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The usual proximal gradient method is an iterative method of the form:

xk+1 = argmin
x∈Rn

(
g(xk) +∇g(xk)

T (x− xk) +
1

2tk
∥x− xk∥2 + h(x)

)
(1.2)

= argmin
x∈Rn

(
h(x) +

1

2tk
∥x− (xk − tk∇g(xk))∥2

)
,

where xk ∈ Rn is k-th approximation to a solution, ∇g(xk) is the gradient of
g at xk, ∥ · ∥ denotes the ℓ2 norm and tk > 0 is a parameter. By defining the
proximal mapping as

(1.3) Proxh(x̄) = argmin
x∈Rn

(
h(x) +

1

2
∥x− x̄∥2

)
,

(1.2) can be represented by

xk+1 = Proxtkh (xk − tk∇g(xk)) .

Note that the proximal mapping (1.3) can be easily obtained in some special
cases (see [1, 11], for example).

To accelerate proximal gradient methods, some researchers proposed prox-
imal quasi-Newton methods which use proximal mappings scaled by quasi-
Newton matrices. Lee et al. [7] gave a proximal Newton type method of the
form:

(1.4) xk+1 = xk + αkdk

and

(1.5) dk = ProxBk

h (xk −Hk∇g(xk))− xk,

where αk > 0 is the step size and ProxBk

h (x̄) is a scaled proximal mapping given
by

ProxBk

h (x̄) = argmin
x∈Rn

(
g(x̄) +∇g(x̄)T (x− x̄) +

1

2
∥x− x̄∥2Bk

+ h(x)

)
(1.6)

= argmin
x∈Rn

(
h(x) +

1

2
∥x− x̄∥2Bk

)
.

Here, Bk is a symmetric positive definite matrix, ∥x∥Bk
=
√

xTBkxk and
Hk = B−1

k .
Following [7], we now consider a prototype algorithm of the proximal Newton

type method.

Algorithm 1 (A prototype algorithm of proximal Newton type methods).

Step 0: Given an initial point x0 ∈ Rn, and parameters δ ∈ (0, 1), β ∈
(0, 1) and k = 0.
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Step 1: Give Bk and Hk. Compute dk by (1.5).
Step 2: If the stopping condition holds, then stop.
Step 3: Determine the step size αk, which is the first number of the se-

quence α ∈ {1, β, β2, . . .} satisfying the Armijo condition:

f(xk + αdk) ≤ f(xk) + δα(∇g(xk)
T dk + h(xk + dk)− h(xk)).

Step 4: Update xk+1 by (1.4).
Step 5: Set k = k + 1, and go to Step 1.

In general, to compute (1.5), we need to solve (1.6) inexactly by using some
numerical method. Accordingly, some researchers have proposed inexact prox-
imal Newton type methods, which solve (1.6) inexactly [7, 10]. As another
approach, Becker and Fadlli [3] gave a calculation procedure of (1.6) for the
case Bk = D + uuT , where D is a positive diagonal matrix and u ∈ Rn.

Theorem 1.1. Let V = D ± uuT be symmetric positive definite, where D is
diagonal with positive diagonal elements, and u ∈ Rn. Then,

ProxVh (x̄) = D−1/2Proxh̄(D
1/2x̄∓ αD−1/2u),

where h̄(x) := h(D−1/2x) and α is the unique root of

p(α) =
⟨
u, x̄−D−1/2Proxh̄(D

1/2x̄∓ αD−1/2u)
⟩
+ α.

By using the above theorem, ProxVh (x̄) can be easily compute when we
can easily obtain the usual proximal mapping. Becker and Fadili [3] gave a
proximal quasi-Newton method based on the memoryless Symmetric Rank-
one (SR1) method. However, the memoryless SR1 updating formula does not
guarantee positive definiteness of approximate matrices. Therefore, in this
paper, we propose another proximal quasi-Newton method based on a modified
SR1 method, which guarantees positive definiteness of approximate matrices.

This paper is organized as follows. In Section 2, we propose an proximal
Newton type method based on the memoryless SR1 method. In addition, we
give the global convergence property of the method. In Section 3, we report
some preliminary numerical results. Finally, we give concluding remarks.

2. Proximal memoryless symmetric rank one method

In this section, we propose a proximal Newton type method based on the
SR1 formula, and give its global convergence property.

We first consider a concrete choice of Bk in (1.5). We focus on the memory-
less SR1 method proposed by Nakayama et al. [9], which is the quasi-Newton
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method with the following SR1 formula:

(2.1) Bk = I +
(γkyk−1 − sk−1)(γkyk−1 − sk−1)

T

(γkyk−1 − sk−1)T sk−1
,

where sk−1 = xk − xk−1, yk−1 = ∇g(xk)−∇g(xk−1), I ∈ Rn×n is the identity
matrix and γk > 0 is a scaling parameter. This formula is based on the spectral
scaling secant condition by Cheng and Li [5]:

(2.2) Bksk−1 = γkyk−1.

Under the assumption sTk−1yk−1 > 0, Nakayama et al. [9] showed Bk in (2.1)
is symmetric positive definite if and only if γk satisfies

γk ̸∈

[
sTk−1yk−1

yTk−1yk−1
,
sTk−1sk−1

sTk−1yk−1

]
.

Thus, using by Theorem 1.1, the proximal mapping with (2.1) can be eas-
ily computed. On the other hand, to establish the global convergence of the
method, we need uniformly positive definiteness and boundedness for Bk. For
this purpose, we modify the SR1 formula (2.1). Following Nakayama et al. [10],
we consider the modified spectral scaling secant condition:

(2.3) Bksk−1 = γkzk−1,

which is combined the spectral scaling secant condition (2.2) and the modified
secant condition by Li and Fukushima [8]. Here,

(2.4) zk−1 = yk−1 + νksk−1

and νk ≥ 0 is a bounded parameter. In this paper, we choose νk such that

(2.5) sTk−1zk−1 = sTk−1(yk−1 + νksk−1) ≥ ν̄∥sk−1∥2

holds for some positive constant ν̄. For example, if we choose

νk =

0, if sTk−1yk−1 ≥ ν̄∥sk−1∥2

max
{
0,− sTk−1yk−1

sTk−1sk−1

}
+ ν̄, otherwise,

then (2.5) holds. Furthermore, we choose γk satisfying the condition

(2.6) γ ≤ γk ≤ γ,

where γ and γ are positive constants such that 0 < γ ≤ γ holds. Based on
the modified spectral scaling secant condition (2.3), the SR1 formula (2.1) is
represented by

(2.7) Bk = I +
(γkzk−1 − sk−1)(γkzk−1 − sk−1)

T

(γkzk−1 − sk−1)T sk−1
.
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Also, the inverse of (2.7) is given by

(2.8) Hk = I +
(sk−1 − γkzk−1)(sk−1 − γkzk−1)

T

γk(sk−1 − γkzk−1)T zk−1
.

In order to show the uniformly positive definiteness, we make the following
standard assumption.

Assumption 1. The function g is a continuously differentiable function and
its gradient ∇g is Lipschitz continuous, namely, there exists a positive constant
L such that

(2.9) ∥∇g(u)−∇g(v)∥ ≤ L∥u− v∥ for any u, v ∈ Rn.

Under the above assumption, we note that it follows from (2.4) and (2.9)
that

∥zk−1∥ = ∥yk−1+νksk−1∥ = ∥∇g(xk)−∇g(xk−1)+νksk−1∥ ≤ (L+νk)∥sk−1∥.
Since νk is bounded, there exists a positive constant L̄ such that

(2.10) ∥zk−1∥ ≤ L̄∥sk−1∥.
Then, we have the following theorem.

Theorem 2.1. Suppose that Assumption 1, (2.5) and (2.6) are satisfied. The
matrix Bk is given by (2.7) and the parameter γk satisfies

(2.11) γk ̸∈

(
ρ
sTk−1zk−1

zTk−1zk−1
, ρ

sTk−1sk−1

sTk−1zk−1

)
,

where 0 < ρ < 1 and ρ > 1 are constants. Then, the following statements hold:

(i) If we choose γk satisfying γk ≤ ρ
sTk−1zk−1

zTk−1zk−1
, then there exists a positive

constant m ≤ 1 such that

(2.12) m∥v∥2 ≤ vTBkv ≤ ∥v∥2, ∀v ∈ Rn.

(ii) If we choose γk satisfying γk ≥ ρ
sTk−1sk−1

sTk−1zk−1
, then there exists a positive

constant M ≥ 1 such that

(2.13) ∥v∥2 ≤ vTBkv ≤ M∥v∥2, ∀v ∈ Rn.

Proof. First, we consider case (i). The eigenvalues of formula (2.8) are 1 with
multiplicity n− 1 and

(2.14) 1 +
∥sk−1 − γkzk−1∥2

γk(sk−1 − γkzk−1)T zk−1
.
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Since γk(sk−1−γkzk−1)
T zk−1 > 0 holds when γk ≤ ρ

sTk−1zk−1

zT
k−1zk−1

, (2.14) is greater

than 1. Thus, the smallest eigenvalue of Hk is 1, and the largest eigenvalue of
Hk is (2.14). It follows from (2.5), (2.6), (2.10) and (2.14) that

1 +
∥sk−1 − γkzk−1∥2

γk(sk−1 − γkzk−1)T zk−1
≤ 1 +

∥sk−1 − γkzk∥2

γk(1− ρ)sTk−1zk−1

≤ 1 +
(1 + γL̄)∥sk−1∥2

γ(1− ρ)ν̄∥sk−1∥2

= 1 +
1 + γL̄

ν̄γ(1− ρ)
.

Since Bk = H−1
k , we have (2.12) with m =

(
1 + 1+γL̄

ν̄γ(1−ρ)

)−1

.

Next, we consider case (ii). The eigenvalues of formula (2.7) are 1 with
multiplicity n− 1 and

(2.15) 1 +
∥γkzk−1 − sk−1∥2

(γkzk−1 − sk−1)T sk−1
.

Since (γkzk−1 − sk−1)
T sk−1 > 0 hols when γk ≥ ρ

sTk−1sk−1

sTk−1zk−1
, (2.15) is greater

than 1. Thus, the smallest eigenvalue of Bk is 1, and the largest eigenvalue of
Bk is (2.15). It follows from (2.5), (2.6), (2.10) and (2.15) that

1 +
∥γkzk−1 − sk−1∥2

(γkzk−1 − sk−1)T sk−1
≤ 1 +

∥γkzk − sk−1∥2

(ρ− 1)∥sk−1∥2

≤ 1 +
(γL̄+ 1)∥sk−1∥2

(ρ− 1)∥sk−1∥2

= 1 +
γL̄+ 1

ρ− 1
.

Therefore, we have (2.13) with M = 1 + γL̄+1
ρ−1 . Hence, the the proof is com-

pleted. □

We next show that the sequence generated by the proposed method con-
verges to a stationary point of (1.1), which means the point x∗ satisfies the
first optimality condition

0 ∈ ∇g(x∗) + ∂h(x∗),

where ∂h(x) is the subdifferential of h at x. Using Theorem 2.1 and the first
optimality condition of (1.6), namely,

(2.16) 0 ∈ ∇g(xk) +Bkdk + ∂h(ProxBk

h (xk −Hk∇g(xk))),
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we have the following theorem corresponding to Proposition 2.5 in [7]. If dk = 0,
then it follows from (2.16) that xk is a stationary point. Also, we can prove
the converse in a similar way to [7, 10].

Theorem 2.2. Suppose that Assumption 1 is satisfied. Let the sequence {xk}
be generated by Algorithm 1 with (2.7) and (2.8), where (2.5), (2.6) and (2.11)
are satisfied. Then, xk is a stationary point if and only if dk = 0.

Moreover, we have the following global convergence theorem. We can prove
the following theorem in a similar manner to the proof of Theorem 3.1 in [7].

Theorem 2.3. Suppose that Assumption 1 is satisfied. Let the sequence {xk}
be generated by Algorithm 1 with (2.7) and (2.8), where (2.5), (2.6) and (2.11)
are satisfied. If the objective function is bounded blew, then

(2.17) lim
k→∞

∥dk∥ = 0.

Furthermore, if generated sequence {xk} is bounded, then any accumulation
point of {xk} is a stationary point of (1.1).

3. Numerical experiments

In this section, we investigate the performance of the proposed method
(namely, Algorithm 1 with (2.7)). We compare the proposed method with
other typical proximal gradient methods. We test the ℓ1-regularized logistic
regression problem:

min
x∈Rn

1

m

m∑
i=1

log
(
1 + exp(−bix

Tai)
)
+ C∥x∥1,

where ai ∈ Rn, bi ∈ {−1, 1}, i = 1, · · · ,m and C is a regularization parameter.
We use binary classification datasets gisette scale, a9a and leukemia as
(ai, bi), i = 1, · · · ,m from [6]. We denote gisette scale as simply gisette.
Table 1 gives details of these datasets. We set an initial point by x0 =
(0, · · · , 0)T and the regularization parameter by C = 10−3. We use the pa-
rameter νk in (3.1) as

(3.1) νk =

{
0, if sTk−1yk−1 ≥ ν̄∥sk−1∥2,
ν̄
(
1− sTk−1yk−1

∥sk−1∥2

)
, otherwise,

where we set ν̄ = 10−3. Since g(x) = 1
m

∑m
i=1 log

(
1 + exp(−bix

Tai)
)
is convex,

it follows from sTk−1yk−1 ≥ 0 that

sTk−1yk−1 + ν̄

(
1−

sTk−1yk−1

∥sk−1∥2

)
sk = (1− ν̄)sTk−1yk−1 + ν̄∥sk−1∥2 ≥ ν̄∥sk−1∥2.
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Table 1. Dataset information

Data name gisette a9a leukemia

Number of data m 1000 32561 38
Dimension n 5000 123 7129

Thus we note that (2.5) holds. Following Nakayama et al. [9], we chose

(3.2) γk = ρk
sTk−1zk−1

zTk−1zk−1
(0 < ρmin ≤ ρk ≤ ρmax < 1),

and we set ρk = 0.1, 0.2, ..., 0.9. Note that the choice (3.1) guarantees condition
(2.5). Furthermore, since it follows from (2.5) and (2.10) that

ν̄

L̄2
≤

sTk−1zk−1

zTk−1zk−1
≤

sTk−1sk−1

sTk−1zk−1
≤ 1

ν̄
,

parameter (3.2) satisfies (2.6). Thus, from Theorem 2.3 the proposed method
converges globally. For the parameters of the line search (Step 3 in Algorithm
1), we set δ = 0.001 and β = 0.5. Each algorithm terminates when ∥dk∥∞ ≤
10−6, where ∥ · ∥∞ is the infinity norm. All the numerical experiments are
performed in Matlab 2017b on a PC with 2.3 GHz Intel Core i5, 8GB RAM
running macOS High Sierra.

We compare the proposed method with TFOCS [2]1, PNOPT [7]2 and the
inexact proximal memoryless BFGS method [10]. TFOCS is a software based
on the proximal gradient method with acceleration techniques. PNOPT is a
software of the proximal quasi-Newton method which uses the limited memory
BFGS method as a choice of Bk in (1.5). In PNOPT and the inexact proximal
memoryless BFGS method, the scaled proximal mapping is solved inexactly.
For those softwares, we use the default parameter settings.

Table 2 shows the numerical results of TFOCS, PNOPT, the inexact proxi-
mal memoryless BFGS method (mless-BFGS) and the proposed method (mless-
SR1). Iter and Time mean the number of iterations and the CUP time (second),
respectively. In each column, we write the best result by using bold-face.

We first consider how choice of the parameter ρk affects the efficiency of our
methods (namely, mless-SR1). We see that the efficiency of mless-SR1 greatly
depends on the value of ρk. For gisette and a9a, the method with large val-
ues of ρk performed better, but there is the reverse tendency for leukemia.
Next, we compare mless-SR1 with mless-BFGS. Then, mless-BFGS is superior

1http://cvxr.com/tfocs/download/
2https://web.stanford.edu/group/SOL/software/pnopt/
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Table 2. Numerical results

Data name gisette a9a leukemia
Iter Time Iter Time Iter Time

TFOCS 7025 1384.38 1123 21.28 1056 4.27
PNOPT (L-BFGS) 264 137.62 41 3.55 500 96.92

mless-BFGS 2144 1898.72 164 9.74 1361 120.23
mless-SR1(ρk = 0.1) 7743 1110.93 860 11.40 2148 11.84
mless-SR1(ρk = 0.2) 8258 1147.18 383 4.81 3494 16.80
mless-SR1(ρk = 0.3) 8563 1148.85 267 3.14 6678 32.87
mless-SR1(ρk = 0.4) 9124 1213.54 227 2.62 11207 56.22
mless-SR1(ρk = 0.5) 7003 932.56 182 2.16 12863 61.39
mless-SR1(ρk = 0.6) 5307 696.41 189 2.19 15236 72.83
mless-SR1(ρk = 0.7) 6676 871.12 164 1.91 16825 80.53
mless-SR1(ρk = 0.8) 4869 630.99 170 1.99 17925 85.72
mless-SR1(ρk = 0.9) 4271 548.00 151 1.79 17899 85.58

to mless-SR1 in the viewpoint of Iter. This result seems to be natural because
the BFGS method is usually superior to the SR1 method in the case of un-
constrained optimization. However, mless-SR1 (with better choice of ρk) is
superior to mless-BFGS in the viewpoint of Time. This cause may be because
mless-BFGS solves the subproblem to compute the scaled proximal mapping
in each iteration. From these results, we see that the proposed method reme-
dies other proximal memoryless quasi-Newton methods which need to solve
the subproblem. Finally, we compare mless-SR1 with TFOCS and PNOPT in
the perspective on Time. Then, we cannot conclude that mless-SR1 is always
superior to the other methods, and the numerical performance depends on the
choice of problems.

4. Concluding renarks

In this paper, we have proposed a proximal quasi-Newton method based
on the memoryless SR1 formula. To establish the global convergence of the
method, the proposed method uses the memoryless SR1 formula based on a
modified spectral-scaling secant condition. We have shown the global con-
vergence of the proposed method. In numerical experiments, we report some
preliminary numerical results.

More recently, Becker et al. [4] gave the explicit form of the scaled proximal
mapping (1.6) with two rank updates like as the BFGS formula. Therefore, we
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can consider proximal quasi-Newton methods based on the memoryless BFGS
formula instead of the memoryless SR1 formula. This is our further study.
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