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APPROXIMATION OF FIXED POINTS IN COMPLETE
GEODESIC SPACES AND COEFFICIENT CONDITIONS

HIROYUKI HIRONO AND YASUNORI KIMURA

ABSTRACT. In this paper, we show a strong convergence theorem for the
Halpern iteration procedure in a complete CAT(1) space with two quasi-
nonexpansive A-demiclosed mappings and one nonexpansive mapping.
‘We consider the assumptions for the coefficient of convex combination in
detail.

1. INTRODUCTION

Halpern type method is a technique to approximate a fixed point of a nonlin-
ear mapping and has been studied by many mathematicians in various spaces.
In 1992, Halpern type iteration with a nonexpansive mapping was obtained by
Wittmann [12] in a Hilbert space. In 2010, Saejung [9] proved a convergence
theorem in a complete CAT(0) space. In 2013, Kimura and Sat6 [8] proved
a convergence theorem with a single mapping and a single anchor point in a
complete CAT(1) space.

In 2016 Wada [11] proved a strong convergence theorem for two kinds of
mappings in a complete CAT(0) space:

Theorem 1.1. Let X be a Hadamard space. Assume that R: X — X is a
nonexpansive mapping, S, T: X — X are quasinonexpansive and A-demiclosed
mappings, and F' = F(R)NF(S)NF(T) # 0. Letu € X. We define an iterative
scheme {x,} by

Sp = YnlU S¥) (1 - ’Yn)an

Tnp+1 = Cpdp @ (1 - an)R(ﬁnsn S2) (1 - Bn)t’ﬂ>
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for alln € N, where {a,,} is a sequence in 10, 1] such that

a, — 0, Z a, = 00,
n=1
and {Bn}, {yn} belong to [a,b] C ]0,1[. Then, {x,} converges to the nearest
point of F to u.

Further, Kimura et al. [6] proved this result in the setting of complete
CAT(1) spaces:

Theorem 1.2. Let X be a complete CAT(1) space with M = diam X <
w/2. Let R: X — X be a nonexpansive mapping and S,T: X — X strongly
quasinonezpansive and A-demiclosed mappings from X into itself F = F(R)N
F(S)NF(T) # 0. Forr €]0,1/2], let {an,} C [r,1 —7] C]0,1[,{Bn}, {7} C
10,1[ be real sequences satisfying B, — B € 10, 1],y — 0, and > " v, = 00.
Define {x,} C X by x1,u € X and

tn =u® (1 —,)Txz,

Tnt1 = QpZp B (1 — ap) Ry,
for alln € N. Then {x,} converges to Pru € F.

In this paper, we consider the case that the coefficient {3, } in the Halpern
type iterative scheme for three mappings in Theorem 1.2 converges to 0 or 1,
and we prove that {x,} converges to Pp(rynr(ryu if 8, — 0 and converges to
PF(S)ﬁF(R)U if Bn — 1.

2. PRELIMINARIES

Let X be a geodesic metric space. For z,y € X, a mapping v, : [0,] = X
is called a geodesic with endpoints z,y if v, , satisfies v; ,(0) = ,72,4(1) =y
and d(Vs,y(8), Vz,y(t)) = |s — t| for all s,¢ € [0,{]. The image [x,y] of v, , is
called a geodesic segment joining x and y. If a geodesic with endpoints z,y
exists for any z,y € X, then we call X a geodesic metric space. Moreover, if a
geodesic exists uniquely for each x,y € X, then we call X a uniquely geodesic
space.

Let X be a uniquely geodesic metric space such that d(v,v") < 7/2 for all
v,v" € X. A geodesic triangle is defined by A(z,y, 2) = [z,y] U [y, 2] U [z, z].
Let S? be the two-dimensional unit sphere in R3. For Z,7,% € SZ, a triangle
A(Z,7,%) in S? is called a comparison triangle for A(x,y,z) if ds:(Z,9) =
d(x,y),ds2(7,2) = d(y,2),dg2(Z,T) = d(z,z). A point p € [g,z] is called a
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comparison point for p € [y, 2] if d(y,p) = d(g,p). If, for any p,q € A(x,y, 2)
and their comparison points p,q € A(Z, %, 2), the inequality d(p, q) < ds2(p, )
is satisfied for all triangles in X, then X is called a CAT(1) space.

Let X be a geodesic metric space and {z,} C X a bounded sequence. For
r € X, we put r(z, {z,}) = lim,, o d(z,7,) and r({z,}) = infrex 7(z, {7, }).
If there exists © € X such that r(x,{z,}) = r({z,}), we call  an asymp-
totic center of {x,}. The set of all asymptotic centers of {x,} is denoted by

AC{z,}. If 2 is a unique asymptotic center of all subsequences of {xz,}, then
we say that {z,} is A-converges to xy which is denoted by xz, A zo. Let
X be a CAT(1) space and T a mapping from X into itself. If x,, A xo and
limy, 00 (T, ) = 0 imply a9 € F(T), then T is said to be A-demiclosed.

Let X be a metric space. A mapping T: X — X is nonexpansive if the
inequality d(Tz,Ty) < d(x,y) is satisfied for all z,y € X. The set of fixed
points of T is denoted by F(T) = {# € X : Tz = z}. Further, a mapping
T: X — X with F(T) # 0 is said to be stongly quasinonexpansive if, for any
z € X and z € F(T), d(Tz,z) < d(z,z) and if, for any bounded sequence
{zn} € X and z € F(T), limy, o0 cosd(xy,2)/ cosd(Tx,,z) = 1, we have
d(xp, Tzy,) — 0.

3. TOOLS FOR THE MAIN RESULT

In this section, we introduce some tools for the main theorem.

Lemma 3.1 ([1], [10]). Let {an} C [0,00[,{dn} C R and {v,} C ]0,1[ such
that Y07 | vn = o0o. Define a set ® = {¢ : N — N, nondecreasing and
lim; 00 (i) = 00}. Suppose that

an+1 S (]- - ’Yn)an + ’Yndn
for any n € N. If lim;_, deiy <0 for any ¢ € ® satisfying lim; , (agy(it1) —
ay(iy) > 0, then limy, o0 an = 0.
Lemma 3.2 (Kimura and Satd [8]). Let X be a complete CAT(1) space such
that d(v,v") < /2 for every v,v' € X. Let a € [0,1] and u,y,z € X. Then

1 —cosd(au ® (1 — a)y, 2)

<(1-p8)(1—cosd(y,2))+ 3 (1 cosd(u, 2) ) |

~ sind(u, y) tan((3)d(u, y)) + cos d(u, )

where
sin((1 — a)d(u, y))

— u

8= sin d(u, y)
o (u=vy).

RN

Y),
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Lemma 3.3 (Kimura, Nakagawa and Wada [6]). Let {s,} and {t,} C]—00,0].
Suppose that im,, o (s, + tn) = 0. Then lim,— 00 85, = limy, o0 £, = 0.

Lemma 3.4 (He, Fang, Lopez, and Li [4]). Let X be a complete CAT(1) space
and u € X. If a sequence {x,} in X satisfies that lim,, o d(u,x,) < /2 and
Tn Age X, then

lim d(u,z,) > d(u,x).

n—oo
Lemma 3.5 (Hirono and Kimura [5]). Let X be a complete CAT(1) space such
that M = diam X < w/2. Let {d,} C [0,7/2[,{an} C 10,1 and {B8,} C]0,1]
satisfying Y o, By = oo. Then

Z(anan + (1= ap)m) = o0,
n=1
where
sin(1 — B,)d,
1\ PFnim
on = sind,, (dn #0),
ﬂn (dn = 0)7
sin(l — 3,)d,
A O
Tp = sind!, (d, #0),
B (d, = 0).

Proof. Let n € N. If d,, = 0, then
On = Bn > Bncos M.
If d,, # 0, then
_ sind, — sin(1 — 5,,)d,,

sind,,

2 Bn . DBn
Snd. cos ((1 — 2) dn> sin 7dn
2 B n .
> Lo _
2 Snd. cos <<1 2 ) dn> sind,
By, cos (1 - ﬂ;) d,,

> Bncosdy,
> (3, cos M.
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Similarly, we also have 7, > ,, cos M for any n € N. Hence we get

anon + (1 — @) > apfncos M + (1 — ay,) B, cos M = f3,, cos M
for any n € N. Thus, we obtain Y -, (a0 + (1 — o) 75,) = 0. O
Lemma 3.6 (Kimura, Nakagawa and Wada [6]). Let {s,} and {t,} C [0, 00].

then

limsup(s, - t,) > lim s, - lim t,.
n— 00 n—00 n— 00

Lemma 3.7 (Kimura, Nakagawa and Wada [6]). Let {d,} C [0,7/2[ and
t €10,1[. Suppose
m sin(td,) + sin((1 — t)d,,)

n—o0 sind,,

=1

Corollary 3.8 (Kimura and Satd [8]). Let A(z,y, z) be a geodesic triangle in
a CAT(1) space such that d(x,y) +d(y, z) +d(z,x) < 2m. Letu =tx® (1 —1)y
for some t € [0,1]. Then

cosd(u,z) > tcosd(z,z) + (1 —t)cosd(y, z).

Theorem 3.9 (Kimura and Satd [7]). Let A(z,y, 2) be a geodesic triangle in
a CAT(1) space such that d(z,y)+d(y,z) +d(z,2) < 2n. Letu =tz ® (1 —t)y
for some t € [0,1]. Then

cosd(u, z)sind(z,y) > cosd(x, z) sintd(z,y) + cosd(y, z) sin(1l — t)d(x,y).

Theorem 3.10 (Espinola and Ferndndez-Leén [3]). Let X be a complete
CAT(1) space and {x,} a sequence in X. If r({z,}) < 7/2, then the following
hold.

(i) AC({xn}) consists of exactly one point;

(ii) {xn} has a A-convergent subsequence.

4. MAIN RESULT

Theorem 4.1. Let X be a complete CAT(1) space with M = diam X <
7w/2. Let R: X — X be a nonexpansive mapping and S,T: X — X strongly
quasinonezpansive and A-demiclosed mappings. For r € 10,1/2[, let {an} C
[r,1 —7] C]0,1[,{Bn}, {1} C ]0,1[ be real sequences satisfying B, — 0 or 1,
v =0 and Y, yn = 0. Define {z,,} C X byz1 =u € X and

Sn =Y ® (1 — v,) Sz,
Tn+1 = Opdy ©® (1 - an)Ryn
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for alln € N. Then

o if F(T)NF(R) #0,F(S)

S) #0, and B, — 0 then x,, — Pp(rynr(r)Ys
o f F(SYNF(R)#D,F(T) #0

”
#0, and B, — 1 then x, — Pp(s)nr(r)U-
Proof. We consider the case that F

Put p = Pr(mynr(R)ts

(T) N F(R) # 0,F(S) # 0, and B, — 0.

an =1 —cosd(zy,p),

1 cos d(u, p)
" sind(u, Sxy,) tan(%d(u, Sxy,)) + cos d(u, Sxy,)’
B cos d(u, p)
= sind(u, Ty, tan(%d(u, Txy,)) 4 cos d(u, Tzy,)’
sin(1 — v,)d(u, Szy,)
Op = B sind(u, Szy,) (u# 52n),
Tn (u= Szn),
sin(1 — v,)d(u, Txy,)
Th = 1= sind(u, Tzy,) (u# Tan),
In (U = Txn)

for n € N. Since 8,0, + (1 — B,)7, > 0 for any n € N, by Lemma 3.2 and
Corollary 3.8, we have the following inequality:
apt1 =1 — cosd(anx, ® (1 — o) Ryn, p)
<1—(apcosd(zy,p)+ (1 — a,)cosd(Ryn,p))
< apan + (1 — ay)(1 — cosd(yn,p))
< anpan + (1 — an)(1 = (B cosd(sn,p) + (1 — B,) cosd(t,,p)))
< apan + (1 — an)(Bn((1 — op)an + onbn) + (1 — B,) cosd(tn, p))
= (an + (1 =) (Bn(l —05) + (1 = Bn)(1 — 70)))an
+ (1 = an)(Buonbn + (1 = Brn)Tncn)
=1 =1 =0an)(Bnon+ (1= Bn)Tn))an

n nbn 1 — Mn)intn
+ (1 B an)(ﬁnan + (1 a 577,)7—71)5 /gnan i El - gniinc ’

Note that oy, 1 —a,, < 1—r. To apply Lemma 3.1, we will show the following;:

(1) Z(Bnan + (1 - Bn)Tn) = 00,

n=1




APPROXIMATION OF FIXED POINTS IN COMPLETE GEODESIC SPACE 79

(i) Ty (@o(i)%(i)b p(i) T (1= Bo@) o) Coti )) <0
Be(i) 0oy + (1= Bo@)To(i)
for any nondecreasing functions ¢ : N — N satisfying lim; . ¢(i) = oo
and hml_mo(ag,( Y+l — aw(i)) > 0.

For (i), we obtain Y, (8,0, + (1 — 8,)7s) = 0o by Lemma 3.5.
Next we consider (ii). Let n; = ¢(¢) for any i € N. Then

0 < lim (an,+1 — an,)

1—00

= lim (cos d(zy,,p) — cosd(zp,,,,p))
1—00

= lim (cosd(xy,,p) — cosd(am,Tn; B (1 — on,)RYn,, D))
71— 00

< lim (cosd(zp,;,p) — (an, cosd(xn,,p) + (1 — ay;) cosd(Ryn,,p)))
1—00

(cosd(xp,,p) — cosd(Ryn,,p))

< hm 1 — ap,)(cosd(zn,,p) — cosd(yn,,p))

1= an,)(cosd(@n,, p) = (Bn, cosd(sp,,p) + (1 = Bn,) cosd(tn,,p)))
(B, (cosd(xp,,p) — cosd(sn,,p))

+ (1 = Bn;)(cos d(zn,, p) = cos d(tn;, p)))
< him (1 - anz)(/ﬁnl (COS d(xnﬂp) - (’yni cos d(uap)—’_(l - ’Vni) cos d(sxnmp)))

+ (1 - ﬂni)(COS d(xni?p) - (’7n7 cos d(u,p) + (1 - 'Vm) €os d(Txmap))))
lim (1 — oy, ) (08 (@, p) — cos (T, p))

17—+ 00
lim (1 — 7)(cos (2, p) — cos d(Tz,,,p))
17— 00

< lim (1 — 7)(cos d(xn,,p) — cosd(Txn,,p))

1—00

<0.

(
(
(
(
= lim (1 — ap,
(
(
lim (
lim (

)
)
1= o, )(cosd(zp,, p) = cos d(Bn, cos d(sn,, p)+(1 = Bn,) cos d(tn,, p)))
)
)

IA

Therefore, we get

lim (cos d(xy,,p) — cosd(Txy,,p)) = 0.

17— 00
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Further, we have

cosd(Txyp,,p) — cosd(xn,,p)

cosd(zy,,p) |
cosd(Txn,,p)|

cosd(Tzy,,p)

1
= cosd(Trn D) |cosd(Txy,,p) — cosd(xn,, D)

IN

7 |cos d(Txy,,p) — cosd(xy,,p)|

— 0 (i = 00).

Therefore, we get

cos d(Zp,,p)

————=1.

i—oo cosd(Txp,,p)

Since T is strongly quasinonexpansive, we get
(4.1) lim d(x,,, Tx,,) = 0.

i—00
Further, by Corollary 3.8, and Theorem 3.9, we obtain

cos d(Yn,,p) = cos d(Bn,sn;, ® (1 — Bn,)tn,,P)
> B, co8d(sn,,p) + (1 — Bn,) cosd(tn,, p)
= B, (cos d(Yn,u @ (1 = Vn,) ST, , p)
+ (1 = ;) cosd(yn,u® (1 = vn, )T, , p)
2 B, (Y, cosd(u, p) 4 (1 — ;) cos d(zn,, p))
+ (1= Bn,) (9, cos d(u, p) + (1 = yn,) cos d(zn,, p))
> B, (Yn; cosd(u,p) + (1 = ;) cos d(Szy,, p))
+ (1= Bn,) (9, cosd(u, p) + (1 = yn, ) cos d(an,, p))
= Yy, cos d(u, p)
+ (1 — Yn, )(Bn, cosd(Sxp,,p) + (1 — Br,) cosd(zn,, p)).

N — N
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Further, by Theorem 3.9 and Corollary 3.8, we obtain
cos d(Xp,+1,p) sind(n,, Ryn,)
> cosd(xn,,p) sin ay,, d(xy,, Ryn,) + cos d(Ryn,,p) sin(l — ay, )d(x,, , Ryn,)
> co8d(Xn,,p) Sin &y, d(Xp,, Ryn,) + €08 d(yn,, p) sin(l — ap, )d(zn,, Ryn,)
> cosd(zp,,p)sinan,d(Tn,, Ryn,) + (Yn, cos d(u, p)
+ (1 = 70,)(Bn, cos d(Sz,, p)
+(1- ﬁn) cosd(zy,,p))sin(l — a,,)d(xn, , Ryn,)
= Y, sin(ap, )d(zp,, Ryn, ) (cos d(u, p)
— (Bn, cosd(Sxn,,p) + (1 — Br,) cosd(zn,,p)))
+ (cos d(@n,, p)(sin v, d(Tn,, Ryn,) + (1 — Br,)sn, (1 — an)d(@n,, Ryn,))
+ B, cosd(Sxy,,p)sin(l — ay,)d(xn, , Ryn, )-
Therefore, we get
1>, sin(1 - o, )d(@n,; Ryn,) cosd(u,p) — By, cosd(San,,p)
’ sind(xy,, Ryn,) cos d(Tn,,,,p)
+ (1 = Bp,) cosd(xn,,p)))

CcoS d(mnl 7p) SiH O‘?hd(xnl ) Rynq) + (1 B ﬂnl) Sin(l — ant)d(an ’ Ryﬂ7)

cos d(Xn,1+1,D) sind(xy,, Ryn,)
Bn, cosd(Sxzy,,p) sin(l — ap,)d(zn,, Ryn,)
cos d(Tn,,,,p) sind(xn,, Ryn,)

sin(1 — r)d(zn,, Ryn,)

" | cos d(u,p) — (Bn,; cosd(Szp,,p) + (1 — By,) cosd(xy,,p))]

Z —Vny

cos M
cosd(zp,,p) st d(Tn,, Ryn,) + (1 — Bn,)sin(l — oy, )d(zn,, Ryn,)
cos d(Tn,,,,P) . sind(xy,, Ryn,)
B, cosd(Sxy,,p) sin(l — ay,)d(xn,, Ryn,)
cosd(xn,,p) . sind(xy,, Ryn,)

> o (1= 1) d(@n,, Ryn,)  sin(l —r)d(zn,, Ryn,) 2
- sind(xn,, Ryn;,) (1 —r)d(xn,, Ryn,) cosM
cosd(wp,,p)  sinan,d(@n,, Ryn,) + (1 — Bn,) sin(1 — an,)d(@p,, Ryn,)
cosd(xy,,,,p) sind(zy,, Ryn,)
Bn; cosd(Sxy,,p) sin(l — ayp,)d(zn,, Ryn,)
cosd(zp,,p) . sind(zy,, Ryn,)
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Since 3, — 0, v, — 0 and lim,; , _(cosd(xy,,p) — cosd(xy,,,,p)) > 0, we get
cosd(xn,,p)
cosd(Zn,,,,P)

sin a,, d(@n,, Ryn,) + (1 — Br,) sin(l — ay, )d(zp,;, Ryn,)
sin d(xﬂz ) Ryn1 )

1> lim

11— 00

> lim cosd(xn,,p)
i—o0 COS d(xn,-,+1 ) p)
o sin ap, d(Zn, s Ryn,) + (1 — By, ) sin(l — ap, )d(xn,;, Ryn,)
i—00 sind(zp;, Ryn,)
> T on amd(a:ni,Ry,.”) +sin(1 — ay, )d(@n,, Ryn,)
i—00 sind(xy,, Ryn,)
Z m Qp, S d(xnzv Rynq) + (1 _ O‘m) Sin d(l’m ) Rynz)
i—00 sind(zp,, Ryn,)
=1.

Since {ay, } C [r,1 —r] and by Lemma 3.7 we have
lim d(z,,, Ry,,) = 0.
11— 00
It follows that
AW Trp,) = d(Bn;5n; © (1 — B, )tn,, Tn,)
< d(ﬁmsm D (1 - ﬁni)t"i’tni) + d(tﬂwam)
= ﬁn, d(sm s tm) + 7nid(u7 sz)
T T
Therefore

lim d(yn,, Txn,) = 0.

1—00

It also follows that

d(zp,, RTxy,) < d(zpn,, Ryn,) + d(Ryn,, RTx,,)
< d(xn,, Ryn,) + d(yn,, Txpn,) — 0.
We get
lim d(z,,, RTx,,) = 0.
11— 00
Further,

d(xpn,,p) < d(xpn,, RTxy,) + d(RTxy,,p) < d(zp,, RTZy,) + d(Txy,, p).
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Moreover,
0 < |cosd(xy,,p) — cosd(Txn,,p)|
d(zn,;,p) + d(T2n;,p) | o A0, D) = d(T'Tn,, D)
2 2
d(xp,, RTzy,)
2

= 2sin

< 2sin M sin
—0 (1 = oc0).

Therefore, we get

(4.2) d(xp,, Rty,) < d(xpn,, RT2y,) + d(RTzy,, Rxy,)
< d(xn,, RTzy,;) + d(Txp,, Tn,)
— 0.

Further, by taking a subsequence again, we may asuume that subsequence
{zx} of {ZEn]} satisfies z;, 2 2o € X. Then by (4.1) and A-demiclosedness
of T, we get zy € F(T). Since R is nonexpansive, it follows from (4.2) that
zo € F(R). Moreover, by Lemma 3.4, there exist § > 0 and subsequennce {zy, }
of {zx} such that

0 = lim d(u, z,,) = lUm d(u,zr) > d(u, o) > d(u,p).

l—=o0 k— o0

Also, we obtain
lim d(u, z,) < lim (d(u, Tz,) + d(Tzk,, 2,)) = lim d(u, Tz,)
l—o0 l—o0 ) l—o0

< lim (d(u, zx,) + d(z,, Tzr,)) = lim d(u, zx, ).
l—o0 l—o0

Therefore, we obtain lim;_, o d(u, zk,) = limy_oo d(u, Tzg,). We write {ax},
{o}, {7}, {br}, {ck} as subsequences of {an}, {on},{m},{bn},{cn} corre-

sponding to a subsequence {z} of {z,,}. Then, we obtain that
m Bnlo'nlbnl + (1 - ﬁni)TniCni Bnij Unij bnij + (1 - Bnij )Tnij an‘j
Brion; + (L= Bn,)Tn, BnLJ Oni, +(1- ﬁnba )Tnij

17— 00

= lim
Jj—o0

5nij On; bmj + (1 - 571” )Tnij Cnij )
5Ttij Unij + (1 - Bnij )Tnij

— lim <5k0kbk + (1 - ﬁk)%%)

k—o00 ﬁkak + (]. — ﬂk)’i'k

I Brorbr + (1 — Br)Trcy
= 11m

fi— o0 Brok + (1 — Br) T
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. Bklaklbkl + (1 - ﬁk‘[)Tklck[
= lim
l—o00 5]610/61 —+ (1 - Bkl)’rkl
= lim cg,
— 00
_ cosd(u,p)
B cos 0
<0.
Thus, we get
Tm BT Vo) + (1 = Boo(i)) To(i) Co i) <.
i—o0 Bo@ (i) + (1= Bo(i) T (i)

By Lemma 3.1, we get lim,,_, oo a, = 0. It implies that {z,} converges to p. In
a similar fashion, we have {z,,} converges to Pr(s)np(ryu if 8, — 1. Hence we
obtain the desired result. O

The following theorem generalizes Theorem 1.2 and Theorem 4.3. The limit
of an iterative sequence can be represented by a single mapping.

Theorem 4.2. Let X be a complete CAT(1) space with M = diam X <
w/2. Let R: X — X be a nonexpansive mapping and S,T: X — X strongly
quasinonexpansive and A-demiclosed mappings from X into itself. For r €
10,1/2[, let {ap} C [r,1 — 7] C |0,1[,{Bn}, {7} C ]0,1] be real sequences
satisfying By, — [0,1], vn — 0 and >_.° v, = oco. Define {z,} C X by
r1=u € X and

Sn =Yt ® (1 — ) Sxy

tn =u® (1 — )Tz,

Yn = PnsSn @ (1 - Bn)tn

Tnt+1 = ﬁnmn ©® (1 - 5H)Ryn
for alln € N. Then {x,} converges to Ppgse—p)T)nr(r)U-
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