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AN APPROXIMATION THEOREM OF LAX TYPE FOR
EVOLUTION OPERATORS OF LIPSCHITZ OPERATORS IN
A METRIC SPACE

YOSHIKAZU KOBAYASHI AND NAOKI TANAKA

ABSTRACT. In this paper, we consider a class of evolution operators of
Lipschitz operators in a metric space, which includes the class proposed
by Iwamiya, Oharu and Takahashi [1]. An analogue of Lax’s theorem for
semigroups of Lipschitz operators in Banach spaces due to Oharu and the
authors [2] is extended to the case of the class of evolution operators. To
this end, a stability condition and a generalized consistency condition are
defined for a family of Lipschitz operators in a metric space.

Let X be a metric space with a metric d(-,-) and T € (0, 00). Let F denote
the class of f € L'([0,T) x[0,T); [0, 0)) satisfying the following two conditions:

(f1) f(r,r)=0for r € [0,T).

(f2) For any h € (0,T) and (r,s) € [0,T —h) x [0,T — h),

h h

lim sup / flo+7#,048)do §/ flo+r,o+s)do.
(7,8)—=(r,s) JO 0

Example 1 (Iwamiya-Oharu-Takahashi[l]). Let Y be a Banach space with

norm ||-||y and let

f@ris) =~(r = s)) +llg(r) = g(s)lly for r,s € [0, 7).

Then f € F if v is a continuous, nonnegative and non-decreasing function on
[0,T") such that 4(0) = 0 and ¢ is a Y-valued Bochner integrable function on
[0,T).

In this paper, let {D(t)

;t €10,T)} denote a family of nonempty subsets of
X and D = {(t,z);z € D(t),

€|
tel0,7)}.
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Definition 2. A family U = {U(t,5);0 < s < t < T} of operators in X
is called an evolution operator of Lipschitz operators on D if it satisfies the
following conditions (E1) and (E2):

(E1) U(s,r) : D(r) = D(s), U(r,r)z = x and U(t, s)(U(s,r)x) = U(t,r)z

forx e D(r)and 0 <r <s<t<T.

(E2) T0<s<t<T,(s,x) €D,0< 3, <t, <Tforn>1, (sp,x,) €D

forn > 1, lim, yo0 Sy = 8, limy, oo t, =t and lim,,_, x,, = x, then

limy, o0 U(tn, $n)xn = U(t, s).

(E3) There exists L € (0,00) such that
AU t, 5)2,U t, 5)y) < Ld(x,y)

for (s,z),(s,y) € Dand 0 <s <t <T.
By £(D) we denote the set of all evolution operators of Lipschitz operators on
D. An evolution operator of Lipschitz operators on D was characterized in [3]
by a dissipativity condition with respect to a family of metric-like functionals,
a subtangential condition and a connectedness condition of D when its infini-
tesimal generator is continuous from D into X, where X is a real Banach space
and d is the metric induced by its norm.

A family U = {U(t,);0 < s <t < T} of operators in X satisfying condition
(E1) is called an evolution operator of class (D, f) if it satisfies the following
conditions (E4) and (E5):

(E4) For x € D(s) and s € [0,T), the mapping ¢t — U(¢, s)z is continuous

on [s,T) in X.
(E5) There exist L € (0,00) and f € F such that

h
d(U(r+h,r)x,U(s+h,s)y)<L<d(m,y)+/0 f(r+a,s+a)da>

for (r,z), (s,y) € Dand 0 <r <s<s+h<T.

Note that (D, f) C £(D). Indeed, assume that 0 < s <t < T, (s,z) € D,
0 <sp <ty <Tflorm >1, (sp,zn) € D for n > 1, limy 00 S = 8,
lim, ,o t, =t and lim,,_, , = . Then there exists an integer N > 1 such
that ¢, — s, + max(s,,s) < T for n > N. Condition (E2) can be verified by
using condition (E4) and the inequality

d(U(sn + (tn - Sn)a Sn)mna U(S + (tn - Sn)a S)x)
<L (d(xn,x) + /O T Fsnt 0,54 0) + F(5+ 0,5+ 0)) da>

for n > N, which follows from condition (E5). The following condition (E6)
implies condition (E5):
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(E6) There exist w € [0,00) and f € F such that

h
dU(r+ h,r)z,U(s+ h,s)y) < eh‘”d(:lc7 y) + / e(h_”)“f(r +o,s+0)do
0

for (r,z), (s,y) e Dand 0<r<s<s+h<T.
A family U = {U(t,5);0 < s < t < T} of operators in X satisfying condi-
tions (E1), (E4) and (E6) is a metric-setting version of the evolution operator
proposed in [1].
For j, k=0,1,2,..., we define

J k+1 k k
[[zi=1, J]T=Te:][Tifj<kand []T: =T otherwise.
=7 =7 =3 =3

Let C = {Cy(t); 0<t < T, 0<h<hg} be a family of operators in X. We
consider the following conditions (C1) and (C2).

(C1) Cp(r) : D(r) > D(r+h)for 0<r<r+h<Tand h € (0, hg).
(C2) There exist L € (0,00) and a family {f,;0 < h < ho} in F such that

d(H Cu(r+ (i = D)z, [ [ Culs + (i — 1)h)y)

nh =
< L(d(x,y)+/ fh(r—I—U,s—l—o)da)
0

for (r,z), (s,y) € D, h € (0,hg], 0 < r < s < s+ nh < T and
n=12...
The following provides a sufficient condition for stability condition (C2).

Proposition 3. Assume that there exist w € [0,00) and a family {fr;0 < h <
ho} in F such that

h
d(Cp(r)z, Cr(s)y) < e"d(z,y) + / eh= f, (r + 0,5 +0)do
0

for (r,x), (s,y) € D,0<r<s<s+h<T andh € (0,ho]. Then condition
(C2) holds with L = eT*.

Proof. A straightforward induction argument on n gives

d(H Cu(r+ (i = Dh)z, [ Cn(s + (i - 1)h)y)

=1 i=1
nh
< ed(z,y) + / O i (r + 0,5 + 0) do,
0

for (r,z), (s,y) € D, h € (0,hg], 0<r<s<s+nh<Tandn=1,2,.... O
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Lemma 4. Let u be a continuous function on [0,T) to X such that u(t) €
D(t) fort € [0,T). Let C = {Cp(t);0 <t < T, 0 < h < hg} be a family
of operators in X. Assume conditions (Cl) and (C2) to be satisfied. Let
h € (0,hg]. Then for each integer k > 1 such that kh < T, the function

s+ Hle Cr(s+ (i — 1)h)u(s) is continuous on [0,T — kh).
Proof. Let h € (0, hg]. We apply condition (C2) with n =1 to obtain
lim Ch(s)y = Crp(r)z

s—ry—z,(s,y) €D

for (r,z) € D with r+h < T. Assertion with k = 1 can be verified by this and
the continuity of . The conclusion follows inductively. O

Lemma 5. Let u be a continuous function on [0,T) to X such that u(t) € D(t)
fort € [0,T). Let C = {Cr(t); 0 <t <T, 0 < h < hg} be a family of operators
in X. Assume that conditions (C1) and (C2) are satisfied. Then

1) a((utt) Hchzfl o)
< sup{d( ( ),u(t)); s €10,T) such that |s —t| < h}

v /O ' (d(u(s),u(o)) + /0 M st do) ds

[¢/h]h
n % /0 d(u(s + h), Ch(s)u(s)) ds

for0<t<t+h<T andh € (0, hg).

Proof. Let 0 <t <t+h <T and h € (0, hg]. Define

[t/h]—[s/ 1] (t/h]
th(s):d( H Cr(s+ (i—1)h HCh ((i—1)h ())
i=1

for s > 0 with [s/h] < [t/h]. From Lemma 4 we infer that the function ¢y,
is measurable. If 0 < s < [t/h]h, then (s 4+ h)/h < [t/h] + 1, and so we
see that [(s + h)/h] < [t/h] and ¢n(s + h) makes sense. If [t/hlh < s <

([t/h] + 1)k, then ¢u(s) = d( s). 1M 0 (i — 1)h)u (0)). f0<s<h,
then ¢y, (s) = d (HW’” Ch(s+ (i — Dh)u(s), [T (i — 1)h)u(0)), and we
apply condition (C2) to get ¢n(s) < L (d(u(s),u (0)) + fo[t/h]h fr(s+o,0) da)
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for 0 < s < h. Therefore, we have
[t/h]R ([t/h]+1)h [t/h]R
/ (¢n(s +h) — dn(s)) ds = / Pn(s)ds — / on(s)ds
0 h 0
([t/h]+1)h h
= / or(s)ds — / on(s)ds
[t/h]h 0
([t/h]+1)h [¢/h]
> / d(u(s), IT cnti- 1)h)u(0)> ds
[t/h]h i=1
h [t/h]h
,/ L (d(u(s),u(O)) Jr/ fr(s+o,0) da> ds.
0 0
The first term on the right-hand side is estimated as follows:
([t/h]+1)h [t/h]
/ d(u(s)7 I cntii- 1)h)u(0)> ds
[t/h]h i=1
([t/R]+1)h (t/h]
> / <d<u(t), H Cr((i — 1)h)u(0)> - d(u(s),u(t))) ds
[t/hlh i=1
[t/h] ([t/R)4+1D)h
= hd(u(t), H Cr((i — 1)h)u(0)> 7/ d(u(s),u(t))ds.
i=1 [t/hlh
If 0 < s < [t/h]h, then
dn(s+h) — du(s)
[t/h]—[s/h]—1 [t/R]—[s/h]—1
< d( Ch(s+ih)u(s + h), H Ch(s+ zh)u(s))
i=1 i=0
< Ld(u(s + h),Cr(s)u(s)).
The inequality (1) can be obtained by combining these inequalities. O

Corollary 6. Let u be a continuous function on [0,T) to X such that u(t) €
D(t) fort € [0,T). Let U ={U(t,s); 0 < s <t <T} be an evolution operator
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of class E(D, f). Then

(2) d (u(t), U([t/R]h, 0)u(0))
< sup{d(u(s),u(t)); s € [0,T) such that |s —¢| < h}

v /0 ' (d(u(s),u(O)) + /0 st o) do’) ds

Ll
+ E/o d(u(s +h),U(s + h, s)u(s)) ds

for0<t<t+2h<T.

Proof. Assume that U = {U(t,s); 0 < s <t < T} is of class £(D, f). Let

O<t<t+2h<T ChooseTo>Osothatt+h<T0<Tg+h<Tandset
h() T — T‘(). Define

Ch(t)x=U(t+ h,t)x

for t € [0,Ty), h € (0,hg] and x € D(t). Then conditions (C1) and (C2)
are satisfied with fi,(r,s) = f(r,s) for (r,s) € [0,Tp) X [0 Tp) and T = Tp.
Therefore, (1) implies the desired inequality (2) with ¢ = ¢ and h = h. O

The following is a direct consequence of Lemma 5.

Theorem 7 (Lax-Richtmyer’s theorem [5]). Let U = {U(t,s); 0 < s <t < T}
be an evolution operator of class E(D, f) and C ={Cr(t); 0<t<T, 0<h <
ho} be a family of operators in X. Assume that conditions (C1) and (C2) are

satisfied and
lﬁfolh/ (/ s—i—oa)da)ds:o.

Let x € D(0). If the consistency condition
T—h
lfﬂrolh/ d(U(s + h,0)z,Cy(s)U(s,0)z) ds = 0

1s satisfied, then
[t/h]
li —1)h
lim H Cr((i =U(t,0)x
uniformly for t in any compact subinterval of [0,T).

The following is a well-known Van Kampen’s theorem [4, Theorem 1.20.2].
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Theorem 8. Let u be a continuous function on [0,T) to X such that u(t) €
D(t) fort € [0,T). Let U ={U(t,s); 0 < s <t < T} be an evolution operator
of class E(D, f). If

I}HBE ; d(u(s+ h),U(s + h,s)u(s)) ds = 0,
then u(t) = U(t,0)u(0) for 0 <t <T.
Proof. Let 0 < Ty < T and set hg =T — Tp. By condition (f2) we see that the
function s — fOTO f(s+ 0,0)do is upper semicontinuous on [0, hg). Since

zlz/oh (/OTOhf(s+a,a)da> dsgi/oh< OTOf(s+U,U)dJ> ds

for h € (0, hp), and the right-hand side tends to zero as h — 0, by condition
(f1). From Corollary 6 we infer that u(t) = U(t,0)u(0) for 0 < t < Tp. Since

To € (0,7T) is arbitrary, the conclusion follows. O
Example 9 (Agarwal-Lakshmikantham [4]). Conditions (E1) and (E2) are
not sufficient for the conclusion of Theorem 8. In fact, let X = [0,00) and

d(z,y) = |z — y| for z,y € X, and define
U(t,s)x = {x1/3—|— (t—s)/?)}3 forreD(s)=Xand 0<s<t<T < oo.
Then (E1) and (E2) are satisfied, but (E3) is not satisfied, since
lim |U(r + h,r)x —U(r + h,r)y| e
(2,9)—=(0,0) |z =yl
for0<r<r+h<T. Let u(t) =0 for 0 <t <T. Then
1T T—h(h\>
7 /0 |u(s +h) —U(s + h,s)u(s)| ds = —5 (3) — 0,
as h | 0, but u(t) # U(t,0)u(0) = (¢t/3)3 for 0 <t < T.
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