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CONVEX SPECTRAL FUNCTIONS OF COMPACT OPERATORS

J. M. BORWEIN∗, J. READ, A. S. LEWIS†, AND QIJI ZHU‡

Abstract. We consider functions on the space of compact self-adjoint Hilbert
space operators. Specifically, we study those extended-real functions which de-
pend only on the operators’ spectral sequences. Examples include the norms of
the Schatten p-spaces, the Calderón norms, the k’th largest eigenvalue, and some
infinite-dimensional self-concordant barriers. We show how various convex and
nonsmooth-analytic properties of such functions follow from the corresponding
properties of the restrictions to the space of diagonal operators, and we derive
subdifferential and conjugacy formulas.

1. Introduction

Many optimization problems involve functions of bounded self-adjoint operators
on a separable Hilbert space. Often these functions depend only on the spectrum of
the operator involved. Many examples have their roots in physical phenomena such
as vibrating systems. To optimize a process governed by such a system, we must
study the spectra of such operators [14], often asking questions about approximating
those spectra. In [6], for example, the author studies extremal eigenvalues arising in
the study of the critical mass of a nuclear reactor. In [4] other physical settings lead
to the study of the generalized gradient at a multiple eigenvalue. Von Neumann
pioneered this area by introducing the concepts of unitarily invariant matrix norms
and symmetric gauge functions [19]. This was generalized to the infinite-dimensional
setting in the book [7]. More recently, [1] showed that questions in Banach space
geometry dealing with the norm of spaces of operators (extreme points, smoothness,
(strong) exposedness) reduce to the same questions on the much simpler sequence
space where the spectrum lies. (See also [17, 18].)

Lewis [9], motivated by the classical work of von Neumann, considered unitarily
invariant convex matrix functions, common in matrix optimization. He extended
this work in [10], establishing formulas characterizing Fréchet and limiting subd-
ifferentials of unitarily invariant nonconvex functions in terms of the Fréchet and
limiting subdifferentials of corresponding rearrangement-invariant functions. In this
paper we take this one step further, examining similar relationships for the convex
subdifferentials of unitarily invariant convex functions on spaces of bounded, self-
adjoint operators. We also discuss extensions to the limiting subdifferential for
nonconvex unitarily invariant Lipschitz functions.
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The plan of this paper is as follows. In Section 2 we derive an infinite-dimensional
version of the von Neumann trace inequality. Section 3 is devoted to a precise discus-
sion of rearrangement and unitary invariance for functions on infinite-dimensional
spaces. In Section 4 we discuss conjugacy formulas for convex spectral functions
in infinite-dimensional spaces, generalizing corresponding results in [9]. Our main
results — the characterization of the subdifferentials of convex spectral functions
— are contained in Section 5. In Section 6 we discuss extensions of the main results
to locally Lipschitz functions, and we end with some examples.

We finish this section by summarizing some ideas from [7]. All operators we
consider are maps from the complex Hilbert space `C2 to itself. Here, `C2 is the space
of sequences (cj)j∈N such that cj ∈ C for each j ∈ N and such that

∑
j∈N |cj |2 < ∞.

We denote by `2 the standard real normed sequence space (coefficients in R) with
canonical basis (ej)∞j=1. Thus the ith component of the jth element of this basis
is given by the Kronecker delta: ej

i = δi,j . We also consider the real normed
sequence spaces `p (1 ≤ p ≤ ∞), as well as c0 (the space of null sequences). (Thus
`1 ⊂ `2 ⊂ c0 ⊂ `∞, and the norm on c0 is the same as that on `∞.)

We next consider the space of bounded self-adjoint operators on `C2 , which we
denote by Bsa. We call an operator T ∈ Bsa positive (denoted T ≥ 0) if 〈Tx|x〉 ≥ 0
for all x in `C2 . To each T ∈ Bsa one can associate a unique positive operator
|T | = (T 2)

1
2 ∈ Bsa [12, p. 96]. Now to each positive T ∈ Bsa one can associate the

(possibly infinite) value

(1) tr(T ) :=
∑

j∈N

〈Tej |ej〉,

which we call the trace of T . The trace is actually independent of the orthonormal
basis (ej) chosen [12, p. 116].

Within Bsa we consider the trace class operators, denoted by B1, which are those
self-adjoint operators T for which tr(|T |) < ∞. Since any self-adjoint operator T
can be decomposed as T = T+ − T− where T+ ≥ 0 and T− ≥ 0, the trace operator
can be extended to any T ∈ B1 by tr(T ) = tr(T+) − tr(T−). We let B2 be the
self-adjoint Hilbert-Schmidt operators, which are those T ∈ Bsa such that T 2 ∈ B1.
Then B1 ⊂ B2 ⊂ B0 ⊂ Bsa, where B0 are the compact self-adjoint operators. Now,
any compact self-adjoint operator T is diagonalizable [12, p. 107]. That is, there
exists a unitary operator U and λ ∈ c0 such that (U∗TU x)j = λjxj for all j ∈ N
and all x ∈ `C2 . This and the fact that tr(ST ) = tr(TS) makes Lidskii’s Theorem
[16, p. 45] easy for self-adjoint operators:

tr(T ) =
∞∑

i=1

λi(T ),

where {λi(T )} is any spectral sequence of T (any sequence of eigenvalues of T ,
counted with multiplicities). Define Bp ⊂ B0 for p ∈ [1,∞) by writing T ∈ Bp if
‖T‖p = (tr(|T |p))1/p < ∞. When T is self-adjoint we have (see [7, p. 94])

‖T‖p =

( ∞∑

i=1

|λi(T )|p
)1/p

.(2)
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In this case, for p, q ∈ (1,∞) satisfying p−1 + q−1 = 1, the real linear spaces Bp

and Bq are paired, and the bilinear form 〈S, T 〉 := tr(ST ) implements the duality
on Bp × Bq. The space Bp is the (self-adjoint) Schatten p-space [12, p. 124]. In
particular, B1 is the space of self-adjoint trace-class operators, and B2 is the space
of self-adjoint Hilbert-Schmidt operators. We can also consider the space B0 paired
with B1.

Remark 1.1. The corresponding spaces of non-self-adjoint operators are defined
somewhat analogously [7]. We need these spaces only in Propositions 5.3, 5.4 and
Theorem 5.5.

Now, following [12], for each x ∈ `C2 define the operator x¯ x ∈ B1 by

(x¯ x)y = 〈x|y〉x.

For each x ∈ `∞ we define the diagonal operator dgx ∈ Bsa pointwise by

dgx :=
∑

i

xi(ei ¯ ei).

For p ∈ [1,∞) if we have x ∈ `p, then dgx ∈ Bp and ‖dgx‖p = ‖x‖p. If we have
x ∈ c0, then dgx ∈ B0 and ‖dgx‖ = ‖x‖∞.

Definition 1.2. For p ∈ [1,∞), we refer to `p as the spectral sequence space for Bp

and c0 as the spectral sequence space for B0.

Assumption 1: We consider paired Banach spaces V ×W where V = `p

and W = `q, with p ∈ (1,∞) and p−1 + q−1 = 1, or where V = c0 (with the
supremum norm) and W = `1 (or vice versa). We denote the norms on V
and W by ‖·‖V and ‖·‖W respectively. We also consider the corresponding
paired Banach spaces V × W where V = Bp and W = Bq or V = B0 and
W = B1 (or vice versa). We denote the norms on V and W by ‖ · ‖V and
‖ · ‖W respectively. We always take V to be the spectral sequence space
for the operator space V and W that for W. In this way fixing V × W
fixes V ×W and vice versa.

Let R be the set of all bijections from N to N. We sometimes call π ∈ R a
rearrangement. Let U be the set of all unitary operators on `C2 . This brings us to
a definition.

Definition 1.3. For each U ∈ U we define the bilinear form BU on V ×W by

BU (x, y) = tr[U∗(dgx)U (dg y)].

Lemma 1.4. Suppose U ∈ U . Define uj := Uej. Then uj ∈ `C2 and the “infinite
matrix” (|uj

i |2)i,j∈N is doubly stochastic. That is,
∑

i |uj
i |2 = 1 for each j ∈ N and∑

j |uj
i |2 = 1 for each i ∈ N. Further,

(3) BU (x, y) =
∑

i,j

xi |uj
i |2 yj ≤ ‖x‖V ‖y‖W

for (x, y) ∈ V ×W .
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Proof It is clear that uj ∈ `C2 . In fact, we know (uj)∞j=1 forms an orthonor-
mal basis for `C2 [12, p. 95]. Thus,

∑
i |uj

i |2 = 1 for each j ∈ N. Further, since
〈ej |U∗ei〉 = 〈Uej |ei〉 = 〈uj |ei〉 = uj

i , we obtain U∗ei =
∑

j(u
j
i )
∗ej . Taking the

norm of this equality gives ‖U∗ei‖ =
∑

j |uj
i |2. Since ‖U∗ei‖ = 1 (U is unitary), we

have (|uj
i |2)i,j∈N is doubly stochastic. We derive equation (3) by considering the

following equalities:

tr[U∗(dgx)U(dg y)] =
∑

j

〈U∗(dgx)U(dg y)ej |ej〉

=
∑

j

〈(dgx)U(yje
j)|Uej〉

=
∑

j

yj〈(dgx)uj |uj〉

=
∑

j

yj

〈∑

i

xiu
j
ie

i|uj

〉

=
∑

i,j

xi |uj
i |2 yj .

Now V and W are the paired spectral sequence spaces for the paired operator
spaces V and W, and the bilinear form 〈S, T 〉 := tr(ST ) implements the duality
on V ×W. Thus, since ‖U∗(dgx)U‖V = ‖dgx‖V = ‖x‖V for any U ∈ U and any
x ∈ V , we obtain

BU (x, y) = 〈 U∗(dgx)U , dg y 〉
≤ ‖U∗(dgx)U‖V‖dg y‖W
= ‖x‖V ‖y‖W ,

and we are done. ♣

2. Von Neumann type inequalities

We return to the paired sequence spaces V and W of Assumption 1. We now
develop an analogue of work originating with von Neumann. The simplest case
(a classical inequality) says that if vectors x, y ∈ Rn both have components in
decreasing order then

(4) xT Py ≤ xT y

for any permutation matrix P [8, 9]. For general x in Rn we write x̄ ∈ Rn to denote
that vector derived by writing the components of x in decreasing order.

Definition 2.1. For each rearrangement π ∈ R we define the bilinear form Pπ on
V ×W by

Pπ(x, y) =
∞∑

i=1

xπ(i)yi.
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Theorem 2.2. (von Neumann type inequality) Each pair (x, y) ∈ V × W
satisfies the inequality

sup
π∈R

Pπ(x, y) = sup
U∈U

BU (x, y).

Proof Given any π ∈ R we can define U ∈ U by Uej = eπ(j) for all j ∈ N. Then
U∗(dgx)U = dg (xπ(j))∞j=1, so we obtain the inequality

(5) sup
π∈R

Pπ(x, y) ≤ sup
U∈U

BU (x, y),

for (x, y) ∈ V ×W . Now let us define two functions on V ×W . These are

b(x, y) := sup
U∈U

BU (x, y) and

p(x, y) := sup
π∈R

Pπ(x, y).

For fixed x ∈ V we know that, as a supremum of a family of linear functions,
both p and b are convex in y. Lemma 1.4 and (5) together give the inequality
p(x, y) ≤ b(x, y) ≤ ‖x‖V ‖y‖W , so for fixed x ∈ V both p and b are everywhere
finite, lower semicontinuous (and hence continuous [13, p. 39]) convex functions of
y. The same is true if we hold y fixed and consider b and p as functions of x.

Consider F := {x ∈ `∞ : xj = 0 eventually }, the set of real, finitely non-zero
sequences. We know F is norm dense in both V and W . If we show for fixed x ∈ F
that b(x, y) ≤ p(x, y) for all y ∈ F , then since F is norm dense in W and b and p
are continuous functions (in y for fixed x), we obtain b(x, y) ≤ p(x, y) for all y ∈ W .
This holds for arbitrary x ∈ F ⊂ V , so b(x, y) ≤ p(x, y) for all (x, y) ∈ F ×W . Now
fix y ∈ W . Since b and p are continuous functions in x the same density arguments
give b(x, y) ≤ p(x, y) for all x ∈ V . As this y is arbitrary, we obtain b(x, y) ≤ p(x, y)
for all (x, y) ∈ V ×W , which together with (5) gives the result. Thus it suffices to
show b(x, y) ≤ p(x, y) for any (x, y) ∈ F × F .

Fix (x, y) ∈ F × F and choose n ∈ N such that xi = yi = 0 for all i ≥ n. For
U ∈ U define the doubly stochastic “infinite matrix” as in Lemma 1.4. Let Q be
the set of doubly stochastic n× n matrices. Define Q = (qi,j)n

i,j=1 by

qi,j = |uj
i |2 i, j = 1, ..., n− 1,

qn,j = 1−∑n−1
i=1 qi,j j = 1, ..., n− 1,

qi,n = 1−∑n−1
j=1 qi,j i = 1, ..., n− 1,

qn,n = 1−∑n−1
j=1 qn,j (= 1−∑n−1

i=1 qi,n).

Clearly, Q ∈ Q and for our (x, y) ∈ F × F we have BU (x, y) = xT Qy, where we
abuse notation and interpret x and y in Rn in the natural way. Let P be the set
of all n × n permutation matrices. Birkhoff’s Theorem [11, p. 117] says that the
convex hull of P is exactly Q. Thus we can write Q =

∑k
i=1 λiPi where Pi ∈ P and

λi ≥ 0 for i = 1, ..., k with
∑k

i=1 λi = 1. Inequality (4) says xT Py ≤ x̄T ȳ for any
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P ∈ P, so that

xT Qy = xT

(
k∑

i=1

λiPi

)
y =

k∑

i=1

λi

(
xT Piy

) ≤
k∑

i=1

λi

(
x̄T ȳ

)
= x̄T ȳ.

If we choose π ∈ R (independent of U) such that Pπ(x, y) = x̄T ȳ, we obtain the
inequality BU (x, y) ≤ Pπ(x, y). Take the supremum over U ∈ U to obtain

sup
U∈U

BU (x, y) ≤ Pπ(x, y),

which means b(x, y) ≤ p(x, y) for all (x, y) ∈ F × F . ♣

Remark 2.3. The suprema in Theorem 2.2 may not be attained. For example,
consider the two sequences (in any of our sequence spaces)

x = (0, 2−1, 2−2, 2−3, . . .)
y = (2−1, 2−2, 2−3, . . .).

An easy exercise shows the supremum on the left cannot be attained by applying
any bijection.

3. Rearrangement and unitary invariance

We return to the setting of Assumption 1, with a sequence space V and cor-
responding operator space V. We say sequences x and y in V are rearrangement
equivalent if there is a rearrangement π in R such that xπ(i) = yi for all i. Similarly,
operators S and T in Bsa are unitarily equivalent if there is a unitary U such that
U∗TU = S.

We say a function f : V → R̄ is unitarily invariant if f(U∗TU) = f(T ) for all
T ∈ V and all U ∈ U . Correspondingly, a function Ψ : V → V is rearrangement
invariant if Ψ((xπ(i))) = Ψ(x) for all x ∈ V and all π ∈ R.

The rearrangement operation x ∈ Rn 7→ x̄ gives an easy tool for understanding
rearrangement-invariant functions on Rn. Matters are less straightforward on a
sequence space V , but the following construction gives a concrete approach.

For fixed x ∈ V , define sets of indices

I>(x) := {i : xi > 0}, I=(x) := {i : xi = 0}, and I<(x) := {i : xi < 0}.
Now consider the function Φ : V → V defined as follows. Given any sequence x in
V , use the following procedure to construct Φ(x):
(0) Initialize j := 1

(1) If I>(x) 6= ∅, (i) choose i ∈ I>(x) maximizing xi,
(ii) define Φ(x)j := xi

(iii) update I>(x) := I>(x)\{i} and j := j + 1.

(2) If I=(x) 6= ∅, (i) choose i ∈ I=(x)
(ii) define Φ(x)j := 0
(iii) update I=(x) := I=(x)\{i} and j := j + 1.
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(3) If I<(x) 6= ∅, (i) choose i ∈ I<(x) minimizing xi

(ii) define Φ(x)j := xi

(iii) update I<(x) := I<(x)\{i} and j := j + 1.

(4) Go to (1).
Informally, we first select the largest positive component of x, followed by a zero

component and then the smallest negative component and so on. If any of the sets
I>(x), I=(x) or I<(x) is exhausted we skip the corresponding step. Note that Φ has
the following two properties:

(A) Each x ∈ V is rearrangement equivalent to Φ(x).
(B) Any x, y ∈ V are rearrangement equivalent if and only if Φ(x) = Φ(y).

All that is important here is that Φ is constant on the equivalence classes of V
that are induced by rearrangements, and that the function Φ leaves some canonical
element of each equivalence class unchanged. Thus Φ also has these two properties:

(C) Φ2 = Φ.
(D) φ : V → R̄ is rearrangement invariant if and only if φ = φ ◦ Φ.
Define the eigenvalue function λ : V → V as follows: for any operator T ∈ V,

let x ∈ V be any spectral sequence of T , and define λ(T ) = Φ(x). Thus λ(T ) is a
canonical spectral sequence for any given compact self-adjoint operator T .

Proposition 3.1. The function λ is unitarily invariant, and Φ = λ ◦ dg .

The proof of the next result can be found in [12, p. 107].

Theorem 3.2. (Diagonalization) For all T ∈ B0 there exists U ∈ U with T =
U∗dg (λ(T ))U .

Note that λ and dg act as inverses in the following sense:
(E) (λ ◦ dg )(x) is rearrangement equivalent to x for all x ∈ V .
(F) (dg ◦ λ)(T ) is unitarily equivalent to T for all T ∈ V.

For any φ : V → R̄ we have that φ ◦ λ is uniformly invariant, and for any
f : V → R̄ we have that f ◦ dg is rearrangement invariant. Thus, the maps λ and
dg allow us to move between rearrangement invariant functions on V and unitarily
invariant functions on V, as the easy results below show.

Theorem 3.3. (Unitary invariance) Given f : V → R̄ the following properties
are equivalent:

(i) f is unitarily invariant;
(ii) f = f ◦ dg ◦ λ;
(iii) f = φ ◦ λ for some rearrangement invariant φ : V → R̄

If (iii) holds then φ = f ◦ dg .

Theorem 3.4. (Rearrangement invariance) Given φ : V → R̄ the following
are equivalent:

(i) φ is rearrangement invariant;
(ii) φ = φ ◦ λ ◦ dg ;
(iii) φ = f ◦ dg for some unitarily invariant f : V → R̄.
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If (iii) holds then f = φ ◦ λ.

Note finally the following useful relations:

‖dg (x)‖V = ‖x‖V for x ∈ V ;
‖λ(T )‖V = ‖T‖V for T ∈ V.

4. Conjugate Formulas

Let X be any topological vector space. The convex conjugate of an arbitrary
function f : X → R̄, which we denote by f∗ : X ∗ → R̄, is the lower semicontinuous
convex function

f∗(y) = sup
x∈X

{〈x, y〉 − f(x)}.
If X is locally convex and f is a proper (that is, somewhere finite and never −∞)
lower semicontinuous convex function, so is f∗ (see for example [13]). If we go on
to consider the second conjugate f∗∗ of f , then we can consider f∗∗ : X → R̄. That
is, we restrict the domain of f∗∗ to the original space X as opposed to considering
the space X ∗∗.

Again we fix two paired spectral sequences spaces V and W , as in Assumption
1, with their corresponding paired operator spaces V and W.

Theorem 4.1. Conjugacy and diagonals Any unitarily invariant function f :
V → R̄ satisfies

f∗ ◦ dg = (f ◦ dg )∗.

Proof Choose y ∈ W . Then we have

(f∗ ◦ dg )(y) 1= f∗(dg y)
2= sup{tr[X(dg y)]− f(X) : X ∈ V}
3= sup{tr[U∗(dgx) U(dg y)]− f(U∗(dgx)U) :

U ∈ U , x ∈ V }
4= sup{sup

U∈U
BU (x, y)− f(dgx) : x ∈ V }

5= sup{sup
π∈R

Pπ(x, y)− f(dgx) : x ∈ V }

6= sup





∑

j

xπ(j)yj − f(dg (xπ(j))
∞
j=1) : x ∈ V, π ∈ R





7= sup{ 〈z, y〉 − f(dg z) : z ∈ V }
8= (f ◦ dg )∗(y).

Equations 1 and 2 follow by definition. Equation 3 follows since we can write any
X as U∗dg (x)U for some appropriate x ∈ V and U ∈ U . Equation 4 follows by
definition of BU and the fact that f is unitarily invariant. Equation 5 follows by
Theorem 2.2. Equation 6 follows by definition of Pπ and the fact that f is unitarily
invariant. Equation 7 follows by replacing (xπ(j))∞j=1 with z. Equation 8 follows by
definition. ♣
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Corollary 4.2. (Convexity) Assume f : V → R̄ is unitarily invariant. Then f is
proper, convex, and weakly lower semicontinuous if and only if f ◦ dg is likewise.

Proof Unitary invariance gives f = f∗∗ if and only if f ◦dg = f∗∗ ◦dg . The result
follows from the previous theorem, since f∗∗ ◦ dg = (f ◦ dg )∗∗. ♣
Lemma 4.3. (Invariance and conjugacy) For any unitarily invariant f : V →
R̄, the conjugate f∗ is unitarily invariant. For any rearrangement invariant φ :
V → R̄, the conjugate φ∗ is rearrangement invariant.

Proof This lemma follows directly from the definitions. ♣
Theorem 4.4. (Conjugacy) For any rearrangement invariant φ : V → R̄, we
have

(φ ◦ λ)∗ = φ∗ ◦ λ.

Proof Theorems 3.4 and 4.1 allow us to write

φ∗ = (φ ◦ λ ◦ dg )∗ = (φ ◦ λ)∗ ◦ dg .

If we compose this expression with λ and observe that (dg ◦ λ)(T ) is unitarily
equivalent to T , then Lemma 4.3 allows us to write

φ∗ ◦ λ = (φ ◦ λ)∗ ◦ dg ◦ λ = (φ ◦ λ)∗,

and we are done. ♣

The final result of this section synthesizes Theorems 3.3 and 4.4 as well as The-
orems 3.4 and 4.1.

Theorem 4.5. Given any unitarily invariant f : V → R̄ we have f = φ ◦ λ for
some rearrangement invariant φ : V → R̄. Further, the formula

f∗ = φ∗ ◦ λ

holds. Similarly, given any rearrangement invariant φ : V → R̄ we have φ = f ◦dg
for some unitarily invariant f : V → R̄. Further, the formula

φ∗ = f∗ ◦ dg

holds.

5. The subdifferential

We now examine the subdifferential of a unitarily invariant convex function. We
begin by recalling some fairly standard results.

Proposition 5.1. Suppose R ∈ Bsa. Then for t ∈ R we have

Ut := exp(itR) ∈ U .

Further, we have ‖Ut − I‖ → 0 and ‖t−1(Ut − I)− iR‖ → 0 as t → 0 (where ‖ · ‖
denotes the uniform operator norm).
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Proof It is known that Ut ∈ U [12, p. 214]. We also have

‖Ut − I‖ =

∥∥∥∥∥∥

∞∑

j=1

(
(it)j

j!

)
Rj

∥∥∥∥∥∥

≤
∞∑

j=1

( |t|j
j!

)
‖Rj‖

≤ exp(‖tR‖)− 1.

Thus, we have Ut → I uniformly as t → 0. Further,

‖t−1(Ut − I)− iR‖ =

∥∥∥∥∥∥
t−1

∞∑

j=2

(
(it)j

j!

)
Rj

∥∥∥∥∥∥

≤ t−1
∞∑

j=2

( |t|j
j!

)
‖Rj‖

≤ t−1 [exp(‖tR‖)− (1 + ‖tR‖)] ,
which gives t−1(Ut − I) → iR uniformly as t → 0. ♣

Next we state a lemma, whose proof can be found in [12, p. 98].

Lemma 5.2. If Ã is a bounded (not necessarily self-adjoint) operator for which
‖Ã‖ < 1, then there is some N > 2 and {Ui}N

i=1 ⊂ U such that

Ã =
1
N

N∑

i=1

Ui.

We use this in the proof of the following result (see Remark 1.1).

Proposition 5.3. Let X be any (non-self-adjoint) Schatten p-space (1 ≤ p < ∞)
or the space of compact or bounded operators. For any bounded operator A and any
T ∈ X we have

‖AT‖X ≤ ‖T‖X ‖A‖ ≥ ‖TA‖X .

Proof If X is the space of compact or bounded operators, then this is immediate,
so assume that X is a (non-self-adjoint) Schatten p-space for some p ∈ [1,∞) (see
[7]). If A = 0, the results are also immediate, so assume A 6= 0. Fix δ ∈ (0, 1), let
Ã = A/(1 + δ)‖A‖, and apply Lemma 5.2 to Ã, giving

‖AT‖p = (1 + δ)‖A‖ · ‖ÃT‖p

= (1 + δ)‖A‖ ·
∥∥∥∥∥

1
N

N∑

i=1

UiT

∥∥∥∥∥
p

≤ (1 + δ)‖A‖ 1
N

N∑

i=1

‖UiT‖p

= (1 + δ)‖A‖ · ‖T‖p,
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where we use the fact that ‖UT‖p = ‖T‖p for all U ∈ U . Since this holds for each
δ ∈ (0, 1), we obtain the results we want. ♣
Proposition 5.4. Let the space X satisfy the assumption of Proposition 5.3. Let
At be a family of bounded operators which converge uniformly to A as t → 0. Let
Tt ⊂ X be a family of operators satisfying limt→0 ‖Tt − T‖X = 0. Then

lim
t→0

‖AtTt −AT‖X = 0 = lim
t→0

‖TtAt − TA‖X .

Proof If we consider the inequalities

‖AtTt −AT‖X = ‖At(Tt − T ) + (At −A)T‖X
≤ ‖At(Tt − T )‖X + ‖(At −A)T‖X
≤ ‖At‖ · ‖Tt − T‖X + ‖At −A‖ · ‖T‖X ,

we obtain the first result by Proposition 5.3. The second is proved similarly. ♣

Again we return to our two paired spectral sequences spaces V and W , as in
Assumption 1, with their corresponding paired operator spaces V and W. In the
following results, ∂ denotes the usual convex subdifferential.

Theorem 5.5. (Commutativity) Let f : V → R̄ be a unitarily invariant convex
function. Let operators S ∈ V and T ∈ W satisfy T ∈ ∂f(S). Then TS = ST .

Proof Let X be the non-self-adjoint extension of V. Define

Ut = exp[−t(ST − TS)] ∈ U .

That is, in Proposition 5.1 we have R = −i(TS − ST ) ∈ Bsa. Thus, Ut → I
uniformly and t−1(Ut − I) → (ST − TS) uniformly as t → 0. By Proposition 5.4
we obtain

(6) ‖t−1(Ut − I)S + (ST − TS)S‖X → 0.

Taking the adjoint of this gives

(7) ‖t−1S(U∗
t − I) + S(TS − ST )‖X → 0.

Now if we apply Proposition 5.4 with the first term of (6) playing the role of Tt and
U∗

t playing the role of At, we obtain

‖[t−1(Ut − I)S]U∗
t + [(ST − TS)S]I‖X → 0,

which with (7) gives

‖t−1(UtSU∗
t − S) + (2STS − S2T − TS2)‖V → 0.(8)

Hence

(9) tr[t−1(UtSU∗
t − S)T ] → −tr[2STST − S2T 2 − TS2T ].

If we examine the right hand side of (9), we see that since (S, T ) ∈ V ×W, we have
STST, S2T 2 and TS2T ∈ B1 [12, p. 118]. Further, a simple calculation shows

(10) ‖TS − ST‖2 = −tr[2STST − S2T 2 − TS2T ].

If we use the unitary invariance of f , then for any t ∈ R we obtain the inequality

t · tr[t−1(UtSU∗
t − S)T ] = 〈T,UtSU∗

t − S〉 ≤ f(UtSU∗
t )− f(S) = 0,
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which together with (9) and (10) implies ‖TS − ST‖2 = 0, or TS = ST . ♣

The result above allows us to apply the following important tool, which is a
well-known consequence of the Spectral Theorem.

Fact: Commuting elements of B0 are simultaneously diagonalizable.

Lemma 5.6. (Diagonal subgradients) Let f : V → R̄ be a unitarily invariant
convex function. For x ∈ V we have y ∈ ∂(f ◦dg )(x) if and only if dg y ∈ ∂f(dgx).

Proof Assume first that dg y ∈ ∂f(dgx). Then for each z ∈ V we have

〈y, z − x〉 = tr[(dg y)(dg z − dgx)] ≤ f(dg z)− f(dgx)

so that y ∈ ∂(f ◦ dg )(x).
To see the other implication, given Q ∈ V, choose z ∈ V and U ∈ U so that

Q = U∗(dg z)U . Now we use our von Neumann type inequality (Theorem 2.2), the
assumption that y ∈ ∂(f ◦ dg )(x) and the unitary invariance of f (twice) to obtain

tr[(dg y)(Q− dgx)] = tr[(dg y)(U∗ dg z U)]− 〈y, x〉
= BU (z, y)− 〈y, x〉
≤ sup

π∈R
Pπ(z, y)− 〈y, x〉

= sup{〈y, (zπ(j))− x〉 : π ∈ R}
≤ sup{f(dg (zπ(j))

∞
j=1)− f(dgx) : π ∈ R}

= f(dg z)− f(dgx)
= f(Q)− f(dgx),

which gives us dg y ∈ ∂f(dgx). ♣

The next lemma is elementary.

Lemma 5.7. Let f : V → R̄ be a unitarily invariant convex function. For S ∈ V,
T ∈ W, and U ∈ U , we have T ∈ ∂f(S) if and only if U∗TU ∈ ∂f(U∗SU).

Theorem 5.8. (Convex subgradients) Let f : V → R̄ be a unitarily invariant
convex function. For S ∈ V and T ∈ W we have T ∈ ∂f(S) if and only if there
exists U ∈ U , x ∈ V and y ∈ W with S = U∗(dgx)U , T = U∗(dg y)U and
y ∈ ∂(f ◦ dg )(x).

Proof Assume first the existence of U , x and y with the stated properties. Since
y ∈ ∂(f ◦ dg )(x), Lemma 5.6 tells us that dg y ∈ ∂f(dgx). The unitary invariance
of f gives T = U∗(dg y)U ∈ ∂f(U∗ dgx U) = ∂f(S).

To see the reverse implication, note that T ∈ ∂f(S) implies TS = ST by Theorem
5.5, which means S and T are simultaneously diagonalizable. Thus, there exists
U ∈ U , x ∈ V and y ∈ W with S = U∗(dgx)U , and T = U∗(dg y)U , so that
U∗(dg y)U ∈ ∂f(U∗(dgx)U). Now the unitary invariance allows us to rewrite this
as dg y ∈ ∂f(dgx), which by Lemma 5.6 implies y ∈ ∂(f ◦ dg )(x), as required. ♣

Our next theorem shows that the differentiability of a convex unitarily invariant
function f is characterized by that of f ◦ dg.
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Theorem 5.9. (Convexity and differentiability) Let f : V → R̄ be a unitarily
invariant lower semicontinuous convex function. Then f is Gâteaux differentiable
at A ∈ V if and only if f ◦ dg is Gâteaux differentiable at λ(A) ∈ V .

Proof Note that a lower semicontinuous convex function is Gâteaux differentiable
at a point if and only if its subdifferential is a singleton at that point. Assume that
f is Gâteaux differentiable at A. Let y, z ∈ ∂(f ◦ dg)(λ(A)) and let U ∈ U be such
that U∗λ(A)U = A. By Theorem 5.8,

U∗(dg y)U and U∗(dg z)U ∈ ∂f(A).

Since f is Gâteaux differentiable at A, we know U∗(dg y)U = U∗(dg z)U , which
implies that y = z. Thus ∂(f ◦ dg)(λ(A)) is a singleton and f ◦ dg is Gâteaux
differentiable at λ(A).

To prove the converse we assume that f ◦ dg is Gâteaux differentiable at λ :=
λ(A), so ∂(f ◦ dg)(λ) is a singleton {µ}.

First we observe that if λi = λj then µi = µj . In fact, when λi = λj the
permutation invariance and the Gâteaux differentiability of f ◦ dg implies that

µit + o(t) = f ◦ dg(λ + tei)− f ◦ dg(λ) = f ◦ dg(λ + tej)− f ◦ dg(λ) = µjt + o(t).

Therefore, µi = µj .
Next we show that if B ∈ U commutes with dg λ, that is

B(dg λ) = (dg λ)B,(11)

then B also commutes with dg µ. Obviously it suffices to show that, for arbitrary
natural numbers i and j,

〈ei, B(dg µ)ej〉 = 〈ei, (dg µ)Bej〉,
or equivalently,

µj〈ei, Bej〉 = µi〈ei, Bej〉.(12)

When λi = λj we have µi = µj which immediately leads to (12). It remains to
consider the case when λi 6= λj . Note that it follows from (11) that

λj〈ei, Bej〉 = 〈ei, B(dg λ)ej〉 = 〈ei, (dg λ)Bej〉 = λi〈ei, Bej〉,
which implies that 〈ei, Bej〉 = 0. Thus, both sides of (12) are 0.

Now consider any two elements S and T of ∂f(A). By Theorem 5.8 (Convex
subgradients) there exist unitary operators U, V satisfying

U∗(dg λ)U = V ∗(dg λ)V = A(13)

such that S = U∗(dg µ)U and T = V ∗(dg µ)V . It follows from (13) that B := V U∗
commutes with dgλ. Therefore, B also commutes with dgµ. Then we have

S = U∗(dg µ)U = V ∗B(dg µ)U = V ∗(dg µ)BU = V ∗(dg µ)V = T.

Thus ∂f(A) is a singleton, so f is Gâteaux differentiable at A. ♣
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6. Nonconvex functions

Again we fix two paired spectral sequences spaces V and W , as in Assumption
1, with their corresponding paired operator spaces V and W.

Our main result, Theorem 5.8 (Convex subgradients), extends to nonconvex Lip-
schitz functions with the convex subdifferential replaced by the limiting subdiffer-
ential. To state this result precisely we recall the corresponding concepts first. Let
X be a Banach space and let f : X → R be a Lipschitz function. The Gâteaux
subdifferential DGf(x) of f at x ∈ X is defined by

DGf(x) :=
{

x∗ ∈ X∗ : lim inf
t→0

f(x + th)− f(x)
t

≥ 〈x∗, h〉, ∀h ∈ X

}
,

and the limiting subdifferential ∂Lf(x) of f at x ∈ X is defined by

∂Lf(x) := {x∗ ∈ X∗ : x∗ = w∗ − lim
n→∞x∗n, x∗n ∈ DGf(xn), xn → x}.

The proof of the extension of Theorem 5.8 follows the same strategy as the
previous section. First we extend Theorem 5.5 (Commutativity).

Theorem 6.1. (Commutativity) Let f : V → R̄ be a unitarily invariant locally
Lipschitz function. Let S ∈ V and T ∈ W satisfy T ∈ ∂Lf(S). Then TS = ST .

Proof We need only prove the case T ∈ DGf(S). The conclusion for the limiting
subdifferential follows directly from a limiting process.

Define, as in the proof of Theorem 5.5, Ut = exp[−t(ST − TS)] ∈ U . Then it
follows from (8) that

UtSU∗
t = S − t(2STS − S2T − TS2) + o(t).

Since f is unitarily invariant and locally Lipschitz, and T ∈ DGf(S), we have

0 = t−1[f(UtSU∗
t )− f(S)]

= t−1[f(S − t(2STS − S2T − TS2))− f(S)] + o(1)
≥ −〈T, 2STS − S2T − TS2〉+ o(1)
= ‖TS − ST‖2 + o(1).

Taking limits as t → 0 yields ‖TS − ST‖ = 0. ♣
Lemma 6.2. Let f : V → R̄ be a unitarily invariant locally Lipschitz function. For
x ∈ V we have y ∈ DG(f ◦ dg )(x) if and only if dg y ∈ DGf(dgx). Furthermore, if
y ∈ ∂L(f ◦ dg )(x) then dg y ∈ ∂Lf(dgx).

Proof The idea is to approximate operators and functions on V by their finite-
dimensional restrictions. It is not hard to check that Lewis’s results for the Gâteaux
subdifferential [10] apply to these restrictions. Then the general result is derived by
taking limits.

It suffices to prove the lemma for the Gâteaux subdifferential and the result for
the limiting subdifferential follows from a limiting process. Observe that the ‘if’
part is easy. We concentrate on the ‘only if’ part. We need the following notation
and simple facts.

Define a subspace En of `C2 by En := span{e1, e2, ..., en}. Let Hn denote the
Hermitian operators on the space En, define the eigenvalue map λn : Hn → Rn
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mapping operators to their eigenvalue sequence in decreasing order, and define the
diagonal map dgn : Rn → Hn in the natural way: for y ∈ Rn and µ ∈ Cn,

(dgny)
n∑

i=1

µie
i =

n∑

i=1

µiyie
i.

Let Pn : `C2 → En denote the orthogonal projection: it is easy to check that the
adjoint P ∗

n : En → `C2 is just inclusion. Furthermore, the operator P ∗
nPn : `C2 → `C2

is just the orthogonal projection onto En. Given any operator Z ∈ V we have,
relative to the decomposition `C2 = En ⊕ E⊥

n , the block decomposition

P ∗
nPnZP ∗

nPn =
(

PnZP ∗
n 0

0 0

)
.

Furthermore, by [7, Thm 6.3, p. 90], we have

lim
n→∞ ‖Z − P ∗

nPnZP ∗
nPn‖V = 0.

Finally, let P V
n : V → Rn and PW

n : W → Rn denote the natural truncation
maps, and note the identity

dgn(P V
n z) = Pn(dg z)P ∗

n , for z ∈ V.

The analogous identity also holds in W .
Suppose, then, that elements x ∈ V and y ∈ W satisfy y ∈ DG(f ◦dg)(x). Define

a permutation-invariant locally Lipschitz function φ : Rn → R̄ by

φ(z) := f(dg(z1, z2 . . . , zn, xn+1, xn+2, . . .)).

It is straightforward to check PW
n y ∈ DGφ(P V

n x), from which it follows, by [10, Cor
5.14], that dgnPW

n y ∈ DG(φ ◦ λn)(dgnP V
n x). Denote the Lipschitz constant for f

by L. Then for any operator Z in the space V and small real t > 0 we have

f(dgx + tZ)− f(dgx) ≥
−Lt‖Z − P ∗

nPnZP ∗
nPn‖V + f(dgx + tP ∗

nPnZP ∗
nPn)− f(dgx).

By using the above block decomposition we know

f(dgx + tP ∗
nPnZP ∗

nPn)− f(dgx)

= φ(λn(dgn(P V
n x) + tPnZP ∗

n))− φ(λn(dgn(P V
n x)))

≥ t〈dgnPW
n y , PnZP ∗

n〉+ ‖Z‖V o(t)
≥ t〈Pn(dg y)P ∗

n , PnZP ∗
n〉+ ‖Z‖V o(t)

≥ t〈dg y, Z〉 − t‖y‖W ‖Z − P ∗
nPnZP ∗

nPn‖V + ‖Z‖V o(t).

Hence we deduce

f(dgx + tZ)− f(dgx) ≥
t〈dg y, Z〉 − t(L + ‖y‖W)‖Z − P ∗

nPnZP ∗
nPn‖V + ‖Z‖V o(t).

Taking the limit as n →∞ shows

lim inf
t→0

f(dgx + tZ)− f(dgx)
t

≥ 〈dg y, Z〉,
and since Z was arbitrary we deduce dg y ∈ DGf(dgx), as required. ♣
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The next lemma is elementary.

Lemma 6.3. Let f : V → R̄ be a unitarily invariant locally Lipschitz function. For
S ∈ V, T ∈ W, and U ∈ U , we have T ∈ ∂Lf(S) (or T ∈ DGf(S)) if and only if
U∗TU ∈ ∂Lf(U∗SU) (or U∗TU ∈ DGf(U∗SU) respectively).

Theorem 6.4. (Gâteaux and limiting subdifferentials) Let f : V → R̄ be a
unitarily invariant locally Lipschitz function. If there exist U ∈ U , x ∈ V and y ∈ W
with S = U∗(dgx)U , T = U∗(dg y)U and y ∈ ∂L(f ◦dg )(x) (or y ∈ DG(f ◦dg )(x))
then T ∈ ∂Lf(S) (or T ∈ DGf(S) respectively). The converse is also true for the
Gâteaux subdifferential.

Proof We prove this theorem for the Gâteaux subdifferential. The proof for the
limiting subdifferential is similar.

Assume first the existence of U , x and y with the stated properties. Since y ∈
DG(f ◦ dg )(x), Lemma 6.2 tells us that dg y ∈ DGf(dgx). The unitary invariance
of f gives T = U∗(dg y)U ∈ DGf(U∗(dgx)U) = DGf(S).

To see the reverse implication note that T ∈ DGf(S) implies TS = ST by
Theorem 6.1, which means T and S are simultaneously diagonalizable. Thus, there
exists U ∈ U , x ∈ V and y ∈ W with S = U∗(dgx)U , and T = U∗(dg y)U , so that
U∗(dg y)U ∈ DGf(U∗(dgx)U). Now the unitary invariance allows us to rewrite this
as dg y ∈ DGf(dgx), which by Lemma 6.2 implies y ∈ DG(f ◦ dg )(x), as required.

♣

7. Examples

We illustrate some of the results in this paper with a number of examples.

Example 7.1. We know that the norm in `p for p ∈ (1,∞) is strictly differentiable
away from the origin. As an immediate consequence of Theorem 5.9, so is the norm
of Bp.

Another interesting classical norm to consider appears in [7, p. 139].

Example 7.2. For an element x of c0, we rearrange the components |xi| into
decreasing order to obtain a new element x∗ of c0. Now for a fixed decreasing
sequence {πi} in R+ (not identically zero), the norms

x ∈ V 7→ sup
n

{∑n
1 x∗i∑n
1 πi

}
,

and

y ∈ W 7→
∞∑

1

πiy
∗
i

are dual to each other, and hence, by Theorem 4.5, so are their compositions with
λ on the spaces V and W. The case πi = i1/q − (1 − i)1/q (1 < q < ∞) gives the
Calderón norms [16, p. 13].

Now let us consider an example of some recent interest.
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Example 7.3. In [5] the author looks at self-concordant barriers, which play a
central role in many types of optimization problems. The theory developed thus far
gives an appealing setting. The function g : R → R̄ given by

g(t) =
{

t− ln(1 + t) (t > −1)
+∞ (t ≤ −1)

is convex. Further, g has conjugate g∗(s) = g(−s). Now we define the function φ
on `2 by writing

φ(x) =
∞∑

i=1

g(xi).

Clearly, φ is finite and continuous at 0 since 0 ≤ g(t) ≤ t2 for small t. Using our
techniques, we obtain a function f on B2 in the obvious way,

f = φ ◦ λ,

and Theorem 4.5 shows f∗(T ) = f(−T ). Notice that if T ∈ B2 and I +T ≥ 0, then

f(T ) = tr(T )− ln(det(I + T )).

Our last example concerns the ordered eigenvalues of a positive operator.

Example 7.4. The k’th largest eigenvalue of a positive self-adjoint operator T ∈ V,
which we denote µk(T ), arises naturally in many applications. We can extend µk to
the whole space V by defining µk(T ) to be the k’th largest eigenvalue of T if T has at
least k nonnegative eigenvalues, and otherwise µk(T ) = 0. To see why this definition
is natural, consider the rearrangement invariant convex function σk : V → R defined
by

σk(x) = sup

{∑

i∈I

xi : |I| = k

}
,

for k ≥ 1 and σ0 ≡ 0. If we define a locally Lipschitz rearrangement invariant
function φk = σk−σk−1 then µk = φk◦λ. Clearly φk(x) is the k’th largest component
of x if x has at least k nonnegative components, and otherwise φk(x) = 0.

Following the technique of [10], we arrive at the following result.

Theorem 7.5. (k’th largest component) Suppose the element x ∈ V has at
least k strictly positive components: that is φk(x) > 0. Let

∆ = {ei : xi = φk(x)}.
Then

DGφk(x) =
{

conv∆, if φk−1(x) > φk(x),
∅, otherwise,

and y ∈ ∂Lφk(x) if and only if y is a convex combination of at most

1− k + |{j : xj ≥ φk(x)}|
vectors from ∆.

Applying Theorem 6.4 gives the following result.



34 J. M. BORWEIN, J. READ, A. S. LEWIS, AND QIJI ZHU

Theorem 7.6. (k’th largest eigenvalue) Suppose the operator T ∈ V has at least
k strictly positive eigenvalues: that is, µk(T ) > 0. Let

Γ = conv {u¯ u : u ∈ `2, ‖u‖ = 1, Tu = µk(T )u}.
Then

DGµk(T ) =
{

Γ, if µk−1(T ) > µk(T ),
∅, otherwise,

and if S ∈ Γ and
rankS ≤ 1− k + |{j : µj(T ) ≥ µk(T )}|,

then S ∈ ∂Lµk(T ).
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