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SECOND-ORDER CONVEX ANALYSIS

R. TYRRELL ROCKAFELLAR

Abstract. The classical theorem of Alexandrov asserts that a finite convex func-
tion has a second-order Taylor expansion almost everywhere, even though its first
partial derivatives may only exist almost everywhere. A theorem of Mignot pro-
vides a generic linearization of the subgradient mapping associated with such a
function but leaves open the question of symmetry of the matrix that appears in
this linearization. This paper clears up the gap between these results and goes on
to a broader theory of second-order semi-derivatives of a convex function in rela-
tion to first-order semi-derivatives of its subgradient mapping. Connections with
generalized derivatives based on approximations utilizing variational convergence
are illuminated as well.

1. Introduction

In first-order convex analysis, a central notion is that of “subgradient.” Asso-
ciated with any closed, proper, convex function f : IRn → IR is the set-valued
mapping ∂f : IRn ⇒ IRn, which gives for each x the subgradient set ∂f(x) ={
v

∣∣ f(x′) ≥ f(x) + 〈v, x′ − x〉}. This mapping is known to be maximal mono-
tone and to determine f uniquely up to an additive constant. Its effective domain
dom ∂f , although not necessarily convex, has the same relative interior and closure
as dom f =

{
x

∣∣ f(x) < ∞}
.

For purposes of second-order convex analysis, both f and ∂f offer possibilities.
On the one hand, second-order approximations of f can be explored, but first-order
approximations of ∂f also deserve consideration in accordance with the notion of
second derivatives being obtainable by differentiating first derivatives. A basic issue,
however, is what should be meant by “approximation.” That term should refer of
course to some concept of nearness, but nearness in the traditional sense of locally
uniform pointwise convergence of functions isn’t appropriate when the functions can
be discontinuous and take on ∞.

In this paper, we look at approximations of both f and ∂f . We start with the
reconciliation of some early results on Taylor-like expansions, which are based on
uniform convergence, and proceed to extensions in which the approximating expres-
sions come from directional derivatives that are merely one-sided and correspond
to semi-differentiation. Then we go on to approximations based instead on set con-
vergence, applied graphically and epi-graphically, in order to gain further insights
and connections with duality. These approximations, in terms of epi-derivatives and
proto-derivatives, provide criteria for semi-derivative expansions in particular.

A general reference for second-order nonsmooth analysis of possibly nonconvex
functions is the recent book [1], Chapter 13. Our aim here is to bring out special

1991 Mathematics Subject Classification. 26B25, 49J52, 58C20.
Key words and phrases. Convex analysis, generalized second-derivatives, monotone mappings.
This work was supported in part by the National Science Foundation under grant DMS–9803089.



2 R. TYRRELL ROCKAFELLAR

properties relevant to that theory that hold under convexity. Some of these proper-
ties can be extracted from the broader picture, but others follow a separate track or,
in taking advantage of convexity, can rely on much simpler arguments. We also aim
at using this setting to trace the motivation for some of the ideas that have come
to dominate second-order nonsmooth analysis. Much of that motivation came from
convexity, even though the convex analysis book [2] developed no second-order the-
ory at all, and indeed with only the exception of Alexandrov’s theorem on quadratic
expansions, little was known in that direction when [2] was written.

2. Second derivatives based on Taylor-like expansions

A well known theorem of Rademacher asserts that a locally Lipschitz continuous
mapping from an open subset O of IRn to IRd for some d ≥ 1 is differentiable
almost everywhere. This can be applied to convex functions because they are locally
Lipschitz continuous on sets where they are finite. In our context of a closed, proper,
convex function f : IRn → IR (which is adopted throughout this paper) we obtain
the fact that at almost every point x ∈ int dom f there is a first-order linear (i.e.,
affine) expansion

f(x + w) = f(x) + 〈v, w〉+ o(|w|), (2.1)

where |w| denotes the Euclidean norm and o(t) is the notation for an error term
such that o(t)/t → 0 as t → 0.

The existence of the expansion (2.1) is the very definition of f being differentiable
at x and describes the circumstances in which the gradient ∇f(x) exists, this being
the vector v. Such points x thus form the set dom∇f , which lies within int dom f
and differs from it only by a negligible set.

Convexity allows us to go further than these generic first-order expansions. The
following theorem of Alexandrov [3] from 1939 stands as the primary classical fact
in second-order convex analysis. A corresponding geometric result in the language
of convex surfaces was obtained by Busemann and Feller [4] in 1936.

Theorem 2.1 (Alexandrov). At almost every point x ∈ int dom f there is a second-
order quadratic expansion in the form

f(x + w) = f(x) + 〈v, w〉+ 1
2〈Aw, w〉+ o(|w|2). (2.2)

In particular (2.2) implies (2.1) and ensures that v = ∇f(x), but the status of the
matrix A is less clear. The quadratic form 〈Aw, w〉 depends only on the symmetric
part of A, i.e. the matrix 1

2(A + A∗) (with ∗ denoting transpose), so there’s no loss
of generality in taking A itself symmetric in (2.2). Whether the entries of A can be
interpreted as second partial derivatives of f is nevertheless not so easy to answer.

Ordinarily, any discussion of second partial derivatives of f with respect to
the components of x = (x1, . . . , xn) presupposes that the first partial derivatives
(∂f/∂xj)(x1, . . . , xn) exist locally. Here we can be sure of their existence almost
everywhere in int dom f , namely at the points x ∈ dom∇f , but not everywhere.
We do everywhere have subgradients, i.e., the nonemptiness of ∂f(x), and we know
from convex analysis [2; Theorem 25.1] that ∂f(x) reduces to a single vector v if
and only if f is differentiable at x with ∇f(x) = v.
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A theorem of Mignot [5] from 1976 provides in this respect an interesting parallel
to Alexandrov’s theorem and also a challenge. Mignot’s result is valid for maximal
monotone mappings T : IRn ⇒ IRn in general, but we state it now only for T = ∂f .
In doing so, we use IB to denote the closed unit ball in IRn (with respect to the
Euclidean norm).

Theorem 2.2 (Mignot). At almost every point x ∈ int dom ∂f there is a first-order
linear expansion in the form

∂f(x + w) ⊂ v + Aw + o(|w|)IB. (2.3)

The inclusion in (2.3), along with the fact that ∂f(x+w) 6= ∅ when w is sufficiently
small, implies that x ∈ dom∇f with v = ∇f(x) and allows us to think of (2.3) as
defining the differentiability of ∂f at x, even though ∂f is a generally set-valued
mapping. The matrix A is in this sense the Jacobian of ∂f at x. The approximation
that is afforded fits the usual notion of differentiability when restricted to the set
of points where ∂f is single-valued, i.e., to dom∇f .

Theorem 2.3. The points x ∈ int dom f at which the expansion (2.3) holds are
the points x ∈ dom∇f at which the expansion

∇f(x + w) = ∇f(x) + Aw + o(|w|) (2.4)

holds with respect to
{
w

∣∣ x + w ∈ dom∇f
}
, this being a neighborhood of w = 0

except for the possible omission of a negligible set of points w 6= 0.

Proof. We get (2.4) from (2.3) simply by restricting to the points x + w where ∂f
is single-valued. For the converse derivation of (2.3) from (2.4), a characterization
of ∂f in terms of ∇f comes into play. According to [2; Theorem 25.6], we have at
any point x′ ∈ int dom f that ∂f(x′) is the convex hull of the compact set ∇f(x′),
consisting of all cluster points of sequences {∇f(xν)}∞ν=1 at points xν ∈ dom∇f such
that xν → x′. Through this we get from (2.4), written in the form ∇f(x + w) ∈
∇f(x) + Aw + o(|w|)IB, that the inclusion ∇f(x + w) ⊂ ∇f(x) + Aw + o(|w|)IB
without any need for restricting x + w to dom∇f . Since the right side of this
inclusion is a convex set, it remains valid when the convex hull is taken on the left,
an operation which yields (2.3).

It’s natural in the presence of the expansion property of Theorem 2.3 to define
∇f to be differentiable at x in the extended sense and f to be twice differentiable
at x in the extended sense. The entries of the matrix A in (2.4) can legitimately be
regarded then as the second partial derivatives of f at x, even though first partial
derivatives might fail to exist at a certain points x + w near x. We’ll refer to A
therefore as the Hessian of f at x and employ for it the notation

∇2f(x) =
[

∂2f

∂xi∂xj
(x1, . . . , xn)

]n,n

i,j=1

just as in the case of f being twice differentiable at x in the classical sense, where
dom∇f is fully a neighborhood of x. In such terms we obtain statements about
second-order differentiability, first from Theorem 2.3 and then from Theorem 2.2.
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Corollary 2.4. The subgradient mapping ∂f is differentiable at a point x ∈
int dom f if and only if the gradient mapping ∇f is differentiable at x in the ex-
tended sense, or in other words, f is twice differentiable at x in the extended sense.
The Hessian matrix ∇2f(x) serves then as the Jacobian matrix for ∂f at x, with

∂f(x + w) ⊂ ∇f(x) +∇2f(x)w + o(|w|)IB. (2.5)

Corollary 2.5. The function f is twice differentiable in the extended sense at
almost every point x ∈ int dom f , those points forming a subset of dom∇f .

Corollary 2.5, as a reincarnation of Theorem 2.2, is tantalizing in its similarity to
Theorem 2.1. In comparing Theorem 2.2 to Theorem 2.1, we observe that the open
convex sets int dom f and int dom ∂f are identical and that in both expansions we
have v = ∇f(x). Could the points x at which the two expansions exist likewise be
the same, and could it be true that the matrix A is the same in both cases, thus
equaling the ∇2f(x)? A serious hurdle is that we have no assurance in (2.3) and
(2.4) of the matrix being symmetric. Classical examples remind us that a twice
differentiable function f not of class C2 can have ∂2f/∂xi∂xj 6= ∂2f/∂xj∂xi. How
do we know that can’t happen even for convex f?

We’ll prove, though, that the conjecture is true. For this purpose we’ll have
to look more closely at difference quotients and their convergence, which will be
instructive for subsequent developments as well. To begin with, let’s recall that in
writing the expansion (2.1) in the equivalent form f(x + τw) = f(x) + τ〈v, w〉 +
o(τ |w|) we can interpret it as saying that, as τ ↘0 the difference quotient functions

∆τf(x) : w 7→ f(x + τw)− f(x)
τ

(2.6)

converge uniformly on bounded subsets of IRn to the linear function w 7→ 〈v, w〉.
Through a similar notational maneuver, the expansion (2.2) in Alexandrov’s theo-
rem can be interpreted as saying that, as τ ↘0, the second-order difference quotient
functions

∆2
τf(x) : w 7→ f(x + τw)− f(x)− τ〈v, w〉

1
2τ2

, where v = ∇f(x), (2.7)

converge uniformly on bounded subsets of IRn to the quadratic function w 7→
〈Aw, w〉.

Also important in this context for their relationship with the expansion (2.3) in
Mignot’s theorem are the first-order difference quotient mappings

∆τ [∂f ](x) : w 7→ ∂f(x + τw)− v

τ
, where v = ∇f(x). (2.8)

These are set-valued, so the issue of their behavior as τ ↘0 is a bit more subtle, but
still it comes down to uniform convergence, properly construed.

Proposition 2.6. The expansion (2.3) holds at x if and only if, for every bounded
set W ⊂ IRn and every ε > 0, there exists δ > 0 such that

∅ 6= ∆τ [∂f ](x)(w)−Aw ⊂ εIB for all w ∈ W when τ ∈ (0, δ). (2.9)
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Proof. This is no more than a careful restatement of (2.3) with w replaced by τw,
making explicit the fact that, since x ∈ int dom ∂f , we have ∂f(x + τw) 6= ∅ for all
w ∈ W when τ is sufficiently small.

Without the nonemptiness on the left in (2.9), it wouldn’t be right to speak of
uniform convergence being expressed by the expansion in (2.3).

Proposition 2.7. For any τ > 0, the function ∆2
τf(x) : IRn → IR is closed, proper

and convex and nonnegative, while the mapping ∆τ [∂f ](x) : IRn ⇒ IRn is maximal
monotone. Moreover

∂[12∆2
τf(x)] = ∆τ [∂f ](x). (2.10)

Proof. Let ϕτ = 1
2∆2

τf(x). We have ϕτ (w) ≥ 0 by virtue of the convexity
inequality f(x + τw) ≥ f(x) + τ〈v, w〉, since v = ∇f(x). Also, we can write
ϕτ (w) = τ−1[fτ (w)−〈v, w〉] for fτ (w) = τ−1[f(x+τw)−f(x)]. It’s obvious that fτ

is again closed, proper and convex, with ∂fτ (w) = ∂f(x+τw) and consequently that
ϕτ is closed, proper and convex with ∂ϕτ (w) = τ−1[∂f(x+τw)−v] = ∆τ [∂f ](x)(w).
As the subgradient mapping ∂ϕτ , ∆τ [∂f ](x) is maximal monotone. (The latter also
follows from that property of ∂f itself and the defining formula for ∆τ [∂f ](x).)

The difference quotient relationship in Proposition 2.7 provides the bridge we are
seeking between Theorems 2.1 and 2.2.

Theorem 2.8. The points x for which the expansion (2.2) holds in Alexandrov’s
theorem are the same as the ones for which the expansion (2.3) holds in Mignot’s
theorem. Moreover the matrix A in (2.3) is always symmetric when it exists and
can be identified with the symmetric matrix A in (2.2). In addition, this matrix is
positive semidefinite.

Proof. Suppose first that the expansion (2.2) holds with A symmetric, and let
ϕ(w) = 1

2〈Aw, w〉, so that ϕ is differentiable with ∇ϕ(w) = Aw. As already ob-
served, (2.2) means that the functions ϕτ = 1

2∆2
τf(x), which by Proposition 2.7

are convex, converge pointwise to ϕ as τ ↘0 and do so uniformly on bounded sets.
Convexity is preserved under pointwise convergence, so ϕ must be convex as well;
hence A is positive semidefinite.

Uniform convergence of convex functions entails a kind of uniform convergence
of their subgradient mappings; on the basis of [2; Theorem 24.5], one has for every
bounded set W ⊂ IRn and every ε > 0 the existence of δ > 0 such that

∂ϕτ (w) ⊂ ∂ϕ(w) + εIB when τ ∈ (0, δ), w ∈ W,

where in addition δ can be chosen small enough that ∂ϕτ (w) 6= 0 in these circum-
stances. Since ∂ϕτ (w) = ∆τ [∂f ](w) by Proposition 2.7, whereas ∂ϕ(w) reduces
to Aw, we see we have the property set forth in Proposition 2.6 as describing the
expansion (2.3). Thus, (2.2) implies (2.3) with the same symmetric matrix A.

To establish the converse implication, suppose now that the expansion (2.3) holds.
Fix any ρ > 0 and any ε > 0. We wish to demonstrate the existence of δ > 0 such
that ∣∣∆2

τf(x)(w)− 〈Aw, w〉
∣∣ ≤ ε when τ ∈ (0, δ), |w| ≤ ρ, (2.11)
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in order to confirm that, as δ↘0, the functions ∆2
τf(x) converge , uniformly on all

bounded sets to the function w 7→ 〈Aw, w〉.
By applying Proposition 2.6 to W = ρIB and ε′ = ε/ρ and restricting ∂f to

dom∇f , we get the existence of δ > 0 such that

|∇f(x + τw)− v − τAw| ≤ τε/ρ

when τ ∈ (0, δ), |w| ≤ ρ, x + τw ∈ dom∇f, (2.12)

where v = ∇f(x). We can take δ small enough that x+δρIB ⊂ int dom f . Then f is
Lipschitz continuous on x+δρIB, almost all points of which must belong to dom∇f .
It follows through Fubini’s theorem that, for all most every w on the boundary of
ρIB (with respect to surface measure) the line segment from x to x + δw must have
almost all of its points in dom∇f (with respect to linear measure). Hence for almost
every w ∈ ρIB, say w ∈ D, f is differentiable at x + tw for almost all t ∈ [0, δ].
For such w ∈ D the function ψw : t 7→ f(x + tw) − f(x) − t〈v, w〉 − 1

2 t2〈Aw, w〉
is Lipschitz continuous on [0, δ] with ψ′w(t) = 〈∇f(x + tw) − v − tAw, w〉 a.e. in t.
That implies for w ∈ D and τ ∈ (0, δ) that ψw(τ) = ψw(0) +

∫ τ
0 ψ′w(t)dt, where

ψw(0) = 0, and therefore that |ψw(τ)| ≤ ∫ τ
0 |ψ′w(t)|dt. The estimate in (2.12) turns

this into
∣∣f(x + τw)− f(x)− τ〈v, w〉 − 1

2τ2〈Aw, w〉
∣∣

≤
∫ τ

0

∣∣〈∇f(x + tw)− v − tAw, w〉
∣∣dt ≤

∫ τ

0
τεdτ = 1

2τ2ε,

which on dividing by 1
2τ2 becomes

∣∣∆2
τf(x)(w) − 〈Aw, w〉

∣∣ ≤ ε. We have demon-
strated that, when τ ∈ (0, δ), this inequality holds for all w in a dense subset D
of ρIB. It then holds for all w ∈ ρIB by continuity. Thus, (2.11) has been verified,
and the functions ∆2

τf(x) converge as claimed. This convergence means that the
expansion (2.2) holds.

The version of the expansion (2.2) that we’ve arrived at uses the matrix A from
(2.3), yet it only depends on the symmetric part As of A. Our earlier argument
told us, though, that if (2.2) holds for As, then (2.3) holds for As. We thus have
(2.2) for both A and As. Invoking Theorem 2.3, we find that [A − As]w = o(|w|),
but that requires A − As = 0. In other words, A has to have been symmetric and
positive semidefinite.

Corollary 2.9. The matrix ∇2f(x), whenever it exists through f being twice
differentiable in the extended sense, is symmetric and positive semidefinite and
furnishes the second-order expansion

f(x + w) = f(x) + 〈∇f(x), w〉+ 1
2〈∇2f(x)w, w〉+ o(|w|2). (2.13)

3. Generalized expansions based on semi-differentiation

Through Theorem 2.8 and Corollary 2.9 we have a complete and satisfying pic-
ture of Taylor-like expansions of finite convex functions on open sets. In first-order
convex analysis, however, we know how to get a generalized expansion generalized
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first-order expansion, not just Taylor-like, in terms of one-sided directional deriva-
tives even at points where f isn’t differentiable. At every x ∈ int dom f the limit

lim
w′→w
τ ↘ 0

f(x + τw′)− f(x)
τ

= lim
w′→w
τ ↘ 0

∆τf(x)(w′) (3.1)

exists finitely for every vector w. In denoting it by df(x)(w) we get

f(x + w) = f(x) + df(x)(w) + o(|w|). (3.2)

Indeed, the limit in (3.1) exists finitely for every w if and only if the difference quo-
tient functions ∆τf(x) converge uniformly on bounded subsets of IRn to a function
that’s finite and continuous; cf. [1; 7.21].

The expansion property in (3.2) is termed the semi-differentiability of f at x, with
df(x) the corresponding semi-derivative function. It reduces to differentiability
exactly when df(x) is a linear function, or in other words when x ∈ dom∇f , in
which case df(x)(w) = 〈∇f(x), w〉. For points x ∈ int dom f that don’t belong to
dom∇f , although df(x) isn’t linear, it’s at least sublinear , i.e., convex and positively
homogeneous. Specifically, df(x) is the support function of the nonempty, compact,
convex set ∂f(x):

df(x)(w) = sup
{〈v, w〉 ∣∣ v ∈ ∂f(x)

}
.

Are there analogs of the generalized first-order expansion (3.2) at the second-order
level in convex analysis? Let’s extend the definition of the second-order difference
quotient ∆2

τf(x)(w) in (2.7) by substituting df(x)(w) for 〈v, w〉 there, so as to allow
x to be any point in int dom f , not necessarily in dom∇f . The question is whether
at such a point x the limit

lim
w′→w
τ ↘ 0

f(x + τw′)− f(x)− df(x)(w′)
1
2τ2

= lim
w′→w
τ ↘ 0

∆2
τf(x)(w′) (3.3)

exists finitely for every vector w, or equivalently (in our context of IRn) whether,
as τ ↘0, the functions ∆2

τf(x) converge uniformly on bounded sets to some finite,
continuous function. If that’s true, then in denoting the limit by d2f(x)(w) we get

f(x + w) = f(x) + df(x)(w) + 1
2d2f(x)(w) + o(|w|2). (3.4)

We speak then of second-order semi-differentiability of f at x, with d2f(x) being
the second semi-derivative function. That’s certainly present at points x where
f is twice differentiable in the extended sense analyzed above, with d2f(x)(w) =
〈∇2f(x)w, w〉. We would like to understand how far it might hold elsewhere in
int dom f as well.

A comment about our notation should be made before proceeding, so as not to
create a discrepancy with the notation used in [1] without assumptions of convexity.
For any function f , df(x)(w) refers there to the value given by the “lim inf” in
(3.1). The associated “lim sup” comes out then as −d[−f ](x)(w), so the property
of semi-differentiability corresponds to having −d[−f ](x)(w) = df(x)(w) for all w.
This equation necessitates the finiteness of the expressions and their continuity
with respect to w, but in general they wouldn’t be sublinear in w, just positively
homogeneous. Similar conventions govern (3.3). The notation d2f(x)(w) refers in
[1] to the “lim inf” in (3.3). One says that f is twice semi-differentiable at x if
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f is (once) semi-differentiable at x and the “lim inf” is a “lim”, i.e., the equation
−d2[−f ](x)(w) = d2f(x)(w) holds for all w. Here we’re taking advantage of the fact
that, when f is convex and x ∈ int dom f , first-order semi-differentiability prevails
and can be taken for granted when contemplating second-order semi-differentiability.

A shortcoming of second-order semi-differentiability in the study of a convex
function f is that the difference quotients in (3.3) can fail to be convex with respect
to w, unless df(x)(w) is actually linear in w. The notion can thereby escape the
realm of convex analysis. On the other hand, unless df(x)(w) is linear in w, the
ability of f to be twice semi-differentiable at x is much more limited than might be
hoped. For instance, a function that’s the pointwise maximum of a finite collection
of quadratic functions can fail to be twice semi-differentiable at points where the
quadratics join together; see [1; 13.10].

In the next section we’ll look at a more robust concept than second-order semi-
differentiability which gets around these difficulties and even allows treatment of
f at boundary points of dom f . For now, we’ll concentrate on what can be said
about second-order semi-differentiability at points x with linear df(x), where the
difference quotients are of the original form in (2.7).

Proposition 3.1. At any point x ∈ dom∇f where f is twice semi-differentiable,
the function d2f(x) is (finite) convex, nonnegative and positively homogeneous of
degree two.

Proof. The functions ∆2
τf(x) for τ > 0 are convex and nonnegative by Proposition

2.7, and these properties are preserved when they converge pointwise to another
function, namely d2f(x). It’s easy to see from the formula in (2.7) that, for λ >
0, one has ∆2

τf(x)(λw) = λ2∆2
λτf(x)(w). In the limit, this gives d2f(x)(λw) =

λ2d2f(x)(w), which is positive homogeneity of degree two.

Corollary 3.2. At any point x ∈ dom∇f where f is twice semi-differentiable, there
is a closed convex set C with 0 ∈ intC such that

d2f(x) = γ2
C for the gauge γC . (3.5)

Proof. A convex function is nonnegative and positively homogeneous of degree two
if and only if its square root is nonnegative and positively homogeneous of degree
one. The closed convex functions of the latter sort are the gauges γC of the closed
convex sets C containing 0; cf. [1; 3.50]. Finiteness of γC corresponds to 0 being an
interior point of C.

When f is twice differentiable at x in the extended sense, not merely twice semi-
differentiable there, the set C in Corollary 3.2 comes out as the (possibly degenerate)
ellipsoid

{
w

∣∣ 〈∇2f(x)w, w〉 ≤ 1
}
. In the broader setting it corresponds to a kind

of second-order subdifferential which has been studied by Hiriart-Urruty [6], [7]. In
contrast to other second-derivative concepts, this one has no known extension to
nonconvex functions.
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Our aim now will be to develop a counterpart to Theorem 2.8, and for that
we need an extension of semi-differentiability to ∂f . We’ll say that ∂f is semi-
differentiable at a point x ∈ dom∇f if the limit

lim
w′→w
τ ↘ 0

∂f(x + τw′)− v

τ
= lim

w′→w
τ ↘ 0

∆τ [∂f ](x)(w′), where v = ∇f(x), (3.6)

exists nonemptily for every w. We’re dealing here with a limit in set convergence,
inasmuch as ∂f(x + τw′) and ∆τ [∂f ](x)(w′) generally denote subsets of IRn (ones
which happen to be closed and convex). Further explanation may therefore be
helpful.

Recall that a sequence of closed sets Cν ⊂ IRn converges to a closed set C ⊂ IRn

as ν → ∞ if and only if d(z, Cν) → d(z, C) for every z ∈ IRn, where d(z, C)
denotes the distance of z from C. Such convergence can be characterized in many
different ways, as laid out in Chapter 4 of [1]. In broader terms, the outer limit
set lim supν Cν consists of the points z such that lim infν d(z, Cν) = 0, whereas the
inner limit set lim infν Cν consists of the points z such that lim supν d(z, Cν) = 0.
To say that Cν → C is to say that lim supν Cν = C = lim infν Cν .

In general, the set defined by “lim sup” in (3.6) in place of “lim” is denoted in
[1] by D[∂f ](x)(w), and the mapping D[∂f ](x) : IRn ⇒ IRn that is so defined is
called the graphical derivative of ∂f at x. In speaking of semi-differentiability of f
at x, we are requiring this mapping to be nonempty-valued and to agree with the
mapping obtained from “lim inf.”

Actually, semi-differentiability of ∂f is a bit too strong a property for our purpose
of coordinating with second-order semi-differentiability of f . What we’ll need is the
notion of ∂f being almost semi-differentiable at a point x ∈ dom∇f in the sense
that the limit in (3.6) exists nonemptily for almost every w. The extent to which
this can be interpreted as producing an expansion of ∂f at x is as follows.

Proposition 3.3. For ∂f to be almost semi-differentiable at a point x ∈ dom∇f ,
it is necessary and sufficient that the graphical derivative mapping D[∂f ](x) be
monotone with D[∂f ](x)(0) containing no more than 0. Then D[∂f ](x) is maximal
monotone, locally bounded everywhere, and single-valued almost everywhere, and

∂f(x + w) ⊂ v + D[∂f ](x)(w) + o(|w|)IB, where v = ∇f(x). (3.7)

Proof. From the general definition of D[∂f ](x)(w) as the outer limit of the ex-
pressions in (3.6), D[∂f ](x) can be identified with the (set-valued) mapping whose
graph consists of all pairs (w, z) such that for some sequence τν ↘0 there exist
(wν , zν) with zν ∈ ∆τν [∂f ](x)(wν) and (wν , zν) → (w, z). In other words, the
graph of D[∂f ](x) is the outer limit of the graphs of the mappings ∆τ [∂f ](x) as
τ ↘0. Hence by the theory of set convergence it’s the union of all limits of sequences
of sets Cν = gph∆τν [∂f ](x) that converge as τν ↘0; cf. [1; 4.19]. The mappings
∆τ [∂f ](x) are maximal monotone by Proposition 2.7, and it’s known that if a se-
quence of graphs of maximal monotone mappings converges, the limit has to be the
graph of another maximal monotone mapping; see [1; 12.32]. Thus,

gphD[∂f ](x) =
⋃ {

gphT
∣∣ T ∈ T }
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with T the collection of all maximal monotone mappings having graph obtainable
as the limit of gph∆τν [∂f ](x) for some sequence τν ↘0.

When ∂f is almost semi-differentiable at x, the mappings T ∈ T must have the
same nonempty value at almost every w. In particular they must have domT = IRn

(since the domain of a maximal monotone mapping is almost convex, so that its
interior is the interior of its closure; cf. [1; 12.41]). But a maximal monotone
mapping is single-valued almost everywhere on the interior of its domain and is
completely determined by its restriction to the points where it is single-valued; cf. [1;
12.66, 12.67]. Hence there can only be one T ∈ T , namely D[∂f ](x), which therefore
is maximal monotone. Any maximal monotone mapping which, like D[∂f ](x), has
all of IRn as its domain, is locally bounded everywhere (cf. [1; 12.28]) as well as
single-valued almost everywhere, as already noted.

Because D[∂f ](x) is by definition a positively homogeneous mapping, D[∂f ](x)(0)
is always a cone. Local boundedness makes this cone reduce to {0}. The inclusion
in (3.7) follows simply on the basis of D[∂f ](x) being locally bounded; cf. [1; 12.40].

On the other hand, if D[∂f ](x) is monotone, the maximality of the monotone
mappings T ∈ T again implies that D[∂f ](x) must be the sole element of T . The
graphs of the maximal monotone mappings ∆τ [∂f ](x) therefore converge to the
graph of D[∂f ](x) as τ ↘0. If in addition D[∂f ](x)(0) = {0}, the origin must
be an interior point of domD[∂f ](x), because maximal monotone mappings can’t
have nonempty bounded values except on the interiors of their domains [1; 12.38].
Since D[∂f ](x) is positively homogeneous, this implies domD[∂f ](x) = IRn. The
convergence of gph∆τ [∂f ](x) to gphD[∂f ](x) as τ ↘0 implies then that, at all
points w where D[∂f ](x)(w) is a singleton, one has ∆τ [∂f ](x)(w′) → D[∂f ](x)(w)
as w′ → w and τ ↘0; this invokes a general fact about convergence of maximal
monotone mappings in [1; 12.40]. We thus have ∂f almost semi-differentiable at x.

Proposition 3.4. If, for some x ∈ dom∇f , the mapping D[∂f ](x) is single-valued
everywhere, then in particular ∂f is semi-differentiable at x.

Proof. By the same line of reasoning as for Proposition 3.3, there can only one
T ∈ T , so D[∂f ](x) is that T and is monotone. The single-valuedness of D[∂f ](x)
ensures that D[∂f ](x)(0) = {0}. Then ∂f is almost semi-differentiable at x by
Proposition 3.3, and in fact, as seen toward the end of the proof of that result, one
has by [1; 12.40] that ∆τ [∂f ](x)(w′) → D[∂f ](x)(w) as w′ → w and τ ↘0, as long
as w is such that D[∂f ](x)(w) is a singleton. Here we’re assuming that’s true for
all w, so we get the convergence for all w and thus have semi-differentiability.

Theorem 3.5. For x ∈ dom∇f , one has f twice semidifferentiable at x if and only
if ∂f is almost semi-differentiable at x. Then

∂[12d2f(x)] = D[∂f ](x). (3.8)

Proof. The argument parallels the proof of Theorem 2.8 but depends on Proposi-
tion 3.3. We begin by assuming that f is twice semi-differentiable at x and letting
ϕ = 1

2d2f(x) and ϕτ = 1
2∆2

τf(x). By Proposition 3.1, ϕ is a finite convex function,
positively homogeneous of degree two, so that ∂ϕ is a maximal monotone mapping
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that’s positively homogeneous of degree one, nonempty-valued and locally bounded
everywhere. In particular, ∂ϕ(0) = {0}. By Proposition 2.7, on the other hand,
each ϕτ is a closed, proper, convex function with ∂ϕτ = ∆τ [∂f ](x). Our assumption
means that, as τ ↘0, ϕτ converges to ϕ uniformly on all bounded sets. That implies
through [2; Theorem 24.5] the existence, for every bounded set W ⊂ IRn and ε > 0,
of δ > 0 such that ∂ϕτ (w) ⊂ ϕ(w) for all w ∈ W when τ ∈ (0, τ), or in other words,

∆τ [∂f ](x)(w) ⊂ ∂ϕ(w) + εIB when τ ∈ (0, δ), w ∈ W.

The graph of D[∂f ](x) must therefore be contained within the graph of ∂ϕ, so
D[∂f ](x) must be monotone. Then by Proposition 3.3, ∂f is almost semi-differentia-
ble at x and D[∂f ](x) is maximal monotone. Because gph D[∂f ](x) ⊂ gph ∂ϕ and
∂ϕ is maximal monotone, we have to have D[∂f ](x) = ∂ϕ, i.e., (3.8).

To argue in the other direction, we assume now that ∂f is almost semi-differentia-
ble at x, in which case the characterization in Proposition 3.3 is available. Consider
any ε > 0 and ρ > 0. The expansion (3.7) can be written as ∂f(x + τw) ⊂
v +D[∂f ](x)(τw)+ o(τ |w|)IB where τ > 0 and D[∂f ](x)(τw) = τD[∂f ](x)(w), and
it accordingly yields the existence of δ > 0 such that

∆τ [∂f ](x)(w) ⊂ D[∂f ](x)(w) + (ε/ρ)IB when τ ∈ (0, δ), |w| ≤ ρ. (3.9)

Let E be the set of w where D[∂f ](x) is single-valued, and let F be the single-valued
mapping obtained by restricting D[∂f ](x) to E. From (3.9) we have

|∇f(x + τw)− v − τF (w)| ≤ τε/ρ

when τ ∈ (0, δ), |w| ≤ ρ, w ∈ E, x + τw ∈ dom∇f. (3.10)

We can suppose δ to be small enough that x+δρIB ⊂ int dom f . Then, as explained
in the proof of Theorem 2.8, there’s a subset D of full measure in ρIB such that,
when w ∈ D, f is differentiable at x + tw for almost all t ∈ [0, δ]. For such w the
function ψw : t 7→ f(x+tw)−f(x)−t〈v, w〉−−1

2 t2〈F (w), w〉 is Lipschitz continuous
on [0, δ] with ψ′w(t) = 〈∇f(x+ tw)− v− tF (w), w〉 a.e. in t. Because ψw(0) = 0, we
have |ψw(τ)| ≤ ∫ τ

0 |ψ′w(t)|dt which, as long as w belongs also to E, gives us through
(3.10) the estimate

∣∣f(x + τw)− f(x)− τ〈v, w〉 − 1
2τ2〈F (w), w〉

∣∣

≤
∫ τ

0

∣∣〈∇f(x + tw)− v − tF (w), w〉
∣∣dt ≤

∫ τ

0
τεdτ = 1

2τ2ε.

On dividing this by 1
2τ2, we get

∣∣∆2
τf(x)(w) − 〈F (w), w〉

∣∣ ≤ ε. We have thus
demonstrated the existence, for any ε > 0 and ρ > 0, of δ > 0 such that∣∣∆2

τf(x)(w)− 〈F (w), w〉
∣∣ ≤ ε when τ ∈ (0, δ), w ∈ D ∩ E,

with D ∩ E being a set of full measure in ρIB, hence dense in ρIB.
It follows that, as τ ↘0, the functions ∆2

τf(x) converge pointwise on D ∩ E to a
finite function, namely w 7→ 〈F (w), w〉. When convex functions converge pointwise
to a finite value at all points of a dense subset of an open convex set O, they
converge finitely everywhere on O and do so uniformly on compact subsets of O;
cf. [2; Theorem 10.8]. Hence the functions ∆2

τf(x) converge uniformly on compact
subsets of int ρIB to a certain finite function, which is convex and consequently
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continuous. We have shown this for arbitrary ρ > 0 and can conclude therefore
that f is twice semi-differentiable at x.

The proof of Theorem 3.5 shows that, on the set of vectors w where D[∂f ](x)(w)
reduces to a single value F (w), one has d2f(x)(w) = 〈F (w), w〉. This is analogous to
the case of f being twice differentiable at x in the extended sense, where d2f(x)(w) =
〈∇2f(x)w, w〉. The general rule is the following.

Corollary 3.6. At any x ∈ dom∇f where f is twice semi-differentiable, one has

d2f(x)(w) = 〈z, w〉 for every z ∈ D[∇f ](x)(w). (3.12)

Proof. The formula for d2f(x) in Corollary 3.2 says ∂[12d2f(x)](w) = γC(w)∂γC(w).
Thus by (3.8), each z ∈ D[∂f ](x)(w) has the form z = γC(w)u for some u ∈ ∂γC(w).
Here 〈u,w〉 = γC(w) by the positive homogeneity of γC , so 〈z, w〉 = γC(w)2 =
d2f(x)(w).

4. Second derivatives based on variational convergence

While Theorem 3.5 provides an equivalence and other insights, it offers no cri-
terion for ascertaining whether the semi-differentiability in question is present. All
we know is that f is twice semi-differentiable at almost every point x ∈ dom∇f ,
inasmuch as that property includes the cases where f twice differentiable in the
extended sense, which are covered by Corollary 2.5. Another limitation of the ideas
discussed so far is that they apply to a convex function f only at interior points of
dom f , and even then, only with vigor at points of dom∇f . Some of the biggest
successes of first-order convex analysis have come through the treatment of direc-
tional derivatives and subgradients at boundary points of dom f and of course in
allowing fully for the set-valuedness of ∂f .

The source of these limitations is fundamentally in the reliance on uniform con-
vergence of difference quotients. To progress further, we have to replace such con-
vergence by something else, and the natural candidate is variational convergence,
i.e., epi-convergence of extended-real-valued functions along with graphical conver-
gence of set-valued mappings. Both are based on set convergence, but in application
to epigraphs and graphs.

A sequence of functions ϕν : IRn ⇒ IR is said to epi-converge to another such
function ϕ if their epigraphs epiϕν converge to epi ϕ as subsets of IRn × IR. The
topic is developed at length in Chapter 7 of [1]. A sequence of set-valued mappings
T ν : IRn ⇒ IRn is said to converge graphically to another such mapping T if their
graphs gphT ν converge to gphT as subsets of IRn× IRn. We’ve already been using
this notion, although not by name. It had a major role in the proof of Proposition
3.3, in particular. Details about graphical convergence can be found in Chapter 5
of [1].

In convex analysis, there’s a key fact that relates these two kinds of conver-
gence. It was proved by Attouch [8] in 1977 and says that a sequence of closed,
proper, convex functions ϕν epi-converges to such a function ϕ if and only if their
subgradient mappings ∂ϕν converge graphically to ∂ϕ and (for the sake of fixing
the constant of integration) some pair (w, z) ∈ gph ∂ϕ can be approached by pairs
(wν , zν) ∈ gph ∂ϕν in such a way that ϕν(wν) → ϕ(w).
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The possibility that Attouch’s theorem could be employed in connecting second
derivatives of f with first derivatives of ∂f was uncovered by Rockafellar [9] in 1985
in a special case and eventually brought to bloom in [10]. Our goal here is to explain
the main results briefly and then to assess what they say about semi-differentiability.

Whereas previously we worked with difference quotients in (2.7) and (2.8) in
which the vector v was understood to be ∇f(x), we must now work with general
subgradients v ∈ ∂f(x). This has to be reflected in our notation. Accordingly we
define the second-order difference quotient function

∆2
τf(x |v) : w 7→ f(x + τw)− f(x)− τ〈v, w〉

1
2τ2

, where v ∈ ∂f(x), (4.1)

and the first-order difference quotient mapping

∆τ [∂f ](x |v) : w 7→ ∂f(x + τw)− v

τ
, where v ∈ ∂f(x). (4.2)

At a point x ∈ dom ∂f and for any v ∈ ∂f(x), we denote by d2f(x |v) the func-
tion with epigraph obtained as the “lim sup” (outer limit) of the epigraphs of the
functions ∆2

τf(x |v) as τ ↘0 and say that f is twice epi-differentiable at x for v if ac-
tually this “lim sup” is a “lim” and is proper, i.e., if ∆2

τf(x |v) in fact epi-converges
as τ ↘0. Likewise, we denote by D[∂f ](x |v) the mapping with graph obtained as
the “lim sup” of the graphs of the mappings ∆τ [∂f ](x |v) as τ ↘0 and say that ∂f
is proto-differentiable at x for v if this “lim sup” is a “lim,” i.e., if ∆τ [∂f ](x |v)
converges graphically to D[∂f ](x |v) as τ ↘0.

These differentiation concepts based on variational convergence were introduced
in [11] and [12], respectively.

Theorem 4.1 [10]. Let x ∈ dom ∂f and v ∈ ∂f(x). Then f is twice epi-
differentiable at x for v if and only if ∂f is proto-differentiable at x for v, in which
case

∂[12d2f(x |v)] = D[∂f ](x |v), (4.3)

with d2f(x |v) being a closed, proper, convex function that is nonnegative and pos-
itively homogeneous of degree two, and D[∂f ](x |v) being a maximal monotone
mapping that is positively homogeneous (of degree one).

Proof. Just as in Proposition 2.7, it’s elementary that for each τ > 0 the function
∆2

τf(x |v) : IRn → IR is closed, proper and convex and nonnegative, while the
mapping ∆τ [∂f ](x |v) : IRn ⇒ IRn is maximal monotone, and

∂[12∆2
τf(x |v)] = ∆τ [∂f ](x |v). (4.4)

In addition, we have that ∆2
τf(x |v)(0) = 0 and ∆τ [∂f ](x |v)(0) = 0. To get the

result, all we have to do is apply Attouch’s theorem in the statement of it sup-
plied above, with (wν , zν) = (w, z) = (0, 0). (Because the functions ∆2

τf(x |v) are
nonnegative and vanish at the origin, there’s no risk of them epi-converging to a
function that’s improper.)

An important feature of epi-convergence of convex functions is that it’s preserved
when passing to conjugate functions: if ϕν epi-converges to ϕ, then ϕν∗ epi-converges
to ϕ∗. This fact, proved by Wijsman [13] in 1964, is ideal for answering questions
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about what happens to second derivatives when passing to conjugate functions. The
next result comes by that route in recalling that v ∈ ∂f(x) if and only if x ∈ ∂f∗(v).

Theorem 4.2 [10]. One has f twice epi-differentiable at x for v if and only if f∗ is
twice epi-differentiable at v for x, in which case

[12d2f(x |v)]∗ = 1
2d2f∗(v |x). (4.5)

Proof. All that’s needed is to apply Theorem 4.2 to the functions ϕτ = 1
2∆2

τf(x |v)
as τ ↘0 while observing that ϕ∗τ = 1

2∆2
τf
∗(v |x).

What is the relationship between second-order epi-differentiation and second-
order semi-differentiation? This has a helpful answer.

Theorem 4.3. Let x ∈ dom∇f and v = ∇f(x). Then f is twice semi-differentiable
at x if and only if f is twice epi-differentiable at x for v and d2f(x |v)(w) is finite
for all w. The second-order semi-derivative function d2f(x) coincides then with the
second-order epi-derivative function d2f(x |v).

Proof. The crucial fact is that a sequence of convex functions ϕν epi-converges to
a finite convex function ϕ if and only it converges to ϕ uniformly on all bounded
sets; cf. [1; 7.17]. By applying this to the convergence of second-order difference
quotient functions, we get the relationship claimed because second-order semi-
differentiability corresponds to such uniform convergence to a finite function that’s
continuous, and finite convex functions are automatically continuous.

Corollary 4.4. Let x ∈ dom∇f and v = ∇f(x). Then f is twice semi-differentiable
at x if and only if f∗ is twice epi-differentiable at v for x and d2f∗(v |x) is positive-
definite in the sense that

d2f∗(v |x)(z) > 0 for all z 6= 0. (4.6)

Proof. Combining the duality in Theorem 4.2 with the assertions of Theorem 4.3,
we are able to translate the second-order epi-differentiability of f to that of f∗
and the finiteness of d2f(x |v) to the coercivity of d2f∗(v |x). Because d2f∗(v |x) is
positively homogeneous of degree two by Theorem 4.1, it’s coercive if and only if
(4.6) holds.

Corollary 4.5. Let x ∈ dom∇f and v = ∇f(x). A necessary and sufficient condi-
tion for ∂f to be almost semi-differentiable at x is that ∂f be proto-differentiable
at x for v with D[∂f ](x |v)(0) containing only 0. Then D[∂f ](x) = D[∂f ](x |v).

Proof. This combines Theorem 4.3 with Proposition 3.3 and Theorem 3.5.

Further material on the relationship between Theorem 4.1 and “expansions” of
f or ∂f is available in [14].

These characterizations focus ever greater attention on the question of how to
know whether a function f or f∗ is twice epi-differentiable somewhere, and if so,
what formulas might be used to express the epi-derivatives. According to Theorem
4.3 and its corollaries, information about that provides information also on semi-
differentiability.
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In fact a large class of functions, central to finite-dimensional optimization, has
been shown in [11] to be twice epi-differentiable, namely the “fully amenable” func-
tions. The results and formulas recently been explained also in [1], and there is no
need for further duplication of them here. Instead, we conclude with some observa-
tions about their applications.

The tie between second-order epi-derivatives of f and proto-derivatives of ∂f in
Theorem 4.1 is particularly valuable for the study of perturbations of solutions to
problems of optimization. Typically those solutions are characterized in terms of
subgradients, and in looking at the way solutions depend on parameter vectors,
one therefore ends up looking at set-valued mappings derived from subgradient
mappings. Proto-differentiability of a solution mapping can then be deduced from
proto-differentiability of a subgradient mapping. The fact in Theorem 4.1 that
the proto-derivatives D[∂f ](x |v)(w) are the subgradients ∂h(w) of h = 1

2d2f(x |v)
can in that case have the remarkable consequence that the proto-derivatives of the
solution mapping can be calculated by solving an auxiliary optimization problem in
which the original objective function has been replaced by one of its second-order
epi-derivative functions. Such developments can be found in [15] and [16] as well
as, to some extent, in [1].

Other recent developments on solution perturbations, in [17] and [18], utilize yet
another concept of generalized second derivative, namely the “coderivative Hessian”
mapping introduced by Mordukhovich [19], [20]. A basic inclusion between the
proto-derivative mappings and coderivative mappings associated with ∂f has been
established in [21].

The extent to which such developments, generally for nonconvex functions, might
lead to special results for convex functions, hasn’t really been explored. That’s the
status also of results on generalized second derivatives of parabolic type, taken
along quadratic curves rather than linear rays. Parabolic second derivatives of fully
amenable functions were demonstrated in [11] to obey a certain duality with second
epi-derivatives. They have been featured in some recent work on optimality; cf.
[22].
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