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ON THE OPTIMAL ALLOCATION OF THE COSTS OF
MAINTAINING THE COMPONENTS OF A SYSTEM

WEN-LIN CHIOU

ABSTRACT. In our former works, we proved some properties of the Barlow
and Proschan’s structural importance of components’ performances with
different costs of maintenance in binary coherent systems. The structural
importance was derived from the cost-related Barlow and Proschan’s con-
ditional prior distribution of components’ performances. In this article,
we make further investigations on that conditional prior distribution. We
derive a general form of the cost-related Barlow and Proschan’s joint dis-
tribution of components’ performances from that conditional prior distri-
bution. With the general form of the cost-related Barlow and Proschan’s
joint distribution, we obtain an allocation of the costs to the components
to optimize the performance of the system.

1. INTRODUCTION

In [3](2016), we investigated Barlow and Proschan’s(BP) interpretation for
their structural importance of components in binary-state coherent systems,
then rederived the BP conditional prior distribution of the components’ per-
formances in coherent systems. Inspired by the cost-based defined by Wu and
Coolen [12](2013), Hsiao and Chiou [7](2018) extended it to a binary coherent
system where components require some costs of maintenance in the system,
then generalized it to a cost-related BP conditional prior distribution of the
components’ performance in coherent systems.

In this article, with the cost-related BP conditional prior distribution, we
find its joint distribution of components’ performances in coherent systems.

In reliability theory, optimal allocation is an important concept used for
improving performance of a coherent system. Please see the literatures [6,
8]. In this article, with the cost-related BP joint distribution, we obtain an
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allocation of the costs to the components to optimize the performance of the
System.

2. DEFINITION, NOTATIONS ND BASIC THEOREM

Following [1, 2, 9], we have definitions and notations as follows. Consider
a binary system (C,¢) composed of n components, where C = {1,2,...,n}
denotes the set of the n components, and ¢ : {0,1}" — {0,1} denotes the
structure function of the system. For brevity, we denote S = {0,1} and S" =

{0,1}".
The state x; of component ¢ is defined by

{1 if component 4 is functioning
T =

0 if component 7 is failed.

Similarly, the state ¢ of the system is a deterministic binary function of the
state vector x = (x1, za, ..., ) of components, defined by

b(z) = 1 if the system is functioning
10 if the system is failed.

Given z € S", following [1], we denote (+;,&) = (X1, ..o, Ti—1, 5, Tit1, s Tn),
i.e.7 (OZ,.’L‘) = (551, veey Li—1, 0, Tit1, ,iEn) and (11',.'17) = ((El, ceey L1, ]., Tit1,
ey )

Definition 2.1. Given a binary system (C, ¢), a component i is irrelevant to
¢ if

¢(Li,x) = ¢(0;, )
for all (-;,z), i.e., component 7 is relevant to ¢ if there exists a vector (-;,2)
such that ¢(1;,2) = 1 and ¢(0;,z) = 0.

Definition 2.2. A binary coherent system is a binary system (C, ¢) such that
(i) ¢(x) is nondecreasing in each component, (ii) each component i € C is
relevant to ¢.

Let the components of a system ¢ be stochastically independent. The relia-
bility function h(p) of ¢ is the probability that ¢ is functioning, as a function
of component reliabilities p = (p1, pa, ..., Pn)-

Given a binary coherent system ¢, it is well known that Birnbaum’s struc-
tural importance can written as

By = gor 3 [6015,2) — 6(0;,2)]

(1;,)esSn
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Wu and Coolen [12](2013) extended Birnbaum’s structural importance to
some cost-based structural important. When p is not available, Barlow and
Proschan [1](1975) define their structural importance I f P(4) of component i

by

1
177(i) = / [h(1;,p) — h(0;,p)]dp, where p; = p Vj # i.
0

Given B C C, let e(B) be the binary vector with components e;(B) such

that
1 ifjeB
ej(B) = .
0 otherwise.

For brevity, we let the standard unit vectors e({j}) = e, for all j € C. Through-
out this article, we denote |B| number of elements in B, e(C) =1 = (1,1,...,1)
and e(0) =0 = (0,0, ...,0).

Definition 2.3. A set P C C is called path set if ¢(e(P)) = 1. A path set P
is said to be a min path set if ¢(e(Z)) =0 for any Z C P.

A set K C C is called cut set if ¢(e(K“)) = 0. A cut set K is said to be a
min cut set if ¢(e(Z¢)) =1 for any Z C K.

A critical path vector for component i is a vector (1;, ) such that ¢(1;,2) =1
while ¢(0;,2) = 0. The corresponding critical path set for ¢ is {i} U {j | j #
i, the jth component of (1;,z) = 1}.

Barlow and Proschan’s structural importance in [1](1975) is as follows.

5Py = Y WBLE D =B o) om0 1))

pee n!
(2.) SIS (000) [ ey st )
r=1 BCC
B2

Barlow and Proschan have a probability interpretation for their structural
importance in [1] as follows. In the absence of information concerning compo-
nent reliabilities, fP (7) is the expectation of component i being in a critical
path set according to a prior probability that the order of components’ failures
is uniformly distributed. Therefore given any j € C, Barlow and Proschan’s
structural importance is derived from the following prior distribution.

(181 = 1!(n — |B)

(2.2) Pr{component j is the (n — |B| + 1)th failure} = p
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In [3], we rederive (2.2) as follows. Given & € S™ define S(x) = {j | z; # 0},
then e(S(z)) = z. Let X = (X1, X, ..., X,,) be a random vector such that

where |z| = ij.

jec

(2.3) PriX>z|X;=1}= m,

By inclusive and exclusive principle, we see that Barlow and Proschan’s
structural importance can also be derived from the prior distribution as follows.

(I1S@)| = Di(n — |S(=@)])!

PriX=z|X;=1}= :
n:

and
177(j) = E[¢p(X) — ¢(X —e;) | X; =1].

Then, Barlow and Proschan’s structural importance can also be regard as
derived from prior (2.3) which is inversely proportional to the size of S(z).

Inspired by El-Neweihi, Proschan and Sethuraman[6](1986), with the cost-
related Barlow and Proschan’s joint distribution of the components’ perfor-
mances in coherent systems, we apply Majorization Theory to find an allocation
of the costs to the components to optimize the performance of the system.

Following [6](El-Neweihi et al., 1986), [8](Kim and Zuo, 2018) and [9](Mar-
shall, Olkin and Arnold, 2011), we have the definitions, notations and theorem
from Majorization Theory.

For a vector a € R™, we denote by a’ € R™ the vector with the same
components, but sorted in descending order. Given a,b € R™ a is said to
majorize b written as a > b if

k k
dal =3 bl fork=1,..,m—1,
=1 =1

and

A symmetric function g : R™ — R (that is, a function g such that g(z) = g(zII)
for every permutation IT) is said to be Schur-concave (or convex) if

g(@) < (or 2)g(y)

for all £ majorizing y.
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Please notice that if ¢ is symmetric on a symmetric set A4 (that is, a set A
such that £ € A implies Il € A for every permutation IT) and Schur-convex
on DNA, where D={x:x1 > x2... > x,}, then ¢ is Schur-convex on A.

In page 84 of [9](2011), Schur and Ostrowski proved the following theorem,
respectively.

Theorem 2.4 (Schur, 1923; Ostrowski, 1952). Let I C R be an open interval
and let ¢ : I — R be continuously differentiable. Necessary and sufficient
conditions for ¢ to be Schur-convex on I™ are

¢ is symmetric on 1",

and

0
8Zi

@(z) is non-increasing ini=1,...,n allzeDNI".

3. MAIN RESULTS

Considering costs incurred by maintaining a system and its components,
Wu and Coolen [12](2013) proposed a cost-based importance. Inspired by [12],
Hsiao and Chiou [7] extend priors (2.3) to a binary coherent system(BCS)
where components require some costs of maintenance in the system: given a
BCS (C,¢), let k : C — R4 be such that k(j) is the cost of maintaining the
function of component j in ¢. ("delete k(j) is the cost to maintain component
j work in ¢.”) The cost k(i) does not have to be equal to the cost x(j) for i # j.
If S ={s1,...,8} C C, we denote k(S) to be

k(S) = k(s1) + K(s2) + -+ + K(s¢).

Note that we regard the costs as the precision of components, the moisture
resistance of components, the corrosion resistance of components, etc. which
can be accurately measured by engineers. In [7] we generalize prior probability
(2.3) for BCS to the following cost-related prior probability for BCS.

() .
Pr{iX>z|X; =1} = —>= (all k(i) >0),
! r(S(2))
where we regard x(S(z)) the cost to be paid for keeping the components in
state vector & and regard k(j) as the cost already paid for keeping component
j working. Note that Pr{X >z | X; = 1} is defined on all the state vectors
with z; = 1 and it is decreasing in z. Especially, Pr{X > (1;,0) | X; =1} =

kG)
ko) =
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(3.1) PriX=z|X;=1}= ) (‘1)IT",€(5(
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By inclusive and exclusive principle, one get

K(4)

TS @) z)) + x(T)
Now fixed i € C, for each & with z; = 1, we denote (3.1) by
. K
ph=Pr{X=2z|X;=1} = (=17 .
We have A A
py>0Viand > pi =1
zeS"

Observe that for each fixed i € C, {& | x; = 1, € S"} is a proper subset
of S", we have that the probability mass function {p% | z; = 1,z € S"} is a
conditional probability mass function of some probability mass function over
S”, say {pg : x € S"}.

Observing (3.1), let k(S(x)) =z, C\ S(x) = M ={1,2,...,m}, we get the

following lemma.

Lemma 3.1. Given a set M = {1,2,...,m}, let

J(z, 61, ) = Z(_l)m 1

)
TCM 2+ Yier ki

z2>0, and k; > 0 Vi € M. Then we have f(z,K1,...,Km) > 0.
FEspecially, if there is some j € M with k; =0 then all f(2,k1,...,km) =0.

Proof. First, f(z,k1,...,km) > 0 for z > 0 and k; > 0 Vi € M since p. > 0.
Next, suppose j € M with x; = 0. Then we have

1 1
f(z K1, Rm) = E (-1 + E [ | P —
TCM z+ [O + ZieT\{j} Ki} TCM z+ ZieT Ki
JET j&T

1
- N -
> (I

TC{1,....j—1,j+1,...M}

T 1
T Z (-1 lm

TC{1,j—1,j+1,...,M}
=0.
O

The following theorem exhibit a closed form of the probability distribution

{pa: | TE Sn}'
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Theorem 3.2. For each x € S"™ with € # 0 = (0,0,...,0), the probability
distribution {pg | € € S"} has the following closed form.

(3.2)
1 1 — Po
Pz = Z (_1)‘T‘ X 1
TCC\S(z) [Xjes@) #il + [jer i) Zf;ig(_l)lmﬂzjexm
ifpo # 1.

Proof. First, please notice that if pg = 1 and hence p, = 0 Vx # 0, then
you won’t use such an equipment in the real world. Next, by the law of total
probability and (3.1) we have

D(1,..,1) = PrX=1|X;=1)Pr(X;=1)+Pr(X=1|X;=0)Pr(X; =0)
K
= Pr(X;=1 0-Pr(X;=0).
S PO = )40 Pr(X, = 0)
This implies that for all i € C the values k; - Pr(X; = 1) are the same. Let
k=k; Pr(X; =1),i € C. Now for  # 0, say z; = 1, then

pe=Pr(X=z|X,=1)Pr(X;=1)+Pr(X =z | X;=0)Pr(X; =0)
= > y™ » al | Pr(X; =1) 40 - Pr(X; = 0)

TCC\S(x) jes() Fil + [2jer #il

_\I7l k

TCO\S(x) jest) Rl + jer vl

Since (I)po + D z+0 pe = 1, (ii)given £ € S”, we have S(z) C C, and (iii)
reS™

conversely, given S C C' |, we can choose & € S™ such that S(z) = 5, one get

o _1)IT! l
1—po Z[ Z (=1) [Zjes(z)ﬁj]—i_[ZJETﬁj]]

z£0 TCC\S(x)

zeS"
K
= (-1 (> 0 if po # 1).
;) TCZC\S (> jes fil + e K]
scc
And hence
1—po
K

jeT K]

2szo rcons(CD s s
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. . . T 1 .
Simplify the expression Zggg >rcans(—1) s T o] We see that

1

the coefficient of the term m

in the simplified expression is

Ot (C) 4 O 12 () 2 O 1 (1)
=1+ (1)) G517 (-1)f

_ (_1)€+1

= (_l)lKH—l ( if K = {jla cee 7.]'@})'

We obtain an equality as follows.

()" : = Yy
SZ#)TgZC\S [Zjes ki) + [ZjeT K] KZ#@ Z_jeK Kj
scc KEC

The result follows.

Remark 3.3. In (3.2) we do not assume that pg is known. However, in the real
world, if none of the components of an equipment is working, then we won’t
buy it. Therefore, we may assume machine py = 0.

Theorem 3.4. Given a set M = {1,2,...,m}, let

fz, K1,y ) = Z (,1)|T|;

)
TCM 2+ Dier b

where z > 0, and k; > 0Vi € M. Then

(a) f(z,K1,...,Km) is non-decreasing in each k;.
(b) f(z,K1,...,Km) i8 non-increasing in z.
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Proof. (a) Suppose r; > rj > 0. Then 3 = r;j — £; > 0, and

1
f(Z,K}h...,KZm): (_1)‘T‘
T;VI 24 (k) +65) + Lier gy Fil
JET

- 1
+ Z (-1 ‘m

TCM
J€T

S D
Tcu (24 #5) + (K5 + Xier gy #4)
JET

1
+ ) (-n”
T%J:VI (2 + Hjl) + Z7’»€T\{j} Ri

JET

1
+ =) (7
%4 (24 55) + Lier\gy Fi

JET

oyt
+Z( 1)TZ+ZZ.€TKJ¢‘

TCM
J&T
:f(z+/<;},/<c1,...,/<;?,...,/<;m)
1
+ (-1)!7!
P G vy

oy
+ > ( ”Tz+zi€m

/@1,...,H?,...,nm)+f(z,/<:1,...,/1},...,nm)

(Z,Kl,...,li;7...,lim).

59
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(b) Suppose z; > z > 0.

f(z1,K1, ..oy Km)

We have that

f(zla"q‘la"'?/{/m)_

by Lemma 3.1.
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Then Kpy1 =21 — 2 > 0, and
1

= Z (-1)!7!
TCM (2 + K1) + Xser i
1
e D S
TCMU{m+1} 2+ Dier ki
m+1eT
1
_ Z (=1)!7!
TCMU{m+1} 2+ Lier b
m+1¢T
1
+ Z ()
TCMU{m+1} 2+ Lier Ki
m+1¢T
1
=_ Z [ | pR—
TCMU{m+1} 24 Dier ki
1
+ (_1)\T\7
7%4 2+ Dier ki
=—f(2,K1, s Bm, Emt1) + [(2, 61,y Km)-
f(z k1, km) = —f(2,61, -, Bmy K1) < 0

O

Remark 3.5. Theorem 3.4(a) shows that the cost-related prior probability
density function p. ( please see (3.1)) is increasing whenever k; is increasing,
which is a reasonable model in the real world. Here we regard the cost x; as
the precision of component, the moisture resistance of component, the corrosion

resistance of component,

etc. rather than the “cost” defined by economists.

Corollary 3.6. Given a set M = {1,2,...,m}, let

f*(za'%la .

k)= Y (=D !

TCM [z + Xier il®’

where z > 0, and k; > 0 Vi € M. Then

(a) f*(z, K1, 6m) > 0.
(b) f*(z,k1,...,Km) is non-increasing in z.
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Proof. First, f*(z,61,...,km) = —W > 0 by Theorem 3.4 (b).
Next, with the same method as in the process of the proof in Theorem 3.4
(b), we have

T 1 _ oy L
DYV PR RS S LD D etV ey Speren

TCM TCM
_ T 1
BRI I s v
Namely,
(21,81, 6m) — [ (2,R1, - ooy Bm) = —f (2,615« -+, Bmy Kmt 1)
here we let 21 = z 4+ K41 > 2. Then (b) follows by (a). O

Theorem 3.7. Given a set M = {1,2,...,m}, let

g(K1, -y Km) = Z (_1>\T\ 1

TCM 24 Dier ki
where z > 0 is a fized constant, and k; > 0Vi € M. Then g(k1,...,Kkm) s a
Schur-concave function in K;’s.
Proof. First, it is trivial to see that g(ki,...,Kmn) is a symmetric function on

R%Y, = {k = (K1,...,Km) : K; > 0 Vi}. Next, observe that
9g(k)  9g(k)

8/{1 a/{,2
1 1

— (_1)|T|+1— _ (_1)|T|+1—

TCZM [2 + 2Zier wil? TCZJ\/] [(z + Xier wil?

1eT 2T
- (L 3 (cyre b

TCM [2 + Zier wil? TCM [(z + X ser wil?
1€T,2¢T 1€T,2€T

_ T+ 1 a T+ 1
2 W s 2 (VT e

TCM TCM
26T, 1€T 2€T,1¢T

_ _q\ITl 1
2, (2 + K1) + D ser Fil?

TCM\{1,2}
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_ Tl 1
2 Wy o

TCM\{1,2}

Let k1 > k2 and Kpy1 = K1 — k2 = (2 + k1) — (2 4+ K2). Then by Corrollary
3.6, we conclude that

Qo) _09(k) __ 5~y : <o.

k1 O TC{34,...,m,m+1} [(z 4+ i) + Zier mil® —
Exactly the same method, we have that a(gi)_(n) - 6(67{91(:) > 0, for k; >
Kj+1,J = 1,2,...,m—1. Therefore, 9_(—g)(k) is nonincreasing ini = 1,...,n

all Kk € DN R} . Then by Theorem 2.4, —g(k1,...,km) is a Schur-convex
function in x;’s, and hence the result follows.

O
In Theorem 3.7, since z is a fixed constant, we have that
1 . 1
g(K1, oy Bm) — — = (—1)‘ l—
s T;M 2+ D ier Fi
T#)
is also Schur-concave in «;’s. Then it is trivial to see that the function
1 1
(—1)‘T‘+17 = — lim (_1)|T|7
Tgﬁ 2ier ki a0 Tgvf 2+ Lier ki
TH0 T£0
is Schur-convex in x;’s. Hence, we have the following theorem.
Theorem 3.8. Given a set M = {1,2,...,n}, let
1
g*(ﬂlv"w’in): )
—DIEH L
S YT
where k; > 0 Vi € M. Then g*(k1,...,kn) is a Schur-concave function in k;’s.

Conclusions. We have the following theorem as conclusions.

Theorem 3.9. Suppose pg = 0, then
1 1

Pe(c) = x i
—1)IK[+1
thec Re ZI;%&%( ) ek R

is Schur-concave in k; s where i € C. Furthermore, pe(cy = Pr{z; =1, for all
j € C} is the mazimum whenever k1 = kg = ... = K.
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Proof. By formula (3.2) pe(cy = h(K1,...,kn) X g*(K1,. .., kn), where

1
hK1y.. o kn) = = and ¢*(K1,...,Kn) =
’ ’ ’ ’ 1)K+ 1
Yeec ke 2rco(=)M e
First, notice that by Theorem 3.8 we have that g*(k1, ..., ky) is Schur-concave

on R} | and hence (—g*;) — (=¢";41) > 0 on DNRY, by Theorem 2.4. Next,

observe h;(K1,...,kn) = [Z — ]2 for all 7, then we have
tec ke

(h-g%)i—=(h-g)iz1=[hi-g"+h-g"] —[hit1-9"+h- g*i+1]
=[hi —hia] -g" +h- g% — 9" i11]
=0-9"+h-[g" —9"41] <0

on DNRY,. It is trivial to see —h - g* is symmetric on R} |, we have that
—h - g* is Schur-convex in x;’s where x; > 0,7 € C by Theoem 2.4. In views of
Pe(c) = h - g* being Schur-concave and symmetric on R}, , we see that pe(c)
attains maximum at K1 = kg = ... = Ky, O
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