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ASYMPTOTIC BEHAVIOR OF DYNAMICAL SYSTEMS
WITH A CONVEX LYAPUNOV FUNCTION

SIMEON REICH AND ALEXANDER J. ZASLAVSKI

Abstract. We consider a complete metric space of sequences of mappings acting
on a bounded closed convex subset K of a Banach space which share a common
convex Lyapunov function f . In a previous paper we introduced the concept of
normality and showed that a generic element taken from this space is normal.
The sequence of values of the Lyapunov uniformly continuous function f along
any (unrestricted) trajectory of such an element tends to the infimum of f on K.
In the present paper we first establish a convergence result for perturbations of
such trajectories. We then show that if f is Lipschitzian, then the complement
of the set of normal sequences is σ-porous.

1. Normality and porosity

Assume that (X, || · ||) is a Banach space with norm || · ||, K ⊂ X is a nonempty
bounded closed convex subset of X, and f : K → R1 is a convex uniformly contin-
uous function. Observe that the function f is bounded because K is bounded and
f is uniformly continuous. Set

inf(f) = inf{f(x) : x ∈ K} and sup(f) = sup{f(x) : x ∈ K}.
We consider the topological subspace K ⊂ X with the relative topology. Denote

by A the set of all self-mappings A : K → K such that

(1.1) f(Ax) ≤ f(x) for all x ∈ K

and by Ac the set of all continuous mappings A ∈ A. In [12, Section 4] we con-
structed many mappings belonging to Ac.

For the set A we define a metric ρ : A× A → R1 by

(1.2) ρ(A,B) = sup{||Ax−Bx|| : x ∈ K}, A, B ∈ A.

Clearly the metric space A is complete and Ac is a closed subset of A. In the
sequel we will study the metric space (Ac, ρ). Denote by M the set of all sequences
{At}∞t=1 ⊂ A and by Mc the set of all sequences {At}∞t=1 ⊂ Ac. For the set M we
define a metric ρM : M×M → R1 by
(1.3)

ρM({At}∞t=1, {Bt}∞t=1) = sup{ρ(At, Bt) : t = 1, 2, . . . }, {At}∞t=1, {Bt}∞t=1 ∈ M.

Clearly the metric space M is complete and Mc is a closed subset of M. In the
sequel we will also study the metric space (Mc, ρM).

From the point of view of the theory of dynamical systems each element of M
describes a nonstationary dynamical system with a Lyapunov function f . Also,
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some optimization procedures in Hilbert and Banach spaces can be represented by
elements of M (see [9, 10, 12]). For recent studies of the minimization of convex
functionals on abstract spaces see, for example, [1], [8] and [13].

In [12], instead of considering a certain convergence property for a single sequence
of continuous operators, we investigated it for the space Mc of all such sequences,
and showed that this property holds for most of them. More precisely, we showed
there that for a generic sequence taken from the space Mc, the sequence of values
of the Lyapunov function f along any trajectory tends to the infimum of f .

This approach has already been successfully applied in global analysis and the
theory of dynamical systems ([4], [11]), approximation theory [5], as well as in
optimization theory and the calculus of variations (see [3], [6], [8], [12], [13], [15]
and [16]).

The following definition was given in [7].
A mapping A ∈ A is called normal if given ε > 0, there is δ(ε) > 0 such that for

each x ∈ K satisfying f(x) ≥ inf(f) + ε, the inequality

f(Ax) ≤ f(x)− δ(ε)

is true.
A sequence {At}∞t=1 ∈ M is called normal if given ε > 0, there is δ(ε) > 0 such that

for each x ∈ K satisfying f(x) ≥ inf(f) + ε and each integer t ≥ 1, the inequality

f(Atx) ≤ f(x)− δ(ε)

holds.
In [7] we showed that a generic element taken from the spaces A, Ac, M and Mc

is normal. This is important because it turns out that the sequence of values of the
Lyapunov function f along any (unrestricted) trajectory of such an element tends
to the infimum of f on K (see [7, Theorems 1.1 and 1.2]).

In the present paper we will prove two theorems. The first one extends Theo-
rem 1.1 in [7] to perturbed trajectories of a normal sequence. The study of such
trajectories is obviously of considerable practical significance [9, 10].

Theorem 1. Let {At}∞t=1 ∈ M be normal and let ε be positive. Then there exist
a natural number n0 and a number γ > 0 such that for each integer n ≥ n0, each
mapping r : {1, . . . , n} → {1, 2, . . . } and each sequence {xi}n

i=0 ⊂ K which satisfies

||xi+1 −Ar(i+1)xi|| ≤ γ, i = 0, . . . , n− 1,

the inequality f(xi) ≤ inf(f) + ε holds for i = n0, . . . , n.

Our second result improves upon Theorems 1.3 and 1.4 in [7]. For each of the
spaces M, Mc, A and Ac these theorems establish the existence of an everywhere
dense Gδ subset such that each one of its elements is normal. In the present paper
we will show that if the function f is Lipschitzian, then for each of the spaces
mentioned above, the complement of the subset of all normal elements is not only
of the first category, but also a σ-porous set.

Before stating our second theorem we recall the concept of porosity [2, 5, 14].
Let (Y, d) be a complete metric space. We denote by B(y, r) the closed ball of

center y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous if there exist
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α ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0] and each y ∈ Y there exists a
point z ∈ Y for which

B(z, αr) ⊂ B(y, r) \ E.

A subset of the space Y is called σ-porous if it is a countable union of porous subsets
of Y .

Since porous sets are nowhere dense, all σ-porous sets are of the first category.
If Y is a finite dimensional Euclidean space, then σ-porous sets are of Lebesgue
measure 0. In fact, the class of σ-porous sets in such a space is much smaller than
the class of sets which have measure 0 and are of the first category. Also, every
Banach space contains a set of the first category which is not σ-porous.

To point out the difference between porous and nowhere dense sets note that if
E ⊂ Y is nowhere dense, y ∈ Y and r > 0, then there is a point z ∈ Y and a number
s > 0 such that B(z, s) ⊂ B(y, r) \ E. If, however, E is also porous, then for small
enough r we can choose s = αr, where α ∈ (0, 1) is a constant which depends only
on E.

Theorem 2. Let F be the set of all normal sequences in the space M and let

F = {A ∈ A : {At}∞t=1 ∈ F where At = A, t = 1, 2, . . . }.
Assume that the function f is Lipschitzian. Then the complement of the set F is a
σ-porous subset of M and the complement of the set F ∩Mc is a σ-porous subset
of Mc. Moreover, the complement of the set F is a σ-porous subset of A and the
complement of the set F ∩ Ac is a σ-porous subset of Ac.

2. Proof of Theorem 1

We may assume that ε < 1. Since {At}∞t=1 is normal, there exists a function
δ : (0,∞) → (0,∞) such that for each s > 0, each x ∈ K satisfying f(x) ≥ inf(f)+s
and each integer t ≥ 1,

(2.1) f(Atx) ≤ f(x)− δ(s).

We may assume that δ(s) < s, s ∈ (0,∞). Choose a natural number

(2.2) n0 > 4(1 + sup(f)− inf(f))δ(8−1ε)−1.

Since f is uniformly continuous there exists a number γ > 0 such that for each
y1, y2 ∈ K satisfying ||y1 − y2|| ≤ γ, the following inequality holds:

(2.3) |f(y1)− f(y2)| ≤ δ(8−1ε)8−1(n0 + 1)−1.

We claim that the following assertion is true:
(A) Suppose that

(2.4) {xi}n0
i=0 ∈ K, r : {1, . . . , n0} → {1, 2, . . . }, ||xi+1 −Ar(i+1)xi|| ≤ γ,

i = 0, . . . , n0 − 1.

Then there exists an integer n1 ∈ {1, . . . , n0} such that

(2.5) f(xn1) ≤ inf(f) + ε/8.

Assume the contrary. Then

(2.6) f(xi) > inf(f) + ε/8, i = 1, . . . , n0.
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By (2.6) and the definition of δ : (0,∞) → (0,∞) (see (2.1)), we have, for each
i = 1, . . . , n0 − 1,

(2.7) f(Ar(i+1)xi) ≤ f(xi)− δ(8−1ε).

It follows from (2.4) and the definition of γ (see (2.3)) that for i = 1, . . . , n0 − 1,

|f(xi+1)− f(Ar(i+1)xi)| ≤ δ(8−1ε)8−1(n0 + 1)−1.

When combined with (2.7) this inequality implies that for i = 1, . . . , n0 − 1,

f(xi+1)− f(xi) ≤ f(xi+1)− f(Ar(i+1)xi) + f(Ar(i+1)xi)

−f(xi) ≤ δ(8−1ε)8−1(n0 + 1)−1 − δ(8−1ε) ≤ (−1/2)δ(8−1ε).
This, in turn, implies that

inf(f)− sup(f) ≤ f(xn0)− f(x1) ≤ (n0 − 1)(−1/2)δ(8−1ε),

a contradiction (see (2.2)). Thus there exists an integer n1 ∈ {1, . . . , n0} such that
(2.5) is true. Therefore assertion (A) is valid, as claimed.

Assume now that we are given an integer n ≥ n0, a mapping

(2.8) r : {1, . . . , n} → {1, 2, . . . }
and a finite sequence

(2.9) {xi}n
i=0 ⊂ K such that ||xi+1 −Ar(i+1)xi|| ≤ γ, i = 0, . . . , n− 1.

It follows from assertion (A) that there exists a finite sequence of natural numbers
{jp}q

p=1 such that

(2.10) 1 ≤ j1 ≤ n0, 1 ≤ jp+1 − jp ≤ n0 if 1 ≤ p ≤ q − 1,

n− jq < n0, f(xjp) ≤ inf(f) + ε/8, p = 1, . . . , q.

Let i ∈ {n0, . . . , n}. We will show that f(xi) ≤ inf(f) + ε/2. There exists p ∈
{1, . . . , q} such that

0 ≤ i− jp ≤ n0.

If i = jp, then by (2.10), f(xi) = f(xjp) ≤ inf(f) + ε/8. Thus we may assume that
i > jp. For all integers jp ≤ s < i, it follows from (1.1), (2.9) and the definition of
γ (see (2.3)) that

f(Ar(s+1)xs) ≤ f(xs),

|f(xs+1)− f(Ar(s+1)xs)| ≤ δ(8−1ε)8−1(n0 + 1)−1

and

f(xs+1) ≤ f(Ar(s+1)xs) + δ(8−1ε)8−1(n0 + 1)−1 ≤ f(xs) + δ(8−1ε)8−1(n0 + 1)−1.

Thus
f(xs+1)− f(xs) ≤ δ(8−1ε)8−1(n0 + 1)−1, jp ≤ s < i.

This implies that

f(xi) ≤ f(xjp) + δ(8−1ε)8−1(n0 + 1)−1(n0 + 1) ≤
inf(f) + ε/8 + 8−1δ(8−1ε) ≤ inf(f) + ε/2.

Therefore f(xi) ≤ inf(f) + ε/2 for all integers i ∈ [n0, n] and Theorem 1 is proved.
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3. Proof of Theorem 2

Since f : K → R1 is assumed to be Lipschitzian, there exists a constant L(f) > 0
such that

(3.1) |f(x)− f(y)| ≤ L(f)||x− y|| for all x, y ∈ K.

By Proposition 2.1 in [7] there exist a normal continuous mapping A∗ : K → K and
a function φ : (0,∞) → (0,∞) such that for each ε > 0 and each x ∈ K satisfying
f(x) ≥ inf(f) + ε, the inequality f(A∗x) ≤ f(x)− φ(ε) holds.

Let ε > 0 be given. We will say that a sequence {At}∞t=1 ∈ M is (ε)-quasinormal
if there exists δ > 0 such that if x ∈ K satisfies f(x) ≥ inf(f) + ε, then f(Atx) ≤
f(x)− δ for all integers t ≥ 1.

Recall that F is defined to be the set of all normal sequences in M. For each
integer n ≥ 1 denote by Fn the set of all (n−1)-quasinormal sequences in M. Clearly

(3.2) F = ∩∞n=1Fn.

Set

(3.3) d(K) = sup{||z|| : z ∈ K}
and let n ≥ 1 be an integer. Choose α ∈ (0, 1) such that

(3.4) 2L(f)α < (1− α)φ(n−1)8−1(d(K) + 1)−1.

Assume that 0 < r ≤ 1 and that {At}∞t=1 ∈ M. Set

(3.5) γ = (1− α)r8−1(d(K) + 1)−1

and define for all integers t ≥ 1 the mapping Atγ : K → K by

(3.6) Atγx = (1− γ)Atx + γA∗x, x ∈ K.

Clearly {Atγ}∞t=1 ∈ M and

(3.7) ρM({At}∞t=1, {Atγ}∞t=1) ≤ 2γ sup{||z|| : z ∈ K} = 2γd(K).

Note that {Atγ}∞t=1 ∈ Mc if {At}∞t=1 ∈ Mc and that Atγ = A1γ , t = 1, 2, . . . , if
At = A1, t = 1, 2, . . . .

Assume that

(3.8) {Ct}∞t=1 ∈ M and ρM({Atγ}∞t=1, {Ct}∞t=1) ≤ αr.

Then by (3.8), (3.7) and (3.5),

(3.9) ρM({At}∞t=1, {Ct}∞t=1) ≤ αr + 2γd(K) ≤ αr + (1− α)r/2

= r(1 + α)/2 < r.

Assume that x ∈ K satisfies

(3.10) f(x) ≥ inf(f) + n−1

and that t ≥ 1 is an integer. By (3.10), the properties of A∗ and φ, (3.6) and (1.1),

(3.11) f(A∗x) ≤ f(x)− φ(n−1), f(Atγx) ≤ (1− γ)f(Atx) + γf(A∗x) ≤
(1− γ)f(x) + γ(f(x)− φ(n−1)) = f(x)− γφ(n−1).

By (3.8), ||Ctx−Atγx|| ≤ αr. Together with (3.1) this inequality yields

|f(Ctx)− f(Atγx)| ≤ L(f)αr.
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By the latter inequality, (3.11), (3.5) and (3.4),

f(Ctx) ≤ f(Atγx) + L(f)αr ≤
L(f)αr + f(x)− γφ(n−1) ≤

f(x)− φ(n−1)(1− α)r8−1(d(K) + 1)−1 + L(f)αr ≤
f(x)− L(f)αr.

Thus for each {Ct}∞t=1 ∈ M satisfying (3.8), the inequalities (3.9) hold and {Ct}∞t=1

∈ Fn. We have shown that for each integer n ≥ 1, M \ Fn is porous in M, Mc \ Fn

is porous in Mc, the complement of the set

{A ∈ A : {At}∞t=1 ∈ Fn with At = A for all integers t ≥ 1}
is porous in A and the complement of the set

{A ∈ Ac : {At}∞t=1 ∈ Fn with At = A for all integers t ≥ 1}
is porous in Ac.

Combining these facts with (3.2) we conclude that M \ F is σ-porous in M,
Mc \ F is σ-porous in Mc, A \ F is σ-porous in A and Ac \ F is σ-porous in Ac.
This completes the proof of Theorem 2.
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