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and they are of the form

(1.2) xk+1 = xk + ηkdk,

where xk ∈ Rn is the k-th approximation to a solution, ηk > 0 is a step size,
and dk ∈ Rn is a search direction. We denote g(xk) by gk.

The bound constrained optimization problem (1.1) appears in various kinds
of applications including the control allocation problem [17], the image de-
blurring [19], the molecular conformation analysis [13] and the linear support
vector machine [26]. Furthermore, problem (1.1) also appears as a subproblem
in augmented Lagrangian methods and penalty methods [9, 11].

There are several numerical methods for solving problem (1.1), which in-
clude active-set type methods, projected gradient methods and affine scaling
methods, for example [2,3,6,7,10,15,16]. In this paper, we focus on an active-
set method. Recently, Yuan and Lu [27] proposed an active-set limited memory
BFGS algorithm that used an active set identification technique [10] to esti-
mate active variables, and determined the search direction for free variables by
the limited memory quasi-Newton method.

Inspired by their algorithm, we combine this technique with memoryless
quasi-Newton methods based on the spectral-scaling Broyden family. When
we solve large-scale bound constrained optimization problems, the number of
free variables becomes large. If we use usual quasi-Newton methods, we need
too much memory requirement, because the approximate matrix of Hessian
is dense. So, we focus on the memoryless quasi-Newton method proposed
by Shanno [25], which was developed for solving unconstrained optimization
problems. Memoryless quasi-Newton methods need less memory requirement.
Recently, memoryless quasi-Newton methods have been studied by several re-
searchers [18,20,22,23]. Based on the Broyden family with the spectral-scaling
secant condition [4, 5], Nakayama et al. [24] claimed that the preconvex class
performs better than the BFGS update.

In this paper, we modify the active-set strategy of Yuan and Lu [27] which is
based on Facchinei et al. [10] and combine the modified active-set strategy with
the memoryless quasi-Newton method based on the spectral-scaling Broyden
family. In our numerical experiments, we investigate how our modification and
a choice of parameters of the Broyden family affect numerical performance.

This paper is organized as follows. In Section 2, we first modify the al-
gorithm of Yuan and Lu [27]. Next, we introduce memolyless quasi-Newton
methods and propose our method. In addition, we show the global convergence
of the proposed method. In Section 3, we present some numerical experiments.
Finally Section 4 gives conclusions.
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2. Proposed method and its global convergence

In this section, we first introduce the active-set method of Yuan and Lu [27]
and give its modification. Next, we introduce quasi-Newton methods and com-
bine the modified active-set method with memoryless quasi-Newton methods.
Finally, we present the global convergence results of the proposed method.

The KKT conditions of (1.1) are equivalent to the following conditions:

(2.1)


(g(x))i ≥ 0 for all i ∈ L := {i : li = (x)i},
(g(x))i = 0 for all i ∈ F := {i : li < (x)i < ui},
(g(x))i ≤ 0 for all i ∈ U := {i : ui = (x)i}.

Note that x that satisfies (2.1) is called a stationary point. We define sets
L(x), U(x), and F (x) by L(x) := {i : (x)i ≤ li + ai(x)(g(x))i},

U(x) := {i : (x)i ≥ ui + bi(x)(g(x))i},
F (x) := {1, . . . , n}\(L(x) ∪ U(x)),

where ai(x) and bi(x) (i = 1, . . . , n) are nonnegative continuous functions
bounded from above on K, such that if (x)i = li (respectively, (x)i = ui),
then ai(x) > 0 (respectively, bi(x) > 0). Then there exist positive constants a
and b such that

ai(x) ≤ a and bi(x) ≤ b (i = 1, . . . , n)

for any x ∈ K.
Let ZJ ∈ Rn×|J| be a matrix whose columns are {ei|i ∈ J} for any index

set J ⊂ {1, . . . , n}, where ei is the i-th column of the identity matrix in Rn×n.
Yuan and Lu [27] defined the search direction dk by

(2.2) (dk)i =


li − (xk)i for all i ∈ L(xk),
ui − (xk)i for all i ∈ U(xk),
−αk

∗(ZF (xk)Z
T
F (xk)

HkZF (xk)Z
T
F (xk)

gk)i for all i ∈ F (xk),

where

(2.3) αk
∗ = max{α | 0 ≤ α ≤ 1,

li ≤ (xk)i − α(ZF (xk)Z
T
F (xk)

HkZF (xk)Z
T
F (xk)

gk)i ≤ ui, i ∈ F (xk)}

and Hk is an approximation to the matrix ∇2f(xk)
−1

.
We note that there is a case where αk

∗ in (2.3) becomes zero. For example,
we assume that F (xk) = {1, . . . , n} and that there exists i such that (gk)i >
0 , −(ZF (xk)Z

T
F (xk)

HkZF (xk)Z
T
F (xk)

gk)i > 0 and (xk)i = ui hold. From the

definition of αk
∗ in (2.3), we have αk

∗ = 0 and dk = 0. Thus xk does not
change, while xk is not a stationary point, because xk does not satisfy the
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third condition of (2.1). To avoid this phenomenon, we consider a modification
of the active-set strategy of Yuan and Lu. Specifically, we define the index set
T (xk) by

T (xk) = {i ∈ F (xk) |(
(xk)i = li, −(ZF (xk)(Z

T
F (xk)

HkZF (xk))Z
T
F (xk)

gk)i < 0, (gk)i < 0
)

or
(
(xk)i = ui, −(ZF (xk)(Z

T
F (xk)

HkZF (xk))Z
T
F (xk)

gk)i > 0, (gk)i > 0
)
}

and use −(Hk)ii(gk)i as a search direction for i ∈ T (xk), where (Hk)ii is the
(i, i) element of Hk. Note that if Hk is positive definite, (Hk)ii is positive.
Summarizing the above argument, we define the search direction dk by
(2.4)

(dk)i =


li − (xk)i for all i ∈ L(xk),
ui − (xk)i for all i ∈ U(xk),
−αk

new(ZF (xk)\T (xk)H̄kZ
T
F (xk)\T (xk)

gk)i for all i ∈ F (xk)\T (xk),

−αk
new(Hk)ii(gk)i for all i ∈ T (xk),

where

H̄k = ZT
F (xk)\T (xk)

HkZF (xk)\T (xk)(2.5)

and

αk
new = max{α | 0 ≤ α ≤ 1,

li ≤ (xk)i − α(ZF (xk)\T (xk)H̄kZ
T
F (xk)\T (xk)

gk)i ≤ ui, i ∈ F (xk)\T (xk),

lj ≤ (xk)j − α(Hk)jj(gk)j ≤ uj , j ∈ T (xk)}.(2.6)

It is significant that we suitably choose Hk in (2.5) for large-scale prob-
lems. Accordingly, we apply memoryless quasi-Newton methods to the active-
set method (2.4)–(2.6). In the following, we briefly introduce quasi-Newton
methods and memoryless quasi-Newton methods. Let Bk be an approximation
to ∇2f(xk) and set Hk = B−1

k . The matrix Bk or Hk is updated at each
iteration such that the secant condition

(2.7) Bksk−1 = yk−1 or Hkyk−1 = sk−1

holds, where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. As updating formulas
that satisfy (2.7), the DFP update and the BFGS update are well-known. They
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are respectively given by

Bk = Bk−1 −
Bk−1sk−1y

T
k−1 + yk−1(Bk−1sk−1)

T

sTk−1yk−1
(2.8)

+

(
1 +

sTk−1Bk−1sk−1

sTk−1yk−1

)
yk−1y

T
k−1

sTk−1yk−1

and

(2.9) Bk = Bk−1 −
Bk−1sk−1(Bk−1sk−1)

T

sTk−1Bk−1sk−1
+

yk−1y
T
k−1

sTk−1yk−1
.

In this paper, we focus on the Broyden family:

(2.10)


Bk = Bk−1 −

Bk−1sk−1s
T
k−1Bk−1

sTk−1Bk−1sk−1
+

yk−1y
T
k−1

sTk−1yk−1
+ ϕk−1vk−1v

T
k−1,

vk−1 =
√
sTk−1Bk−1sk−1

(
yk−1

sTk−1yk−1
− Bk−1sk−1

sTk−1Bk−1sk−1

)
,

where ϕk−1 ∈ R is a parameter. We can consider the Broyden family of the
inverse matrix version:
(2.11)

Hk = Hk−1 −
Hk−1yk−1y

T
k−1Hk−1

yTk−1Hk−1yk−1
+

sk−1s
T
k−1

sTk−1yk−1
+ ϕH

k−1wk−1w
T
k−1.

wk−1 =
√

yTk−1Hk−1yk−1

(
sk−1

sTk−1yk−1
− Hk−1yk−1

yTk−1Hk−1yk−1

)
.

The Broyden family includes the DFP update (2.8) and the BFGS update
(2.9), i.e., ϕk−1 = 0 (or ϕH

k−1 = 1 in (2.11)) corresponds to the BFGS update

and ϕk−1 = 1 (or ϕH
k−1 = 0 in (2.11)) corresponds to the DFP update. The

Broyden family with ϕk−1 ∈ [0, 1] is called the convex class. If ϕk−1 ∈ [0, 1], the
approximate matrix by the Broyden family is positive definite. In the convex
class, it is known that ϕk = 0 (namely, the BFGS formula) is suggested as
the best choice. On the other hand, Zhang and Tewarson [28] studied the
preconvex class, which means the Broyden family with ϕk−1 ∈ (ϕ∗

k−1, 0), where
ϕ∗
k−1 is a threshold. As same as the convex class, the preconvex class generates

positive definite approximate matrices. If ϕk−1 = ϕ∗
k−1, then the approximate

matrix degenerates. Zhang and Tewarson claimed that better choices than
the BFGS formula could be found in the preconvex class. Note that (2.10)
with ϕk−1 ∈ [0, 1] corresponds to (2.11) with ϕH

k−1 ∈ [0, 1] and (2.10) with

ϕk−1 ∈ (ϕ∗
k−1, 0) corresponds to (2.11) with ϕH

k−1 ∈ (1,∞). Thus, (2.11) with
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ϕH
k−1 ∈ [0, 1] and ϕH

k−1 ∈ (1,∞) is also called the convex class and the preconvex
class, respectively.

In the memoryless quasi-Newton methods, we focus on the updating formula
of Hk in (2.11). By replacing Hk−1 with the identity matrix I, (2.11) becomes

(2.12)


Hk = I −

yk−1y
T
k−1

yTk−1yk−1
+

sk−1s
T
k−1

sTk−1yk−1
+ ϕH

k−1wk−1w
T
k−1,

wk−1 =
√

yTk−1yk−1

(
sk−1

sTk−1yk−1
− yk−1

yTk−1yk−1

)
.

The quasi-Newton method based on (2.12) is called the memoryless quasi-
Newton method based on the Broyden family. We note that we can compute
the product of Hk and a vector v by using inner products of vectors and that
it is written by

Hkv = v −
yTk−1v

yTk−1yk−1
yk−1 +

sTk−1v

sTk−1yk−1
sk−1 + ϕH

k−1(w
T
k−1v)wk−1.

Therefore, we can directly apply this technique to large-scale optimization prob-
lems.

To establish the global convergence of the method, we now modify the above
memoryless quasi-Newton method by combining two types of secant conditions.
The first one is the spectral-scaling secant condition by Cheng and Li [5], and
the second one is given by Li and Fukushima [21]. The usual secant condition
(2.7) is based on the first order approximation of g, namely ∇2f(xk)sk−1 ≈
yk−1. Cheng and Li considered the previous relation multiplied by γk > 0,
namely, γk−1∇2f(xk)sk−1 ≈ γk−1yk−1 and gave the spectral-scaling secant
condition:

(2.13) Bksk−1 = γk−1yk−1 or Hkyk−1 =
1

γk−1
sk−1,

where γk > 0 is a spectral-scaling parameter. Note that Bk approximates
γk−1∇2f(xk) instead of ∇2f(xk) and that γk−1 is used for numerical stability.
In this paper, we choose γk−1 satisfying

γ ≤ γk−1 ≤ γ(2.14)

with positive constants γ and γ. Next, we incorporate Li-Fukushima’s modi-
fication into the spectral-scaling secant condition to preserve the positive def-
initeness of Bk (or Hk). Specifically, we use zk−1 := yk−1 + ζk−1sk−1 instead
of yk−1 in (2.13), and then the modified spectral-scaling secant condition we
consider is given by

Bksk−1 = γk−1zk−1 and Hkzk−1 =
1

γk−1
sk−1.
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The additional term ζk−1sk−1 can be regarded as a regularizer, and the param-
eter ζk−1 is chosen such that there exist positive constants ζ and ζ satisfying
the relations

(2.15) sTk−1zk−1 = sTk−1(yk−1 + ζk−1sk−1) ≥ ζ∥sk−1∥2

and

(2.16) 0 ≤ ζk−1 ≤ ζ,

where ∥ · ∥ denotes the l2 norm. Replacing yk−1 by γk−1zk−1 in (2.12), we have
a memoryless Broyden family based on the modified spectral-scaling secant
condition, as follows:

(2.17)


Hk = I −

zk−1z
T
k−1

zTk−1zk−1
+

1

γk−1

sk−1s
T
k−1

sTk−1zk−1
+ ϕH

k−1wk−1w
T
k−1,

wk−1 =
√
zTk−1zk−1

(
sk−1

sTk−1zk−1
− zk−1

zTk−1zk−1

)
.

As in (2.11), (2.17) with ϕH
k−1 = 1 corresponds to the memoryless BFGS for-

mula, and (2.17) with ϕH
k−1 = 0 corresponds to the memoryless DFP formula.

Also we call (2.17) with ϕH
k−1 ∈ [0, 1] and ϕH

k−1 ∈ (1,∞) the convex class and

the preconvex class, respectively. We emphasize that if ϕH
k−1 ∈ [0,∞), Hk in

(2.17) is positive definite. In this paper, ϕH
k−1 is chosen such that

0 ≤ ϕH
k−1 ≤ ϕ(2.18)

holds, where ϕ is a fixed positive constant.
Summarizing the above arguments, we propose a new active-set method for

solving problem (1.1). Specifically, we adopt the search direction (2.4)–(2.6) in
which we use (2.17) for Hk in (2.5). In (1.2), we choose a step size ηk satisfying
the Armijo condition by a backtracking technique. That is, for a constant
β ∈ (0, 1), find the smallest integer i = 0, 1, . . . such that

(2.19) f(xk + βidk) ≤ f(xk) + σβigTk dk

holds and set ηk = βi. We present our algorithm as follows.

Algorithm 1. (Active-set memoryless quasi-Newton method based on spectral-
scaling Broyden family) 　
Step 0: Given a starting point x0 ∈ K, and constants σ ∈ (0, 1) and

β ∈ (0, 1). Set k = 0.
Step 1: Compute the search direction dk in (2.4)–(2.6) by using Hk in (2.17).
Step 2: If a stopping criterion is satisfied, we stop the algorithm.
Step 3: Find a step size ηk by (2.19).
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Step 4: Set xk+1 = xk + ηkdk.
Step 5: Set k := k + 1 and go to step 1.

Now, we give the global convergence property of the proposed method. For
this purpose, we make the following assumptions.

Assumption 1. The level set L0 = {x ∈ Rn : f(x) ≤ f(x0)} ∩K is compact.

Assumption 2. The gradient g of f is Lipschitz continuous on L0, namely,
there exists a positive constant L such that

(2.20) ∥g(u)− g(v)∥ ≤ L∥u− v∥ ∀u, ∀v ∈ L0.

Assumption 3. For all k ≥ 1, sk−1 and zk−1 are linearly independent.

We can obtain the largest and smallest eigenvalues of (2.17) from the result
in Al-Baali [1]. Estimating the eigenvalues, we have the following proposition,
which implies that Hk in (2.17) is uniformly positive definite and bounded
above.

Proposition 2.1. Suppose that Assumptions 1–3 hold and (2.14), (2.15) and
(2.18) are satisfied. Then, there exist positive constants m and M such that
Hk in (2.17) satisfies

m∥x∥2 ≤ xTHkx ≤ M∥x∥2 ∀x ∈ Rn.

The next proposition gives a necessary and sufficient condition for xk to be
a stationary point of (1.1).

Proposition 2.2. Let the sequence {xk} be generated by Algorithm 1. Suppose
that all assumptions of Proposition 2.1 hold. Then xk is a stationary point of
(1.1) if and only if dk = 0.

The following lemma is given by Facchinei et al. [10] for a general iterative
method (1.2) and plays an important role in showing the global convergence.

Lemma 2.3. Let the sequence {xk} be generated by (1.2), where ηk is computed
by (2.19). Suppose that Assumption 1 holds and that there exist scalars µ > 0
and p > 1 such that, for every k = 0, 1, . . . , the search direction dk ∈ Rn

satisfies the following conditions:

a. xk + dk ∈ K,
b. gTk dk ≤ −µ∥dk∥p,
c. dk = 0 if and only if xk is a stationary point of (1.1),
d. if xk → x̄ and dk → 0, then x is a stationary point of (1.1).

Then the sequence {xk} has at least an accumulation point and every accumu-
lation point of this sequence is a stationary point for (1.1).
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Using Lemma 2.3, we have the global convergence theorem of our proposed
method.

Theorem 2.4. Let the sequence {xk} be generated by Algorithm 1. Suppose
that if xk → x̄, then F (xk) = {i |li < (x̄)i < ui} holds for k sufficiently
large. Suppose that all assumptions of Proposition 2.1 hold. Then the sequence
{xk} has at least an accumulation point and every accumulation point of this
sequence is a stationary point for (1.1).

3. Numerical experiments

In this section, we report numerical results to investigate numerical per-
formance of our method. In CUTEst [14], there are 65 bound constrained
optimization problems. However, the initial points of four problems are not in
the feasible regions. Therefore, we removed these problems and tested 61 prob-
lems. All codes were written in Python 3.7 with PyCUTEst [12]. PyCUTEst
is a Python interface to CUTEst. They were run on a PC with 3.5GHz Intel
Core i5, 32.0 GB RAM memory and Linux OS Ubuntu 16. We stopped the
algorithm if ∥PK(gk)∥∞ < 10−5 held or if CPU time exceeded 600 seconds or
if a numerical overflow occurred. Here, PK(gk) means

PK(gk) =

 min(0, (gk)i) (xk)i = li,
(gk)i li < (xk)i < ui,
max(0, (gk)i) (xk)i = ui.

By taking into account (2.1), PK(gk) = 0 implies that xk is a stationary point.

We set parameters to be ai(x) = bi(x) = 10−6, γk−1 =
sTk−1zk−1

zTk−1zk−1
, σ = 10−4,

β = 0.5 and

(3.1) ζk−1 =


0, if sTk−1yk−1 ≥ ζ∥sk−1∥2

ζ −
sTk−1yk−1

∥sk−1∥2
, otherwise,

where we used ζ = 0.01. When sTk−1yk−1 ≥ ζ∥sk−1∥2 holds, ζk−1 in (3.1)
obviously satisfies (2.15) and (2.16). Otherwise, we have

sTk−1zk−1 = sTk−1(yk−1 + ζk−1sk−1) = sTk−1yk−1 + ζ∥sk−1∥2 − sTk−1yk−1

= ζ∥sk−1∥2

and

ζk−1 = ζ −
sTk−1yk−1

∥sk−1∥2
> 0.
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Also, from (2.20), we get

ζk−1 = ζ −
sTk−1yk−1

∥sk−1∥2
≤ ζ +

L∥sk−1∥2

∥sk−1∥2
= ζ + L.

Therefore, ζk−1 in (3.1) satisfies (2.15) and (2.16).
To compare numerical performance between the tested methods, we adopted

the performance profiles based on the CPU time by Dolan and Moré [8]. In [8],
the performance profile is explained as follows.

For ns solvers and np problems, the performance profiles P :
R → [0, 1] is defined as follows: Let P and S be the set of
problems and the set of solvers, respectively. For each problem
p ∈ P and for each solver s ∈ S, we define tp,s = CPU time
required to solve problem p by solver s. The performance ratio
is given by rp,s = tp,s/minstp,s. Then, the performance profile
is defined by P (τ) = 1

np
size{p ∈ P|rp,s ≤ τ}, for all τ ≥ 1,

where size A, for any set A, stands for number of the elements
in that set. Note that P (τ) is the probability for solver s ∈ S
such that a performance ratio rp,s is within a factor τ ≥ 1 of
the best result. The left side value of the performance profile,
namely P (1), gives the percentage of the test problems for
which a method is the best result. The right side value, namely
P (τ) with sufficient large τ , gives the percentage of the test
problems that are successfully solved by each of the methods.
The top curve is the method that solves the most problems in
a result that is within a factor τ of the best result.

To investigate the difference of Yuan-Lu’s active-set strategy (2.2)–(2.3) and
the modified strategy (2.4)–(2.6), we tested the methods given in Table 1.

Table 1. Tested methods with or without the modification
method

Method 1 Algorithm 1 (ϕH
k−1 = 1.0)

Method 2 Algorithm 1 (ϕH
k−1 = 1.0) with (2.2)–(2.3) instead of (2.4)–(2.6)



ACTIVE-SET MEMORYLESS QUASI-NEWTON METHOD 157

Figure 1. Performance profiles of Table 1

In Figure 1, Method 1 is clearly superior to Method 2. From this fact, we
can see that the modification of the direction for i ∈ T (xk) works well. Actu-
ally, Method 1 could successfully solve 18 problems which could not be solved
by Method 2. For these problems, Method 2 stopped even if xk was not a
stationary point.

Next, we tested our method with the parameter ϕH
k−1 = 0 (DFP), 0.25, 0.5,

0.75, 1 (BFGS), 1.25, 1.5 and 1.75. Note that the method with ϕH
k−1 = 0, 0.25,

0.5, 0.75 and 1.0 is the convex class and that with 1.25, 1.5 and 1.75 is the
preconvex class (see Table 2).

Table 2. Tested methods with convex and preconvex classes
method active-set strategy class

ϕH
k−1 = 0 (DFP) (2.4)–(2.6) convex

ϕH
k−1 = 0.25 (2.4)–(2.6) convex

ϕH
k−1 = 0.5 (2.4)–(2.6) convex

ϕH
k−1 = 0.75 (2.4)–(2.6) convex

ϕH
k−1 = 1.0 (BFGS) (2.4)–(2.6) convex

ϕH
k−1 = 1.25 (2.4)–(2.6) preconvex

ϕH
k−1 = 1.5 (2.4)–(2.6) preconvex

ϕH
k−1 = 1.75 (2.4)–(2.6) preconvex
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Figure 2. Performance profiles of Table 2

In Figure 2, ϕH
k−1 = 1.0 (BFGS) is better than the other methods. On the

other hand, ϕH
k−1 = 0 (DFP) does not perform well. In the convex class, the

numerical performance becomes better as ϕH
k−1 is close to 1.0. In the preconvex

class, we can see that numerical performance becomes better as ϕH
k−1 becomes

larger. The convex class is better than the preconvex class.

4. Conclusion

We have proposed an active-set memoryless quasi-Newton method based on
the spectral-scaling Broyden family for bound constrained optimization prob-
lems and have shown its global convergence. The modification of the search
direction for i ∈ T (xk) gives a better effect on numerical performance.
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[10] F. Facchinei, J. Júdice and J. Soares, An active set Newton algorithm for large-scale

nonlinear programs with box constraints, SIAM Journal on Optimization 8 (1998), 158–

186.

[11] F. Facchinei and S. Lucidi, A class of penalty functions for optimization problems with
bound constraints, Optimization 26 (1992), 239–259.

[12] J. Fowkes and L. Roberts, PyCUTEst: Python interface to the CUTEst optimization test

environment, https://jfowkes.github.io/pycutest/_build/html/index.html, (last
access 2020/3/12).

[13] W. Glunt, T. L. Hayden and M. Raydan, Molecular conformations from distance ma-
trices, Journal of Computational Chemistry 14 (1993), 114–120.

[14] N. I. M. Gould, D. Orban and Ph. L. Toint, CUTEst: a Constrained and Unconstrained

Testing Environment with safe threads for mathematical optimization, Computational
Optimization and Applications 60 (2015), 545–557.

[15] W. W. Hager, B. A. Mair and H. Zhang, An affine-scaling interior-point CBB method

for box-constrained optimization, Mathematical Programming 119 (2009), 1–32.
[16] W. W. Hager and H. Zhang, A new active set algorithm for box constrained optimization,

SIAM Journal on Optimization 17 (2006), 526–557.

[17] O. Härkeg̊ard, Efficient active set algorithms for solving constrained least squares prob-
lems in aircraft control allocation, in: Proceedings of the 41st IEEE conference on

decision and control, Las Vegas, NV. December, 2002, pp. 1295–1300.
[18] S. Babaie-Kafaki, On optimality of the parameters of self-scaling memoryless quasi-

Newton updating formula, Journal of Optimization Theory and Application 167 (2015),

91–101.
[19] D. Kim, S. Sra and I. S. Dhillon, Tackling box-constrained optimization via a new pro-

jected quasi-Newton approach, SIAM Journal on Scientific Computing 32 (2010), 3548–

3563.
[20] C. X. Kou and Y. H. Dai, A modified self-scaling memoryless Broyden-Fletcher-

Goldfarb-Shanno method for unconstrained optimization, Journal of Optimization The-

ory and Applications 165 (2015), 209–224.
[21] D. H. Li and M. Fukushima, A modified BFGS method and its global convergence in non-

convex minimization, Journal of Computational and Applied Mathematics 129 (2001),
15–35.



160 H. NISHIO, S. NAKAYAMA, Y. NARUSHIMA, AND H. YABE

[22] A. U. Moyi and W. J. Leong, A sufficient descent three-term conjugate gradient method
via symmetric rank-one update for large-scale optimization, Optimization 65 (2016),
121–143.

[23] S. Nakayama, Y. Narushima and H. Yabe, A memoryless symmetric rank-one method
with sufficient descent property for unconstrained optimization, Journal of the Opera-

tions Research Society of Japan 61 (2018), 53–70.
[24] S. Nakayama, Y. Narushima and H. Yabe, Memoryless quasi-Newton methods based on

spectral-scaling Broyden family for unconstrained optimization, Journal of Industrial
and Management Optimization 15 (2019), 1773–1793.

[25] D. F. Shanno, Conjugate gradient method with inexact searches, Mathematics of Oper-
ations Research 3 (1978), 244–256.

[26] S. Sra, S. Nowozin and S. J. Wright (eds.), Optimization for Machine Learning, The
MIT Press, Cambridge, 2012.

[27] G. Yuan and X. Lu, An active set limited memory BFGS algorithm for bound constrained
optimization, Applied Mathmatical Modelling 35 (2011), 3561–3573.

[28] Y. Zhang and R. P. Tewarson, Quasi-Newton algorithms with updates from the preconvex

part of Broyden’s family, IMA Journal of Numerical Analysis 8 (1988), 487–509.

H. Nishio

Tokyo University of Science, Japan

S. Nakayama

Chuo University, Japan
E-mail address: shummin@kc.chuo-u.ac.jp

Y. Narushima
Keio University, Japan

E-mail address: narushima@ae.keio.ac.jp

H. Yabe

Tokyo University of Science, Japan

E-mail address: yabe@rs.tus.ac.jp


