z∞ = W∞ a.e.
Therefore, by (3.4.4) and (3.4.6) we deduce that

(3.4.8) lim
n →∞

∫

Ω
δ∗(u,X ′

n) dµ =
∫

Ω
δ∗(u,Z∞) dµ.

Step 3. Finally applying the results obtained in the preceding steps to any other
element v ∈ L∞E∗(µ) gives Z ′∞ ∈ L1

cwk(E)(µ) such that

lim
n →∞

∫

Ω
δ∗(v, X ′

n) dµ =
∫

Ω
δ∗(v, Z ′∞) dµ

with

(3.4.9) ∀p, ∀A ∈ F , lim
n →∞

∫

A
δ∗(e∗p, X

′
n) dµ =

∫

A
ϕp dµ =

∫

A
= δ∗(e∗p, Z

′
∞) dµ.

Then from (3.4.5) and (3.4.9) we deduce that Z∞ = Z ′∞ a.e, thus completing the
proof in case (a).

In case (b) the proof is similar. It is enough to apply Theorem 3.2 instead of
Theorem 3.3. ¤

Let us focus our attention to a particular case of Theorem 3.4 that is a multivalued
analog of Theorem 8 in [2] and Theorem 4.3 in [8].

Theorem 3.5. Suppose that E is a separable Banach space, L : Ω → E is
a Lwk(E)-valued measurable multifunction and (Xn) is a uniformly integrable
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sequence in L1
cwk(E)(µ) such that Xn(ω) ⊂ L(ω) for all n ∈ N∗ and all ω ∈ Ω,

then there exist a subsequence (X ′
n) of (Xn) and X∞ ∈ L1

cwk(E)(µ) such that

(a) ∀u ∈ L∞E∗(µ) , lim
n→∞

∫

Ω
δ∗(u,X ′

n) dµ =
∫

Ω
δ∗(u,X∞) dµ

and

(b) X∞(ω) ⊂ co [w- ls X ′
n(ω)] a.e.

Proof. (a) follows from Theorem 3.4(a) because “L(ω) ∈ Lwk(E) =⇒ L(ω) ball-
wc”. Now let us prove (b). We will produce the arguments in [9, page 66-67].
Suppose by contradiction that (b) does not hold. As Xn(ω) ⊂ L(ω) for all n ∈ N∗
and all ω ∈ Ω, the multifunction co [w- ls X ′

n(ω)] is measurable and Lwk(E)-valued.
Using [14, lemma III.34](∗∗) provides x∗ ∈ E∗ and a F-measurable set A with
µ(A) > 0 such that δ∗(x∗, X∞(ω)) > δ∗(x∗, co [w- ls X ′

n(ω)]) for all ω ∈ A. For
each n, let sn be a maximal integrable selection of X ′

n associated to x∗, namely,
〈x∗, sn(ω)〉 = δ∗(x∗, X ′

n(ω)),∀ω ∈ Ω. It is obvious that (sn) satisfies the conditions
of Theorem 8 in [2]. Then there exists a subsequence still denoted by (sn) which
converges weakly in L1

E(µ) to a function s∞ such that

s∞(ω) ∈ co [w- ls sn(ω)] ⊂ co [w- ls X ′
n(ω)] a.e.

As sn → s∞ weakly, we get

lim
n→∞

∫

A
〈x∗, sn(ω)〉µ(dω =

∫

A
〈x∗, s∞(ω)〉µ(dω).

By (a) we have

lim
n→∞

∫

A
δ∗(x∗, X ′

n(ω))µ(dω) =
∫

A
δ∗(x∗, X∞(ω))µ(dω).

It follows that ∫

A
〈x∗, s∞(ω)〉µ(dω) =

∫

A
δ∗(x∗, X∞(ω))µ(dω).

As s∞(ω) ∈ co [w- ls X ′
n(ω)] a.e by integrating on A we deduce that∫

A
δ∗(x∗, co [w- ls X ′

n(ω)])µ(dω) ≥
∫

A
δ∗(x∗, X∞(ω))µ(dω)

that contradicts the inequality∫

A
δ∗(x∗, co [w- ls X ′

n(ω)])µ(dω) <

∫

A
δ∗(x∗, X∞(ω))µ(dω)). ¤

There is a useful application. See also [8, Lemma 3.3].

Corollary 3.6. Suppose that E is a separable Banach space, D∗ = (e∗p) be a dense
sequence for the Mackey topology. Let L : Ω → E is a cwk(E)-valued measurable
multifunction and (Xn) is a uniformly integrable sequence in L1

cwk(E)(µ) such that

Xn(ω) ⊂ L(ω) for all n ∈ N∗ and all ω ∈ Ω. Suppose further that, for all p and

(∗∗)That is the reason for which L is assumed to be Lwk(E)-valued ; for further generalizations
different techniques are necessary.
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for almost all ω ∈ Ω, the sequence (δ∗(e∗p, Xn(ω))n converges in R, then there exist

X∞ ∈ L1
cwk(E)(µ) such that

(a) lim
n→∞ δ∗(x∗, Xn(ω)) = δ∗(x∗, X∞(ω))

for all x∗ ∈ E∗ and for almost all ω ∈ Ω and

(b) X∞(ω) = co [w- ls X ′
n(ω)] a.e.

Proof. In view of Theorem 3.5, there exist a subsequence (X ′
n) of (Xn) and

X∞ ∈ L1
cwk(E)(µ) such that

∀u ∈ L∞E∗(µ) , lim
n→∞

∫

Ω
δ∗(u,X ′

n) dµ =
∫

Ω
δ∗(u,X∞) dµ

and
X∞(ω) ⊂ co [w- ls X ′

n(ω)] a.e.

By our assumption and Lebesgue-Vitali theorem we deduce that∫

A
lim

n→∞ δ∗(e∗p, Xn) dµ = lim
n→∞

∫

A
δ∗(e∗p, Xn) dµ =

∫

A
δ∗(e∗p, X∞) dµ

for all p and for all A ∈ F . Then we have

lim
n→∞ δ∗(e∗p, Xn(ω)) = δ∗(e∗p, X∞(ω))

for all p and for almost all ω ∈ Ω. Since L is cwk(E)-valued, we can finished the
proof by a routine density argument. ¤

The following is a combined application of the biting lemma in L1
R(µ) and

Theorem 3.5 via the arguments given in the proof of the biting lemma given in
[12, Theorem 3.1].

Theorem 3.7. Suppose that E is a separable Banach space, L : Ω → E is
a Lwk(E)-valued measurable multifunction and (Xn) is a bounded sequence in
L1

cwk(E)(µ) such that Xn(ω) ⊂ L(ω) for all n ∈ N∗ and all ω ∈ Ω, then there

exist an increasing sequence (Ap) in F with limn→∞ µ(Ap) = 1 and a subsequence
(X ′

n) of (Xn) such that the sequence (1ApX
′
n) is uniformly integrable for each p and

X∞ ∈ L1
cwk(E)(µ) such that ∀p,∀A ∈ Ap ∩ F and ∀u ∈ L∞E∗(Ap, Ap ∩ F , µ), the

following holds :

(a) lim
n→∞

∫

A
δ∗(u,X ′

n) dµ =
∫

A
δ∗(u,X∞) dµ.

and

(b) X∞(ω) ⊂ co [w- ls X ′
n(ω)] a.e.

Proof. (a) follows by repeating mutatis mutandis the arguments of the proof of
the biting lemma in [12, Theorem 3.1] via the sequential weak convergence stated
in Theorem 3.5 for the sequences (1ApX

′
n)n. Whereas (b) follows from the second

part of Theorem 3.5 and the biting lemma. So we omit the details. ¤
Further generalizations of Theorems 3.4-3.5-3.7 are given in the next sections

using some heavy techniques whereas the above-mentioned proofs are more direct.
Yet, in Theorems 3.5-3.7, they allow only to treat the case when the dominated
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multifunction L is Lwk(E)-valued. In L1
E(µ) case, a seminal version of Theorem

3.7 appears in [9, Theorem 2.1] using approximation and truncation techniques via
a suitable tightness condition and a weak compactness analog of Theorem 3.5 in
L1

E(µ). Compare with Theorem 6.2 given in Section 6.

4. Komlós theorem in L1
E(µ) and L1

cwk(E)(µ) under tightness condition

Theorem 3.4 generalizes some weak compactness results in L1
E(µ) (see, for

example, [5, 6, 8, 10, 14, 17, 26]) and also in L1
cwk(E)(µ) (see, for example, [9, 11])

and provides an alternative proof via the Mazur τL-convergence. Now we proceed
to the weak Komlós convergence in L1

E(µ) and L1
cwk(E)(µ). See [3, 13, 24] for other

related results involving this mode of convergence.

Let us mention first the following result [24] showing that any bounded cwk(E)-
tight sequence in L1

E(µ) “ weakly Komlós converges in measure”, a property which
captures the recent weak compactness results in [2, 17]. We will give the details of
proof since this leads to a multivalued version of Komlós theorem (see Theorem 4.2
below).

Theorem 4.1. If (un) is a bounded cwk(E)-tight sequence in L1
E(µ), then there

exist a subsequence (vm) of (un) and u∞ ∈ L1
E(µ) such that for all h ∈ L∞E∗(µ) and

for each further subsequence (wl) of (vm), the following holds :

1
n

Σn
i=1〈h,wi〉 → 〈h, u∞〉 in measure.

Proof. Step 1. Using the biting lemma provides an increasing sequence (Bn) in F
with limn→∞ µ(Bn) = 1 and a subsequence (u′n) such that u′n = 1Bnu′n + 1Ω\Bn

u′n
where the sequence (v′n) = (1Bnu′n) is uniformly integrable and the sequence
(w′n) = (1Ω\Bn

u′n) converges to 0 almost everywhere in E. In particular, if (un) is
a bounded cwk(E)-tight sequence in L1

E(µ), the corresponding subsequence (v′n) =
(1Bnu′n) given by the above decomposition is uniformly integrable and cwk(E)-tight.
Consequently it is enough to suppose that (un) is uniformly integrable cwk(E)-
tight sequence. From what has been said, it remains to prove that there exist a
subsequence (vm) of (un) and u∞ ∈ L1

E(µ) such that for all h ∈ L∞E∗(µ) and for
each further subsequence (wl) of (vm), the following holds :

| 1
n

Σn
i=1〈h,wi〉 − 〈h, u∞〉|1 → 0.

By [2, Theorem 6] the sequence (un) is relatively weakly compact in L1
E(µ). Now

let D∗ = (e∗p) be a dense sequence in BE∗ for the Mackey topology. Using Komlós
theorem [22] via an appropriate diagonal procedure and the weak compactness of
(un), we find a subsequence (vm) of (un) and u∞ ∈ L1

E(µ) such that for all p and
for each further subsequence (wl) of (vm)

1
n

Σn
i=1〈e∗p, wi〉 → 〈e∗p, u∞〉

for almost all ω ∈ Ω.
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Step 2. We suppose that there exists a cwk(E)-valued measurable multifunction
Γ : Ω → E such that un(ω) ∈ Γ(ω) for all n and all ω ∈ Ω.

Since 1
nΣn

i=1wi(ω) ∈ Γ(ω) a.e, by using a routine density argument we deduce
that

1
n

Σn
i=1〈x∗, wi〉 → 〈x∗, u∞〉

for all x∗ ∈ E∗ and for almost all ω ∈ Ω.

Step 3. Now we pass to the general case. By tightness assumption, for every
q ∈ N∗ there exists a cwk(E)-valued measurable multifunction Γ 1

q
: Ω → E such

that

(∗) ∀n, µ({ω ∈ Ω : un(ω) /∈ Γ 1
q
(ω)}) ≤ 1

q
.

W.l.o.g we may suppose that 0 ∈ Γ 1
q
(ω) for all ω ∈ Ω. Let us set An,q := {ω ∈

Ω : un(ω) ∈ Γ 1
q
(ω)}. By construction 1An,qun ∈ S1

Γ 1
q

for all n and all q so that we

may apply the results in the foregoing steps via an appropriate diagonal procedure.
There are a subsequence (v′m) and uq∞ ∈ L1

E(µ) such that for all x∗ ∈ E∗, for all p
and for each further subsequence (w′l), the following hold :

(4.1.1)
1
n

Σn
j=1〈x∗, 1A′j,q

w′j〉 → 〈x∗, uq
∞〉

for almost all ω ∈ Ω with A′j,q = {ω ∈ Ω : w′j(ω) ∈ Γ 1
q
(ω)} and

(4.1.2)
1
n

Σn
j=1〈e∗p, w′j〉 → 〈e∗p, u∞〉

for almost all ω ∈ Ω.

Let h ∈ L∞E∗(µ) with ||h||∞ ≤ 1. By (4.1.1) and Lebesgue-Vitali theorem, we have

(4.1.3) | 1
n

Σn
j=1〈h, 1A′j,q

w′j〉 − 〈h, uq
∞〉|1 → 0.

Using (∗), and the uniform integrability assumption we have

(4.1.4) lim
q→∞ sup

n

∫

Ω\A′n,q

|w′n| dµ = 0.

Moreover an easy computation gives

| 1
n

Σn
j=1w

′
j −

1
n

Σn
j=11A′j,q

w′j |1 ≤
1
n

Σn
j=1

∫

Ω\A′j,q

|w′j | dµ

≤ sup
n

∫

Ω\A′n,q

|w′n| dµ.

(4.1.5)

From (4.1.1) and (4.1.2) it follows that
1
n

Σn
j=1〈e∗p, w′j〉 −

1
n

Σn
j=1〈e∗p, 1A′j,q

w′j〉 → 〈e∗p, u∞ − uq
∞〉

for all p and almost all ω. Since D∗ is Mackey dense in BE∗ , we deduce that

(4.1.6) |u∞ − uq
∞| ≤ lim inf

n
| 1
n

Σn
j=1w

′
j −

1
n

Σn
j=11A′j,q

w′j |
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for almost all ω. Using (4.1.5), (4.1.6) and Fatou Lemma we get
∫

Ω
|u∞ − uq

∞| dµ ≤
∫

Ω
lim inf

n
| 1
n

Σn
j=1w

′
j −

1
n

Σn
j=11A′j,q

w′j | dµ

≤ lim inf
n

∫

Ω
| 1
n

Σn
j=1w

′
j −

1
n

Σn
j=11A′j,q

w′j | dµ

≤ lim inf
n

1
n

Σn
j=1

∫

Ω\A′j,q

|w′j | dµ

≤ sup
n

∫

Ω\A′n,q

w′ndµ.

(4.1.7)

Now using (4.1.5) and (4.1.7) it is not difficult to check that

|〈h,
1
n

Σn
j=1w

′
j〉 − 〈h, u∞〉|1 ≤ |〈h,

1
n

Σn
j=1w

′
j −

1
n

Σn
j=11A′j,q

w′j〉|1

+ |〈h,
1
n

Σn
j=11A′j,q

w′j〉 − 〈h, uq
∞〉|1

+ |〈h, uq
∞ − u∞〉|1

≤ 2 sup
n

∫

Ω\A′n,q

|w′n| dµ

+ |〈h,
1
n

Σn
j=11A′j,q

w′j〉 − 〈h, uq
∞〉|1.

(4.1.8)

From (4.1.3), (4.1.4) and (4.1.8) it follows that

|〈h,
1
n

Σn
j=1w

′
j〉 − 〈h, u∞〉|1 → 0. ¤

In the light of the preceding result it is worth to have an analog in the space
L1

cwk(E)(µ). For this purpose let us introduce the following terminology. A sequence
(Xn) in L1

cwk(E)(µ) is cwk(E)-tight if, for every ε > 0, there is a cwk(E)-valued
measurable multifunction Γε : Ω → E such that

∀n, µ(Ω \ {ω ∈ Ω : Xn(ω) ⊂ Γε(ω)}) ≤ ε.

As an example, one can easily check that the sequence (Xn) given in Theorem 3.3 is
cwk(E)-tight. Let D∗ := (e∗p) be a dense sequence in BE∗ for the Mackey topology.
A sequence (Xn) in L1

cwk(E)(µ) σ(E, D∗)-Komlós converges to X∞ ∈ L1
cwk(E)(µ)

if there exists a subsequence (Yn) of (Xn) such that for all p and for each further
subsequence (Zn) of (Yn),

lim
n

1
n

Σn
j=1δ

∗(e∗p, Zj) = δ∗(e∗p, X∞)

for almost all ω ∈ Ω.

Theorem 4.2. Suppose that D∗ := (e∗p) is a dense sequence in BE∗ for the Mackey

topology, (Xn) is a bounded cwk(E)-tight sequence in L1
cwk(E)(µ) which σ(E, D∗)-

Komlós converges to X∞ ∈ L1
cwk(E)(µ), then there exists a subsequence (Yn) of
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(Xn) such that for all h ∈ L∞E∗(µ) and for each further subsequence (Zn) of (Yn),
the following holds :

δ∗(h,
1
n

Σn
i=1Zi) → δ∗(h,X∞) in measure.

Proof. Step 1. Suppose that (Xn) is uniformly integrable.

By tightness assumption, for every q ∈ N∗ there exists a cwk(E)-valued measur-
able multifunction Γ 1

q
: Ω → E such that

(∗) ∀n, µ(Ω \ {ω ∈ Ω : Xn(ω) ⊂ Γ 1
q
(ω)}) ≤ 1

q
.

We may suppose that 0 ∈ Γ 1
q
(ω) for all ω. Let us set An,q := {ω ∈ Ω :

Xn(ω) ⊂ Γ 1
q
(ω)}. Applying Komlós theorem to the sequence (δ∗(e∗p, 1An,qXn))n

via an appropriate diagonal process provides a subsequence (Yn) of (Xn) and a
sequence (ϕp,q) in L1

R+ such that

(4.2.1) lim
n

1
n

Σn
j=1δ

∗(e∗p, 1A′j,q
Zj) = ϕp,q a.e

with A′j,q = {ω ∈ Ω : Zj(ω) ⊂ Γ 1
q
(ω)} for each further subsequence (Zn) of (Yn)

and for every p ∈ N∗ and every q ∈ N∗. By hypothesis we have

(4.2.2) lim
n

1
n

Σn
j=1δ

∗(e∗p, Zj) = δ =∗ (e∗p, X∞) a.e

for each subsequence (Zn) of (Yn) and for every p ∈ N∗. For simplicity let us set

Sn :=
1
n

Σn
j=1Zj , Sn,q :=

1
n

Σn
j=11A′j,q

Zj

for all n ∈ N∗ and for all q ∈ N∗. Now we proceed as in the vector valued case,
so we don’t want to go into details too much, but only show the difference. By
construction we may apply Theorem 3.3 to (Sn,q)n. There are sequences (S̃n,q)n

with S̃n,q ∈ co {Si,q : i ≥ n} and X∞,q ∈ L1
cwk(E)(µ) such that τL- limn S̃n,q = X∞,q

a.e. In particular, we have

∀x∗ ∈ E∗, lim
n

δ∗(x∗, S̃n,q) = δ∗(x∗, X∞,q))

a.e, and by (4.2.1)

(4.2.3) ∀x∗ ∈ E∗, lim
n

δ∗(x∗, Sn,q) = δ∗(x∗, X∞,q))

a.e because Sn,q(ω) ⊂ Γ 1
q
(ω). By (4.2.2) and (4.2.3) we get

δ∗(e∗p, Sn)− δ∗(e∗p, Sn,q) → δ∗(e∗p, X∞)− δ∗(e∗p, X∞,q) a.e
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for every p ∈ N∗ and every q ∈ N∗. Consequently we deduce that

H(X∞, X∞,q) = sup
x∗∈BE∗

|δ∗(x∗, X∞)− δ∗(x∗, X∞,q)|

= sup
x∗∈D∗

|δ∗(x∗, X∞)− δ∗(x∗, X∞,q)|

= sup
x∗∈D∗

lim
n
|δ∗(x∗, Sn)− δ∗(x∗, Sn,q)|

≤ lim inf
n

1
n

Σn
j=11Ω\A′j,q

|Zi| a.e

where the second identity in the second member follows from the Mackey density
of D∗ and the Mackey continuity of the support functions of X∞ and X∞,q.

Now let h ∈ L∞E∗(µ) with ||h||∞ ≤ 1. Using the preceding inequality and Fatou
lemma, we obtain the estimate∫

Ω
|δ∗(h, Sn)− δ∗(h,X∞)| dµ ≤

∫

Ω
|δ∗(h, Sn)− δ∗(h, Sn,q)| dµ

+
∫

Ω
|δ∗(h, Sn,q)− δ∗(h,X∞,q)| dµ

+
∫

Ω
|δ∗(h,X∞)− δ∗(h,X∞,q)| dµ

≤ 2 sup
n

1
n

Σn
j=1

∫

Ω\A′j,q

|Zj | dµ

+
∫

Ω
|δ∗(h, Sn,q)− δ∗(h,X∞,q)| dµ

≤ 2 sup
n

∫

Ω\A′n,q

|Zn| dµ

+
∫

Ω
|δ∗(h, Sn,q)− δ∗(h,X∞,q)| dµ.

Since (Xn) is uniformly integrable, by (4.2.3) and Lebesgue-Vitali theorem∫

Ω
|δ∗(h, Sn,q)− δ∗(h,X∞,q)| dµ → 0

when n →∞ and
lim sup

q
sup

n

∫

Ω\A′n,q

|Zn| dµ = 0.

Whence we get

lim
n→∞

∫

Ω
|δ∗(h, Sn)− δ∗(h,X∞)| dµ = 0.

General case. Since (Xn) is bounded, by the biting lemma there exist an
increasing sequence (Bn) in F with limn µ(Bn) = 1 and a subsequence of (Xn)
still denoted (Xn) such that Xn = 1BnXn + 1Ω\Bn

Xn where (X1
n) := (1BnXn) is

a uniformly integrable and |X2
n| → 0 a.e where X2

n = 1Ω\Bn
Xn. It is obvious that

the uniformly integrable sequence (X1
n) is cwk(E)-tight. By Step 1, there exist a

subsequence (X1
nk

) of (X1
n) and X∞ ∈ L1

cwk(E)(µ) such that for all h ∈ L∞E∗(µ) and



54 CHARLES CASTAING AND MOHAMMED SAADOUNE

for each further subsequence (Zn) of (X1
nk

), the sequence (δ∗(h, 1
nΣn

i=1Zi)) converges
in measure to δ∗(h,X∞). Since the sequence ( 1

nΣn
i=1|Zi|) converges to 0 almost

everywhere, for every further subsequence (Zn) of (X2
nk

), because |X2
nk
| → 0 a.e, it

is easy to check that X∞ and the sequence (Yk) = (Xnk
) have the required property.

The following is a direct application of Theorem 4.2 to the SLLN (strong law of
large numbers) for convex weakly compact valued integrably bounded multifunc-
tions (alias convex weakly compact valued random sets) and is a multivalued version
of a result due to Daffer-Taylor ([16], Theorem 2.3). A sequence (Xn) in L1

cwk(E)(µ)
is independent if for every x∗ ∈ E∗, the sequence of real-valued integrable random
variables (δ∗(x∗, Xn)) is independent.

Proposition 4.3. Suppose that (Xn)n≥1 is a uniformly integrable cwk(E)-tight
independent sequence in L1

cwk(E)(µ) and D∗ := (e∗k)k≥1 is a dense sequence in BE∗

for the Mackey topology satisfying :

(i) ∀n ≥ 1, EXn = EX1.
(ii) ∀k ≥ 1, Σ∞n=1n

−pE|δ∗(e∗k, Xn)|p < ∞, for some 1 ≤ p ≤ 2.

Then there is a subsequence (Yn) of (Xn) such that for all h ∈ L∞E∗(µ) and for each
further subsequence (Zn) of (Yn), the following holds :

lim
n→∞

∫

Ω
|δ∗(h,

1
n

Σn
i=1Zi)− δ∗(h,EX1)| dµ = 0.

Proof. For simplicity we set, for all n and for all k, Zk
n := δ∗(e∗k, Xn). By an easy

computation, we have E|Zk
n − EZk

n|p ≤ 2pE|Zk
n|p.

From (ii) it follows that

Σ∞n=1n
−pE|Zk

n − EZk
n|p < ∞.

Since the sequence (Zk
n)n is independent, using (i) and K.L. Chung [15] we have

∀k, lim
n→∞

1
n

Σn
j=1δ

∗(e∗k, Xj) = δ∗(e∗k, EX1)

for almost all ω ∈ Ω. Evidently, this holds for every further subsequence of (Xn) for
almost all ω ∈ Ω. Thus (Xn) σ(E, D∗)-Komlós converges to EX1. To complete the
proof it is enough to apply Theorem 4.2 to the uniformly integrable cwk(E)-tight
sequence (Xn). ¤

5. Mazur’s convergence under tightness condition

If (un) is a bounded cwk(E)-tight sequence in L1
E(µ), then (un) has the weak

Talagrand property (see, for example, [5, Theorem 2.8]) and there exists a sequence
(vn) with vn ∈ co {um : m ≥ n} such that (vn) converges almost everywhere to an
integrable function u ∈ L1

E(µ). As Theorem 3.3 provides an analoguous property for
the space L1

cwk(E)(µ), it is worth to pose the question of the validity of Theorem 3.3
in the case when (Xn) is bounded and cwk(E)-tight. The following result provides
a satisfactory answer but its proof is a bit more technical.
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Theorem 5.1. Suppose that E is a separable Banach space, (Xn) is a bounded
cwk(E)-tight sequence in L1

cwk(E)(µ), then there exist X∞ ∈ L1
cwk(E)(µ) and a

sequence (X̃n)n with X̃n ∈ co{Xi : i ≥ n} such that

(a) ∀x ∈ E, limn→∞ d(x, X̃n(ω)) = d(x,X∞(ω)) a.e.

(b) ∀h ∈ L∞E∗(µ), δ∗(h, X̃n) → δ∗(h,X∞) in measure.

Proof. We will divide the proof in several steps.

A. We begin to state the theorem in the particular case when (Xn) is uniformly
integrable

Step 1. Let D∗ := (x∗k)k∈N∗ be a countable dense subset in BE∗ for the Mackey
topology. First we note that

⋃
n S1

Xn
is relatively σ(L1, L∞) compact in view of [2,

Theorem 6], [8, Theorem 4.1]. For every k ∈ N∗ pick a maximal integrable selection
un,k ∈ S1

Xn
:

〈x∗k, un,k〉 := δ∗(x∗k, Xn).

Then (un,k)n is relatively σ(L1, L∞) sequentially compact for every k. Therefore by
using an appropriate diagonal procedure, we may suppose for simplicity that, for
every k, (un,k)n converges σ(L1, L∞) to an integrable function u∞,k so that we can
apply Lemma 3.1 to (un,k)n,k. Hence there exists a negligible set N0 and a sequence
(vn,k)n,k with

vn,k =
∑

i∈In

λn
i ui+n,k, λn

i ≥ 0 and
∑

i∈In

λn
i = 1

such that, for every k, (vn,k(ω))n s-converges a.e. to u∞,k(ω), for all ω ∈ Ω \N0.

Step 2. By tightness assumption, for every q ∈ N∗, there exists a cwk(E)-valued
measurable multifonction Γ 1

q
such that

(5.1.1) ∀n, µ(Ω \An,q) ≤ 1
q
,

where

An,q := {ω ∈ Ω : Xn(ω) ⊂ Γ 1
q
(ω)}.

W.l.o.g we may suppose that 0 ∈ Γ 1
q
(ω) for all ω ∈ Ω. Let us define

vn,k,q :=
∑

i∈In

λn
i 1Ai+n,qui+n,k, (n, q, k ∈ N∗).

Using again [2, Theorem 6], [8, Theorem 4.1] and the diagonal method we may
suppose that, for each k and each q ∈ N∗, the sequence (vn,k,q)n converges σ(L1, L∞)
to an integrable function u∞,k,q. Then an appeal to the Remark of Lemma 3.1
produces a negligible set N1 ⊃ N0 and a sequence (ṽn,k,q)n,k,q with

ṽn,k,q =
∑

j∈Jn

µn
j vj+n,k,q, µn

j ≥ 0 and
∑

j∈Jn

µn
j = 1
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such that (ṽn,k,q)n s-converges a.e. to u∞,k,q, for every k and every q ∈ N∗. Since
(vn,k)n s-converges to u∞,k for every k, so is the sequence (ṽn,k)n defined by

ṽn,k(ω) :=
∑

j∈=Jn

µn
j vj+n,k(ω).

Step 3. Now let us consider the multifunctions

X̃n =
∑

j∈Jn

µn
j

∑

i∈Ij+n

λj+n
i Xi+j+n, X∞ = 1Ω\N1

s-liX̃n

and

X̃n,q =
∑

j∈Jn

µn
j

∑

i∈Ij+n

λj+n
i 1Ai+j+n,qXi+j+n, X∞,q = 1Ω\N1

s-liX̃n,q.

Fix k ∈ N∗, q ∈ N∗ and ω ∈ Ω \ N1. Then, by Step 2, u∞,k(ω) ∈ X∞(ω) and
u∞,k,q(ω) ∈ X∞,q(ω). Furthermore we have

lim
n→+∞ δ∗(x∗k, X̃n(ω)) = lim

n
〈x∗k, ṽn,k(ω)〉

= 〈x∗k, u∞,k(ω)〉
≤ δ∗(x∗k, X∞(ω)).

On the other hand it easy to see that

δ∗(x∗k, X∞(ω)) ≤ lim
n→∞ δ∗(x∗k, X̃n(ω)).

Whence we get

(5.1.2) lim
n→∞ δ∗(x∗k, X̃n(ω)) = δ∗(x∗k, X∞(ω)).

Similarly, we obtain

lim
n→∞ δ∗(x∗k, X̃n,q(ω)) = δ∗(x∗k, X∞,q(ω))

and then

(5.1.3) lim
n→∞ δ∗(x∗, X̃n,q(ω)) = δ∗(x∗, X∞,q(ω))

for every x∗ ∈ E∗, since Xn,q(ω) is included in the weakly compact set Γ 1
q
(ω) for

all n ∈ N∗.
Step 4. Let q ∈ N∗, x∗ ∈ BE∗ and ω ∈ Ω \N1 be fixed. For simplicity set

φq(ω) := lim inf
n

∑

j∈Jn

µn
j

∑

i∈Ij+n

λj+n
i 1Ω\Ai+j+n,q

|Xi+j+n|(ω).

We claim that

(5.1.4) |δ∗(x∗, X∞(ω))− δ∗(x∗, X∞,q(ω))| ≤ φq(ω).
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Indeed

δ∗(x∗, X∞(ω))− δ∗(x∗, X∞,q(ω))

≤ lim inf
n

δ∗(x∗, X̃n(ω))− lim
n

δ∗(x∗, X̃n,q(ω))

= lim inf
n

[δ∗(x∗, X̃n(ω))− δ∗(x∗, X̃n,q(ω))]

= lim inf
n

[δ∗(x∗,
∑

j∈Jn

µn
j

∑

i∈Ij+n

λj+n
i 1Ω\Ai+j+n,q

Xi+j+n(ω))]

≤ φq(ω).

Let us prove the converse inequality. Let x∗k ∈ D∗ such that

max{δ∗(x∗ − x∗k, X∞,q(ω)), δ∗(x∗k − x∗, X∞,q(ω))} <
ε

2
.

Then

δ∗(x∗, X∞(ω))− δ∗(x∗, X∞,q(ω))

≥ δ∗(x∗, X∞(ω))− δ∗(x∗k, X∞,q(ω))

−max{δ∗(x∗ − x∗k, X∞,q(ω)), δ∗(x∗k − x∗, X∞,q(ω))}
≥ δ∗(x∗, X∞(ω))− δ∗(x∗k, X∞,q(ω))− ε

2
≥ 〈x∗, u∞,k(ω)〉 − δ∗(x∗k, X∞,q(ω))− ε

2
= 〈x∗, u∞,k(ω)〉 − 〈x∗k, u∞,k,q(ω)〉 − ε

2
= 〈x∗, u∞,k(ω)− u∞,k,q(ω)〉+ 〈x∗ − x∗k, u∞,k,q(ω)〉 − ε

2
≥ 〈x∗, u∞,k(ω)− u∞,k,q(ω)〉 − δ∗(x∗k − x∗, X∞,q(ω))− ε

2
≥ 〈x∗, u∞,k(ω)− u∞,k,q(ω)〉 − ε

2
− ε

2
= lim

n
〈x∗, ṽn,k(ω)− ṽn,k,q(ω)〉 − ε

≥ −φq(ω)− ε.

Hence
δ∗(x∗, X∞(ω))− δ∗(x∗, X∞,q(ω)) ≥ −φq(ω)

So Claim (5.1.4) follows.

Step 5. Now we are going to prove the main fact in this step, namely we show that
it suffices to change X∞ on a negligible set to get X∞(ω) ∈ cwk(X) for all ω. First,
there exists a negligible set N2 ⊃ N1 such that for every ω ∈ Ω\N2, X∞(ω) ∈ ccb(E).
Indeed, (5.1.2) implies

(5.1.5) ∀ω ∈ Ω \N1, |X∞|(ω) ≤ lim inf
n

|X̃n|(ω)

and it follows from Fatou lemma and boundedness of (Xn)n that the function
lim infn |X̃n| ∈ L1

R+ . Then (5.1.4) yields

(5.1.6) H(X∞(ω), X∞,q(ω)) = sup
x∗∈BE∗

|δ∗(x∗, X∞(ω))− δ∗(x∗, X∞,q(ω))| ≤ φq(ω)
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for all ω ∈ Ω \N2. By Fatou lemma we get

∫

Ω
φqdµ ≤ lim inf

n

∑

j∈Jn

µn
j

∑

i∈Ij+n

λj+n
i

∫

Ω\Ai+j+n,q

|Xi+j+n|dµ

≤ sup
n

∫

Ω\An,q

|Xn|dµ.

(5.1.7)

As (Xn) is uniformly integrable, by (5.1.1) we get

(5.1.8) lim
q→∞ sup

n

∫

Ω\An,q

|Xn|dµ = 0,

Whence using (5.1.8) we deduce that

lim
q→∞

∫

Ω
φqdµ = 0.

Therefore, there exist a stricly increasing sequence (α(q))q and a negligible set
N ⊃ N2 such that for all ω ∈ Ω \N, φα(q)(ω) → 0. Hence, by (5.1.6) we have that
X∞(ω) ∈ cwk(E), for all ω ∈ Ω \ N , because X∞,α(q)(ω) ∈ cwk(E) and the space
(cwk(E),H) is complete [8] using Grothendieck lemma [19, p.296]. Then it suffices
to suppose X∞ ≡ 0 on N to get X∞(ω) ∈ cwk(E) for all ω ∈ Ω. Consequently, by
(5.1.2) and (5.1.5), X∞ is measurable and |X∞| ∈ L1

R+ . Hence X∞ ∈ L1
cwk(E)(µ).

Step 6. Let us prove (a). Let x ∈ E and ω ∈ Ω \ N be fixed. Using (5.1.2) and
weak compactness of X∞(ω) and X̃n(ω), (n ∈ N∗), we obtain

lim inf
n

d(x, X̃n(ω)) = lim inf
n

sup
x∗∈BE∗

[〈x∗, x〉 − δ∗(x∗, X̃n(ω))]

= lim inf
n

sup
k

[〈x∗k, x〉 − δ∗(x∗k, X̃n(ω))]

≥ sup
k

lim
n

[〈x∗k, x〉 − δ∗(x∗k, X̃n(ω))]

= sup
k

[〈x∗k, x〉 − δ∗(x∗k, X∞(ω))]

= d(x,X∞(ω)).

On the other hand, using the definition of X∞, it is easily seen that

lim sup
n

d(x, X̃n(ω)) ≤ d(x,X∞(ω)).

So the desired conclusion follows.
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Step 7. Let us prove (b). Fix h ∈ L∞E∗(µ) with ||h||∞ ≤ 1. Using (5.1.6) and (5.1.7)
we obtain for every n ∈ N∗ and every q ∈ N∗
∫

Ω
|δ∗(h, X̃n)− δ∗(h,X∞)|dµ

≤
∫

Ω
|δ∗(h, X̃n)− δ∗(h, X̃n,q)|dµ +

∫

Ω
|δ∗(h, X̃n,q)− δ∗(h,X∞,q)|dµ

+
∫

Ω
|δ∗(h,X∞)− δ∗(h,X∞,q)|dµ

≤ sup
n

∑

j∈Jn

µn
j

∑

i∈Ij+n

λj+n
i

∫

Ω\Ai+j+n,q

|Xi+j+n|dµ

+
∫

Ω
|δ∗(h, X̃n,q)− δ∗(h,X∞,q)|dµ + sup

n

∫

Ω\An,q

|Xn|dµ

≤ 2 sup
n

∫

Ω\An,q

|Xn|dµ +
∫

Ω
|δ∗(h, X̃n,q)− δ∗(h,X∞,q)|dµ.

As (δ∗(h, X̃n,q))n is uniformly integrable, from (5.1.3) and Lebesgue-Vitali theorem,
it follows that ∫

Ω
| δ∗(h, X̃n,q)− δ∗(h,X∞,q) | dµ → 0.

Therefore using (5.1.8) we get
∫

Ω
| δ∗(h, X̃n)− δ∗(h,X∞) | dµ → 0.

B. Now we pass to the general case, i.e (Xn) is bounded.

Thank to the biting lemma it is now easy to reduce to assumption A. There are an
increasing sequence (Bn) in F with limn µ(Bn) = 1 and a subsequence (X ′

n) of (Xn)
such that X ′

n = 1BnX ′
n+1Ω\Bn

X ′
n where (Y ′

n)n = (1BnX ′
n)n is a uniformly integrable

and |Z ′n| → 0 a.e where Z ′n = 1Ω\Bn
X ′

n. By the above decomposition, it is obvious
that (Y ′

n) is cwk(E)-tight. Consequently we may apply the results obtained in Step
A to (Y ′

n). This gives a sequence (Ỹn) in L1
cwk(E)(µ) with Ỹn ∈ co{Y ′

m : m ≥ n} and
Y∞ ∈ L1

cwk(E)(µ) such that

(a) ∀x ∈ E, limn→∞ d(x, Ỹn(ω)) = d(x, Y∞(ω)) a.e.
(b) ∀u ∈ L∞E∗(µ), δ∗(u, Ỹn) → δ∗(u, Y∞) in measure.

Each Ỹn has the form Σνn
i=nλn

i Y ′
i with λn

i ≥ 0 and Σνn
i=nλn

i = 1. Since the
sequence (Σνn

i=nλn
i |Z ′i|) converges to 0 a.e because |Z ′n| → 0 a.e, the sequence

(X̃n) = (Σνn
i=nλn

i X ′
i) has the required properties. ¤

Before going further we give some useful properties of the multifunction-limit
which occurs in Theorems 3.2–3.3–5.1.

Proposition 5.2. Let (Xn) be a bounded sequence in L1
cwk(E)(µ) satisfying the

hypotheses and notations of Theorems 3.2 and 3.3 respectively, then there exist
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X∞ ∈ L1
cwk(E)(µ) and a sequence (X̃n) with X̃n ∈ co{Xm : m ≥ n} such that the

following holds :

lim
n→∞D(B, X̃n) = D(B,X∞)

for every bounded closed convex subset B in E and for almost all ω ∈ Ω.

Proof. It is enough to consider the case of Theorems 3.2 since in the other
case the proof quite similar. By the theorem under consideration there exist
X∞ ∈ L1

cwk(E)(µ) and a sequence (X̃n) with X̃n ∈ co{Xm : m ≥ n} such that

X∞ = τL- limn X̃n a.e.

Step 1. Claim : D(B,X∞) ≤ lim infn→∞ D(B, X̃n) for every bounded closed
convex subset B in E and for almost all ω ∈ Ω. We have

lim inf
n→∞ D(B, X̃n) = lim inf

n→∞ sup
x∗∈BE∗

{−δ∗(x∗, X̃n)− δ∗(−x∗, B)}

≥ sup
x∗∈BE∗

{− lim
n→∞ δ∗(x∗, X̃n)− δ∗(−x∗, B)}

= sup
x∗∈BE∗

{−δ∗(x∗, X∞)− δ∗(−x∗, B)}

= D(B,X∞)

for every bounded closed convex subset B in E and for almost all ω ∈ Ω, thus
proving the liminf part. Let us prove now the limsup part.

Step 2. Claim : lim supn→∞D(B, X̃n) ≤ D(B,X∞) for all bounded closed convex
subset B in E and almost surely ω ∈ Ω.

Now let B be a bounded closed convex subset of E, then

lim sup
n→∞

D(B, X̃n(ω)) = lim sup
n→∞

inf
x∈B

d(x, X̃n(ω))

≤ inf
x∈B

lim
n→∞ d(x, X̃n(ω))

≤ inf
x∈B

d(x,X∞(ω))

= D(B,X∞(ω))

for almost all ω ∈ Ω. ¤

Proposition 5.2’. Suppose that (Xn) be a bounded cwk(E)-tight sequence

in L1
cwk(E)(µ), then there exist X∞ ∈ L1

cwk(E)(µ) and a sequence (X̃n) with

X̃n ∈ co{Xm : m ≥ n} such that the following holds :

lim
n→∞D(K, X̃n) = D(K, X∞)

for every K in cwk(E) and for almost all ω ∈ Ω.

Proof. Let X∞ and (X̃n) as given in Theorem 5.1. A careful look of the proof of
this theorem shows that

lim
n→∞ δ∗(x∗k, X̃n(ω)) = δ∗(x∗k, X∞(ω))
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a.e where (x∗k)k is a countable dense for the Mackey topology in BE∗ . So, the liminf

part : D(K, X∞) ≤ lim infn→∞ D(K, X̃n) for every K in cwk(E) and for almost
all ω ∈ Ω follows from Step 1 of Proposition 5.2 while the limsup part follows from
the arguments of Step 2 of this proposition. ¤

The following result is an application of Theorem 4.2 and Theorem 5.1 illustrating
the combined use of Mazur convergence and Komlós convergence. Let us mention
that Theorem 3.4(a) is valid if we replace condition (a) by the following tightness
condition :

(Ta) for any subsequence (Yn), there is a cwk(E)-tight sequence (Ỹn) with
Ỹn ∈ co{Ym : m ≥ n}.

Indeed it is enough to use Theorem 5.1 instead of Theorem 3.3 in the proof of
Theorem 3.4(a).

Proposition 5.3. Suppose that E is a separable Banach space, (Xn) is a bounded
sequence in L1

cwk(E)(µ) which satisfies the following condition :

(Ta) for any subsequence (Yn), there is a cwk(E)-tight sequence (Ỹn) with

Ỹn ∈ co{Ym : m ≥ n}.
Then there exist a multifunction X∞ ∈ L1

cwk(E)(µ) and a subsequence (Yn) of (Xn)
such that (Yn) σ(E, D∗)-Komlós converges to X∞. In particular, if (Xn) is cwk(E)-
tight, then for all h ∈ L∞E∗(µ) and for each further sequence (Zn) of (Yn) the following
holds :

δ∗(h,
1
n

Σn
i=1Zi) → δ∗(h,X∞) in measure.

Proof. Using the biting lemma, it suffices to consider the case where (Xn) is
uniformly integrable. In view of the preceding remark concerning the validity of
Theorem 3.4(a) under the tightness condition (Ta), there exist a subsequence still
denoted by (Xn) and X∞ ∈ L1

cwk(E)(µ) such that

(5.3.1) ∀h ∈ L∞E∗(µ) , lim
n→∞

∫

Ω
δ∗(h,Xn) dµ =

∫

Ω
δ∗(h,X∞) dµ.

Let (x∗k) be a dense sequence in BE∗ for the Mackey topology. Applying Komlós
theorem [22] to the sequences (δ∗(x∗k, Xn))n, (k ∈ N∗) via a diagonal procedure,
provides a subsequence (Yn) of (Xn) and a sequence (ϕk), (k ∈ N∗) in L1

R(µ) such
that

(5.3.2) ∀k, lim
n

1
n

Σn
i=1δ

∗(x∗k, Zi) = ϕk

almost everywhere, for every further subsequence (Zm) of (Yn), so that, by (5.3.2)
and Lebesgue-Vitali theorem, we get

(5.3.3) ∀k, ∀A ∈ F , lim
n

∫

A
δ∗(x∗k, Yn) dµ =

∫

A
ϕk dµ.

From (5.3.1) and (5.3.3) it follows that

ϕk = δ∗(x∗k, X∞) a.e.
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Returning to (5.3.2) we conclude that (Yn) σ(E, D∗)-Komlós converges to X∞. Now
it suffices to apply Theorem 4.2 to complete the proof. ¤
Remark. It is worth to mention that Proposition 5.3 shows that it is now possible
to remove the assumption : “ Xn σ(E, D∗)-Komlós converges to X∞ ∈ L1

cwk(E)(µ)”
in Theorem 4.2.

The following is a variant of Proposion 5.3.

Proposition 5.4. Suppose that E∗ is separable and E has the RNP, (Xn) is a
bounded sequence in L1

cwk(E)(µ) satisfying :

(Tb) for any sequence (Yn) there is (Ỹn) with Ỹn ∈ co{Xm : m ≥ n} such that,

for each A ∈ F , ∪n

∫
A Ỹn dµ is relatively weakly compact in E,

then there exist a subsequence (Yn) of (Xn) and X∞ ∈ L1
cwk(E)(µ) such that for all

x∗ ∈ E∗ and for each further subsequence (Zn) of (Yn), the following holds :

δ∗(x∗,
1
n

Σn
i=1Zi) → δ∗(x∗, X∞) a.e.

Proof. Step 1. We suppose first that (Xn) is uniformly integrable.

In view of Theorem 3.4(b) there exist a subsequence still denoted by (Xn) and
X∞ ∈ L1

cwk(E)(µ) such that

(5.4.1) ∀h ∈ L∞E∗(µ) , lim
n→∞

∫

Ω
δ∗(h,Xn) dµ =

∫

Ω
δ∗(h,X∞) dµ.

Let (x∗k) be a dense sequence in E∗. Applying Komlós theorem to the sequences
(δ∗(x∗k, Xn))n, (k ∈ N∗) and (|Xn|) via a diagonal procedure, provides a subsequence
(Yn) of (Xn) and a sequence (ϕk), (k ∈ N∗) in L1

R(µ) and θ ∈ L1
R+(µ) such that

(5.4.2) ∀k, lim
n

1
n

Σn
i=1δ

∗(x∗k, Zi) = ϕk

and

(5.4.3) lim
n

1
n

Σn
i=1|Zi| = θ

almost everywhere, for every further subsequence (Zn) of (Xn). By (5.4.3) the
sequence ( 1

nΣn
i=1|Zi|)n is pointwise bounded almost everywhere. By (5.4.1) and

(5.4.2) it is immediate that

(5.4.4) ∀k, ϕk = δ∗(x∗k, X∞).

Whence using the separability of E∗ and the pointwise boundness of ( 1
nΣn

i=1|Zi|)n

we get by a routine argument

(5.4.5) lim
n

1
n

Σn
i=1δ

∗(x∗, Zi) = δ∗(x∗, X∞)

for all x∗ ∈ E∗ and almost everywhere.

B. Step 2. Now we pass to the general case. In view of the biting lemma there
exist an increasing sequence (Ap) in F with limp→∞ µ(Ap) = 1 and a subsequence
of (Xn) still denoted by (Xn) such that (Xn|Ap)n is uniformly integrable for each
p. Applying the result obtained in Step 1 via a diagonal procedure to the sequences
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(1ApXn)n(p ∈ N∗) provides multifunctions Xp∞ ∈ L1
cwk(E)(µ), (p ∈ N∗) and a

subsequence (Yn) of (Xn) such that

∀p ∈ N∗, ∀x∗ ∈ E∗, lim
n

1
n

Σn
i=1δ

∗(x∗, 1ApZi) = δ∗(x∗, Xp
∞)

almost everywhere, for every subsequence (Zn) of (Yn). As (Ap) is increasing, there
exists a negligible set N such that for all p and for all ω ∈ Ap\N, Xp∞(ω) = Xp+1∞ (ω).
Set X∞(ω) = Xp∞(ω) if ω ∈ Ap \N and X∞(ω) = 0 if ω ∈ ∩p(Ω \Ap) ∪N. Then it
is easy to check that (Yn) and X∞ have the required properties. ¤

Comments. (1) Theorems 3.4-4.1-4.2 are natural extensions of Dunford-Pettis-
types theorem in L1

E(µ) [see, for instance, 2, 5, 6, 8, 10, 11, 14, 17, 26]. In this
context we obtain sharp results of convergence which cannot be demonstrated by
routine arguments. In particular we mention the validity of Theorem 3.4(a) when we
replace condition (a) by tightness condition (Ta). When comparing with the L1

E(µ)
case, this tightness condition is even weaker than the weak compactness condition
(∗) (alias Mazur convergence in our terminology) in [17, 26]. Yet, in L1

E(µ) case,
Theorem 8 in [24] is the analogue of Theorem 3.4 with tightness condition (Ta).
Let us mention that most convergence results for the space L1

cwk(E) we present here
need a careful look in constrast to the L1

E(µ) case. For example, in the case when
the strong dual of E is separable, one can see that, if (un) is a uniformly integrable
sequence in L1

E(µ), which pointwise converges to u∞ ∈ L1
E(µ) on L∞(µ)⊗E∗, then

(un) weakly converges to u∞ by using a general fact [7] : “on bounded subsets
of L∞E∗ convergence in measure coincide with uniform convergence on uniformly
integrable subsets of L1

E(µ) (see [19] for the case L1
R(µ))” and usual arguments.

Indeed any h ∈ L∞E∗(µ) is limit of an almost everywhere convergent sequence (hp)p

of step functions satisfying ∀p, ‖hp(ω)‖ ≤ ‖h‖∞. As ∀n, ∀p, we have

|〈h, un − u∞〉| ≤ sup
n
|〈h− hp, un〉|+ |〈h− hp, u∞〉|+ |〈hp, un − u∞〉|

un converges σ(L1
E , L∞E∗) to u∞. It would be interesting to know whether the

preceding property still holds in the problem of weak convergence for uniformly
integrable sequences in L1

cwk(E)(µ).

(2) In the context of Proposition 5.4, Komlós arguments in (5.4.2) and (5.4.3)
are first employed in [3]. Apart from theses facts, our proof is different since it is
based upon Theorem 3.2 and Theorem 3.4(b) providing Mazur τl-convergence of
the sequences under consideration instead of Komlós convergence. We refer to [3]
for details and other related results.

6. Applications :
Biting-types lemma and Fatou-types lemma in L1

cwk(E)(µ)

We need first the following version of biting lemma which is a direct consequence
of Proposition 5.3 and Proposition 5.4 respectively. See also [9, 12].

Theorem 6.1. Suppose that E is a separable Banach space, (Xn) is a bounded
sequence in L1

cwk(E)(µ) satisfying one of the following conditions :
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(a) (Xn) is cwk(E)-tight.

(b) E∗ is separable, E has the R.N.P and for each A ∈ F , ∪n

∫
A Xn dµ is

relatively weakly compact in E.

Then there exist an increasing sequence (Ap) in F such that limp→∞ µ(Ap) = 1, a
subsequence (X ′

n) of (Xn) and X∞ ∈ L1
cwk(E)(µ) such that, for each p and for each

v ∈ L∞E∗(Ap, Ap ∩ F , µ|Ap), the following holds :

lim
n→∞

∫

Ap

δ∗(v, X ′
n) dµ =

∫

Ap

δ∗(v, X∞) dµ.

Proof. The biting lemma provides an increasing sequence (Ap) in F with
limp→∞ µ(Ap) = 1 and a subsequence (X ′

n) of (Xn) such that (X ′
n|Ap)n is uniformly

integrable.

(a) Assume that (Xn) is cwk(E)-tight. By Proposition 5.3 there exists a
multifunction X∞ ∈ L1

cwk(E)(µ) and a subsequence of (X ′
n) still denoted by (X ′

n)
such that for all v ∈ L∞E∗(µ) and for each further subsequence (Yn) of (X ′

n),
δ∗(v, 1

nΣn
i=1Yi) → δ∗(v, X∞) in measure. As (X ′

n) is uniformly integrable on each
Ap, by Lebesgue-Vitali theorem, we get

∀p, ∀v ∈ L∞E∗(µ),
∫

Ap

δ∗(v,
1
n

Σn
i=1Yi) dµ →

∫

Ap

δ∗(v, X∞) dµ

for every further subsequence (Yn) of (X ′
n). This is equivalent to

∀p, ∀v ∈ L∞E∗(µ),
∫

Ap

δ∗(v, X ′
n) dµ →

∫

Ap

δ∗(v, X∞) dµ.

Under assumption (b) the proof is similar by using Theorem 5.4. ¤
Now we give an alternative proof of Theorem 6.1 via Mazur convergence in

L1
cwk(E)(µ) (cf. Theorem 3.2 and Theorem 5.1). We want to mention that some

results given in this proof will be used in the next Fatou-types lemma.

Let D := (e∗k) be a dense sequence in BE∗ for the Mackey topology and let (Ap)
and (X ′

n) as given in the begining of proof of Theorem 6.1. Using Dundord-Pettis
theorem in L1

R(µ) and a diagonal procedure we may suppose that

(6.1.1) ∀k,∀p,∀A ∈ Ap ∩ F , lim
n→∞

∫

A
δ∗(e∗k, X

′
n) dµ exists.

We will divide the proof in two steps.

Step 1. Claim : Suppose that (a) holds, then there exists X∞ ∈ L1
cwk(E)(µ) which

satisfies :

Given any subsequence (Yn) of (X ′
n), there exists a sequence (Ỹn) with Ỹn ∈

co{Ym : m ≥ n} such that

(6.1.2) ∀x ∈ E, lim
n→∞ d(x, Ỹn) = d(x,X∞) a.e.

(6.1.3) ∀v ∈ L∞E∗(µ), δ∗(v, Ỹn) → δ∗(v, X∞) in measure.
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Indeed, let (Yn) be a subsequence of (X ′
n). By Theorem 5.1, there exist X∞ ∈

L1
cwk(E)(µ) and (Ỹn) with Ỹn ∈ co{Ym : m ≥ n} satisfying (6.1.2) and (6.1.3). Using

(6.1.1), (6.1.3), the uniform integrability of (Ỹn) on each Ap and Lebesgue-Vitali
theorem, we get

(6.1.4) ∀k, ∀p, ∀A ∈ Ap ∩ F , lim
n

∫

A
δ∗(e∗k, X

′
n) dµ =

∫

A
δ∗(e∗k, X∞) dµ.

Now replacing (Yn) by any other subsequence (Zn) of (X ′
n) and applying again

Theorem 5.1 provides a multifunction Y∞ ∈ L1
cwk(E)(µ) and a sequence (Z̃n) with

Z̃n ∈ co{Zm : m ≥ n} satisfying :

(6.1.2)′ ∀x ∈ E, lim
n→∞ d(x, Z̃n) = d(x, Y∞) a.e.

(6.1.3)′ ∀v ∈ L∞E∗(µ), δ∗(v, Z̃n) → δ∗(v, Y∞) in measure.

(6.1.4)′ ∀k, ∀p, ∀A ∈ Ap ∩ F , lim
n

∫

A
δ∗(e∗k, X

′
n) dµ =

∫

A
δ∗(e∗k, Y∞) dµ.

Therefore, by (6.1.4) and (6.1.4)′ we get

∀k, ∀p, δ∗(e∗k, X∞) = δ∗(e∗k, Y∞) a.e ω ∈ Ap

Hence we deduce that X∞ = Y∞ a.e, thus proving the claim.

Step 2. Let p ∈ N∗ and v ∈ L∞E∗(µ) be fixed. Choose a subsequence (Yn) of (X ′
n)

such that

(6.1.5) lim
n

∫

Ap

δ∗(v, Yn) dµ = lim sup
n

∫

Ap

δ∗(v, X ′
n) dµ.

By Step 1, there exists (Ỹn) with Ỹn ∈ co{Ym : m ≥ n} such that δ∗(v, Ỹn) →
δ∗(v, X∞) in measure so that

∫

Ap

δ∗(v, Ỹn) dµ →
∫

Ap

δ∗(v, X∞) dµ.

From (6.1.5) it follows that

lim sup
n

∫

Ap

δ∗(v, X ′
n) dµ =

∫

Ap

δ∗(v, X∞) dµ.

Similarly we have

lim inf
n

∫

Ap

δ∗(v, X ′
n) dµ =

∫

Ap

δ∗(v, X∞) dµ.

Hence

lim
n

∫

Ap

δ∗(v, X ′
n) dµ =

∫

Ap

δ∗(v, X∞) dµ.

The proof is therefore complete when (Xn) is cwk(E)-tight. In case (b) the proof
is similar by applying Theorem 3.2.
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Taking into account Theorem 6.1, it is convenient to say that “(X ′
n) biting weakly

converges to X∞”. Now we proceed to multivalued Fatou-types lemma. See also [3,
9, 11, 12] for other related results.

Theorem 6.2. Suppose that E is a separable Banach space, (Xn) is a bounded
cwk(E)-tight sequence in L1

cwk(E)(µ), then there exist a multifunction X∞ and

a subsequence (X ′
n) of (Xn) such that (X ′

n) biting weakly converges to X∞.
Furthermore the following properties hold :

(1) X∞(ω) ⊂ co [w- ls X ′
n(ω)] a.e.

(2) If (vn)n∈N∪{∞} is a sequence of scalarly measurable mappings from Ω to BE∗

such that |vn − v∞| → 0 in measure and that (δ∗(vn, Xn)−)n is uniformly
integrable, then lim infn→∞

∫
Ω δ∗(vn, X ′

n) dµ ≥ ∫
Ω δ∗(v∞, X∞) dµ.

(3) For each measurable multifunction K : Ω → cwk(E), one has

lim inf
n

∫

Ω
D(K, X ′

n) dµ ≥
∫

Ω
D(K, X∞) dµ.

Proof. Let (Ap), (X ′
n) and X∞ be defined as in the second proof of Theorem 6.1.

(1) We will divide this main part of the proof in several steps.

Step 1. According to Step 1 of the second proof of Theorem 6.1, there exists
a sequence (Ỹn) of the form Ỹn = Σi∈Inλn

i X ′
i+n with λn

i ≥ 0 and Σi∈Inλn
i = 1

such that, for every v ∈ L∞E∗(µ), (δ∗(v, Ỹn)) converges in measure to δ∗(v, X∞). Let
D∗ := (e∗k) be a countable dense sequence in BE∗ for the Mackey topology. By what
has been said, we may suppose that

(6.2.1) ∀k, lim
n

δ∗(e∗k, Ỹn) = δ∗(e∗k, X∞) a.e.

Step 2. By tightness assumption, for every q ∈ N∗ there exists a cwk(E)-valued

measurable multifunction Γ 1
q

such that

(6.2.2) ∀n, µ(Ω \An,q) ≤ 1
q
,

where
An,q := {ω ∈ Ω : Xn(ω) ⊂ Γ 1

q
(ω)}.

Let x be any fixed element in E. Let us define

Ỹ x
n,q = Σi∈Inλn

i 1A′i+n,q
(X ′

i+n − x)

where for each q ∈ N∗, (A′n,q) is the subsequence of (An,q) corresponding to (X ′
n).

Let q ∈ N∗. As Ỹ x
n,q(ω) ⊂ co(Γ 1

q
(ω)−x∪{0}) for all n ∈ N∗ and for all ω ∈ Ω, there

exist by Theorem 3.3 a sequence (Z̃x
n,q) of the form Z̃x

n,q = Σj∈Jn,qµ
n,x
j,q Ỹ x

j+n,q with
µn,x

j,q ≥ 0 and Σj∈Jn,qµ
n,x
j,q = 1 and Xx∞,q ∈ L1

cwk(E)(µ) such that

(6.2.3) Xx
∞,q = τL- lim

n
Z̃x

n,q a.e.

In particular we have

(6.2.4) ∀x∗ ∈ E∗, lim
n

δ∗(x∗, Z̃x
n,q) = δ∗(x∗, Xx

∞,q) a.e.
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Step 3. For simplicity let us set

Φx
q (.) := lim inf

n
Σj∈Jn,qµ

n,x
j,q Σi∈Ij+nλj+n

i 1Ω\A′i+j+n,q
|X ′

i+j+n − x|, (q ∈ N∗).

We claim that

(6.2.5) ∀q, H(X∞(ω)− x,Xx
∞,q(ω)) ≤ Φx

q (ω) a.e.

and

(6.2.6) ∀p, lim
q

∫

Ap

Φx
q dµ = 0.

Indeed, from (6.2.1) and (6.2.4) it follows that

δ∗(e∗k, W̃
x
n,q)− δ∗(e∗k, Z̃

x
n,q) → δ∗(e∗k, X∞ − x)− δ∗(e∗k, X

x
∞,q) a.e.

for every k and every q, where W̃ x
n,q = Σj∈Jn,qµ

n,x
j,q (Ỹj+n − x). Consequenly we

deduce that

H(X∞ − x,Xx
∞,q) = sup

x∗∈BE∗
|δ∗(x∗, X∞ − x)− δ∗(x∗, Xx

∞,q)|

= sup
x∗∈D∗

|δ∗(x∗, X∞ − x)− δ∗(x∗, Xx
∞,q)|

= sup
x∗∈D∗

lim
n
|δ∗(x∗, W̃ x

n,q)− δ∗(x∗, Z̃x
n,q)|

≤ Φx
q a.e.

thus proving (6.2.5). By Fatou lemma we get

(6.2.7)
∫

Ap

Φx
q dµ ≤ sup

n

∫

Ap∩[Ω\A′n,q ]
|X ′

n − x| dµ

for every p ∈ N∗ and every q ∈ N∗. As (X ′
n) is uniformly integrable on each Ap, by

(6.2.2) we get

(6.2.8) ∀p, lim
q

sup
n

∫

Ap∩[Ω\A′n,q ]
|X ′

n − x| dµ = 0.

So (6.2.6) follows from (6.2.7) and (6.2.8). Step 4. Now we are able to prove the

inclusion
X∞(ω) ⊂ co [w- ls X ′

n(ω)] a.e.

By (6.2.3) we have

Xx
∞,q(ω) ⊂

⋂
n

co{Z̃x
m,q : m ≥ n} ⊂

⋂
n

co{1A′m,q
(X ′

m(ω)− x) : m ≥ n}

for almost all ω ∈ Ω. As 1A′n,q
(X ′

m(ω)−x) ⊂ co(Γ 1
q
(ω)−x∪{0}) for all n ∈ N∗ and

for all ω ∈ Ω, from [2, lemma 2’] it follows that

Xx
∞,q(ω) ⊂ co[w-ls 1A′n,q

(X ′
n(ω)− x)] ⊂ co[w-ls(X ′

n(ω)− x) ∪ {0}]
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for almost all ω ∈ Ω. By (6.2.5) we have, ∀q,
sup

y∈X∞(ω)−x
d(y, co[w-ls(X ′

n(ω)− x) ∪ {0}] ≤ sup
y∈X∞(ω)−x

d(y, Xx
∞,q(ω))

≤ H(X∞(ω)− x,Xx
∞,q(ω))

≤ Φx
q (ω) a.e.

(6.2.9)

As µ(Ap) ↑ 1, in view of (6.2.6) there is a subsequence of (Φx
q ) converging to 0 a.e.

From (6.2.9) it follows that

(6.2.10) X∞(ω)− x ⊂ co [w- ls (X ′
n(ω)− x) ∪ {0})] a.e.

Whence we have

(6.2.11) X∞(ω) ⊂ co [w- ls X ′
n(ω) ∪ {x}] a.e.

Now we use the following fact [2, page 177]. Let C be a subset in E and let
(xm)m∈N be a dense sequence in E. Then the following hold :

co[C] =
⋂

m∈N
co[C ∪ {xm}].

Applying the preceding fact and (6.2.11) yields immediately :

X∞(ω) ⊂
⋂

m∈N
co [w- ls X ′

n(ω) ∪ {xm}] = co [w- ls X ′
n(ω)] a.e.

(2) Let ε > 0 be given. Pick N ∈ N such that
∫

AN

δ∗(v∞, X∞) dµ ≥
∫

Ω
δ∗(v∞, X∞) dµ− ε

and that

lim sup
n→∞

∫

Ω\AN

δ∗(vn, X ′
n)− dµ ≤ ε

because (δ∗(vn, X ′
n)−)n is uniformly integrable by hypothesis. As |vn − v∞| → 0 in

measure, in view of [7] |vn − v∞| → 0 uniformly on uniformly integrable subsets of
L1
R(Ω,F , µ). It follows that that

lim
n→∞

∫

AN

|vn − v∞||X ′
n| dµ = 0.

Whence

lim
n→∞

[ ∫

AN

δ∗(vn, X ′
n) dµ−

∫

AN

δ∗(v∞, X ′
n) dµ

]
= 0.

Let a := lim infn→∞
∫

δ∗(vn, X ′
n) dµ. We may suppose that

a := lim
n→∞

∫
δ∗(vn, X ′

n) dµ ∈ R.
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An easy computation gives

a ≥ lim
n→∞

∫

AN

δ∗(vn, X ′
n) dµ− lim sup

n→∞

∫

Ω\AN

δ∗(vn, X ′
n)− dµ

≥ lim
n→∞

∫

AN

δ∗(vn, X ′
n) dµ− ε.

Finally we get

a ≥ lim
n→∞

∫

AN

δ∗(vn, X ′
n) dµ− ε

= lim
n→∞

∫

AN

δ∗(v∞, X ′
n) dµ− ε

=
∫

AN

δ∗(v∞, X∞) dµ− ε

≥
∫

Ω
δ∗(v∞, X∞) dµ = −2ε

thus proving (2).

(3) Let K : Ω → cwk(E) be a measurable multifunction. Choose a subsequence
(Yn) of (X ′

n) such that

lim
n

∫

Ω
D(K, Yn) dµ = lim inf

n

∫

Ω
D(K,X ′

n) dµ.

Applying Step 1 of the second proof of Theorem 6.1 to (Yn) provides a sequence
(Ỹn) with Ỹn ∈ co{Ym : m ≥ n} satisfying (6.1.2) and (6.1.3). Reasoning as in the
proof of Proposition 5.2’ we get

D(K, Ỹn) → D(K, X∞) a.e.

Therefore by Fatou lemma,

lim inf
n

∫

Ω
D(K, Ỹn) dµ ≥

∫

Ω
D(K,X∞) dµ.

Since Ỹn = Σνn
i=nλn

i Yi with λn
i ≥ 0 and Σνn

i=nλn
i = 1 and the function D(K(.), .) is

convex on cwk(E) (using the gap functional in terms of the support functions) it
follows that

lim
n

Σνn
i=nλn

i

∫

Ω
D(K, Yi) dµ ≥

∫

Ω
D(K, X∞) dµ.

The proof is therefore complete. ¤
Remarks. It seems that the properties given in Theorem 6.2 are optimal for
bounded cwk(E)-tight sequences. Theorem 6.2 is a multivalued analog of Theorem
3.5 in [9] dealing with Fatou lemma for bounded cwk(E)-tight sequences in L1

E(µ).
Also it is worth to mention that the multifunction X∞ which occurs in Theorems 3.2-
3.3-5.1 is almost everywhere equal to the Mosco-limit (see e.g. [4]) of the sequence
(X̃n) with X̃n ∈ co{Xm : m ≥ n}. This result involves the Mosco-convergence of
EFnX̃n towards EF∞X∞ under suitable domination condition on (Xn) where (Fn)n
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is an increasing (resp. decreasing) sequence of sub σ-algebras of F with F∞ =↑ Fn

(resp. F∞ =↓ Fn). For shortness we don’t emphasize this fact.

The following is an other variant of Theorem 6.2.

Theorem 6.3. Suppose that E∗ is separable, E has the RNP, (Xn) is a bounded
sequence in L1

cwk(E)(µ) such that, for each A ∈ F , ∪n

∫
A Xn dµ is relatively weakly

compact in E, then there exist X∞ ∈ L1
cwk(E)(µ) and a subsequence (X ′

n) of (Xn)
such that (X ′

n) biting weakly converges to X∞. Furthermore the following properties
hold :

(1) There exists a sequence (X̃ ′
n) with X̃ ′

n ∈ co{X ′
m : m ≥ n} such that

X∞ = τL- limn X̃ ′
n a.e.

(2) If (vn)n∈N∪{∞} is a sequence of scalarly measurable mappings from Ω to BE∗

such that |vn − v∞| → 0 in measure and that (δ∗(vn, Xn)−)n is uniformly
integrable, then lim infn→∞

∫
Ω δ∗(vn, X ′

n) dµ ≥ ∫
Ω δ∗(v∞, X∞) dµ.

(3) For each measurable multifunction K : Ω → cbc(E), lim infn
∫
Ω D(K, X ′

n) dµ
≥ ∫

Ω D(K, X∞) dµ.

Proof. Using Theorem 3.2 instead of Theorem 5.1, Step 1 of the second proof of
Theorem 6.1 becomes

Step 1′. There exists X∞ ∈ L1
cwk(E)(µ) satisfying : Given any sequence (Yn) of (X ′

n),

there exists a sequence (Ỹn) with Ỹn ∈ co{Ym : m ≥ n} such that

X∞ = τL- lim
n

Ỹn.

Then (1) is consequence of Step 1’ whereas (2) follows from the arguments of the
proof of Theorem 6.2(2) via Theorem 6.1(b). The proof of (3) is similar to the
one given in Theorem 6.2(3) by using Step 1’ and the arguments of the proof of
Proposition 5.2. ¤
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5, France

E-mail address: castaing@math.univ-montp2.fr

Mohammed Saadoune
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