

AN APPROXIMATION THEOREM OF LAX TYPE FOR
 EVOLUTION OPERATORS OF LIPSCHITZ OPERATORS IN
 A METRIC SPACE

YOSHIKAZU KOBAYASHI AND NAOKI TANAKA

ABSTRACT. In this paper, we consider a class of evolution operators of Lipschitz operators in a metric space, which includes the class proposed by Iwamiya, Oharu and Takahashi [1]. An analogue of Lax's theorem for semigroups of Lipschitz operators in Banach spaces due to Oharu and the authors [2] is extended to the case of the class of evolution operators. To this end, a stability condition and a generalized consistency condition are defined for a family of Lipschitz operators in a metric space.

Let X be a metric space with a metric $d(\cdot, \cdot)$ and $T \in (0, \infty)$. Let \mathcal{F} denote the class of $f \in L^1([0, T] \times [0, T]; [0, \infty))$ satisfying the following two conditions:

- (f1) $f(r, r) = 0$ for $r \in [0, T]$.
- (f2) For any $h \in (0, T)$ and $(r, s) \in [0, T - h] \times [0, T - h]$,

$$\limsup_{(\hat{r}, \hat{s}) \rightarrow (r, s)} \int_0^h f(\sigma + \hat{r}, \sigma + \hat{s}) d\sigma \leq \int_0^h f(\sigma + r, \sigma + s) d\sigma.$$

Example 1 (Iwamiya-Oharu-Takahashi[1]). Let Y be a Banach space with norm $\|\cdot\|_Y$ and let

$$f(r, s) = \gamma(|r - s|) + \|g(r) - g(s)\|_Y \quad \text{for } r, s \in [0, T].$$

Then $f \in \mathcal{F}$ if γ is a continuous, nonnegative and non-decreasing function on $[0, T]$ such that $\gamma(0) = 0$ and g is a Y -valued Bochner integrable function on $[0, T]$.

In this paper, let $\{D(t); t \in [0, T]\}$ denote a family of nonempty subsets of X and $D = \{(t, x); x \in D(t), t \in [0, T]\}$.

2010 *Mathematics Subject Classification.* Primary 34G20; Secondary 49J52, 54E35, 47J35.

Key words and phrases. Approximation theorem, evolution operators, Lipschitz operators, metric space.

Definition 2. A family $U = \{U(t, s); 0 \leq s \leq t < T\}$ of operators in X is called an evolution operator of Lipschitz operators on D if it satisfies the following conditions (E1) and (E2):

- (E1) $U(s, r) : D(r) \rightarrow D(s)$, $U(r, r)x = x$ and $U(t, s)(U(s, r)x) = U(t, r)x$ for $x \in D(r)$ and $0 \leq r \leq s \leq t < T$.
- (E2) If $0 \leq s \leq t < T$, $(s, x) \in D$, $0 \leq s_n \leq t_n < T$ for $n \geq 1$, $(s_n, x_n) \in D$ for $n \geq 1$, $\lim_{n \rightarrow \infty} s_n = s$, $\lim_{n \rightarrow \infty} t_n = t$ and $\lim_{n \rightarrow \infty} x_n = x$, then $\lim_{n \rightarrow \infty} U(t_n, s_n)x_n = U(t, s)x$.
- (E3) There exists $L \in (0, \infty)$ such that

$$d(U(t, s)x, U(t, s)y) \leq Ld(x, y)$$

for $(s, x), (s, y) \in D$ and $0 \leq s \leq t < T$.

By $\mathcal{E}(D)$ we denote the set of all evolution operators of Lipschitz operators on D . An evolution operator of Lipschitz operators on D was characterized in [3] by a dissipativity condition with respect to a family of metric-like functionals, a subtangential condition and a connectedness condition of D when its infinitesimal generator is continuous from D into X , where X is a real Banach space and d is the metric induced by its norm.

A family $U = \{U(t, s); 0 \leq s \leq t < T\}$ of operators in X satisfying condition (E1) is called an evolution operator of class $\mathcal{E}(D, f)$ if it satisfies the following conditions (E4) and (E5):

- (E4) For $x \in D(s)$ and $s \in [0, T)$, the mapping $t \mapsto U(t, s)x$ is continuous on $[s, T)$ in X .
- (E5) There exist $L \in (0, \infty)$ and $f \in \mathcal{F}$ such that

$$d(U(r + h, r)x, U(s + h, s)y) \leq L \left(d(x, y) + \int_0^h f(r + \sigma, s + \sigma) d\sigma \right)$$

for $(r, x), (s, y) \in D$ and $0 \leq r \leq s \leq s + h < T$.

Note that $\mathcal{E}(D, f) \subset \mathcal{E}(D)$. Indeed, assume that $0 \leq s \leq t < T$, $(s, x) \in D$, $0 \leq s_n \leq t_n < T$ for $n \geq 1$, $(s_n, x_n) \in D$ for $n \geq 1$, $\lim_{n \rightarrow \infty} s_n = s$, $\lim_{n \rightarrow \infty} t_n = t$ and $\lim_{n \rightarrow \infty} x_n = x$. Then there exists an integer $N \geq 1$ such that $t_n - s_n + \max(s_n, s) < T$ for $n \geq N$. Condition (E2) can be verified by using condition (E4) and the inequality

$$\begin{aligned} & d(U(s_n + (t_n - s_n), s_n)x_n, U(s + (t_n - s_n), s)x) \\ & \leq L \left(d(x_n, x) + \int_0^{t_n - s_n} (f(s_n + \sigma, s + \sigma) + f(s + \sigma, s_n + \sigma)) d\sigma \right) \end{aligned}$$

for $n \geq N$, which follows from condition (E5). The following condition (E6) implies condition (E5):

(E6) There exist $\omega \in [0, \infty)$ and $f \in \mathcal{F}$ such that

$$d(U(r+h, r)x, U(s+h, s)y) \leq e^{h\omega} d(x, y) + \int_0^h e^{(h-\sigma)\omega} f(r+\sigma, s+\sigma) d\sigma$$

for $(r, x), (s, y) \in D$ and $0 \leq r \leq s \leq s+h < T$.

A family $U = \{U(t, s); 0 \leq s \leq t < T\}$ of operators in X satisfying conditions (E1), (E4) and (E6) is a metric-setting version of the evolution operator proposed in [1].

For $j, k = 0, 1, 2, \dots$, we define

$$\prod_{i=j}^j T_i = T_j, \quad \prod_{i=j}^{k+1} T_i = T_{k+1} \prod_{i=j}^k T_i \text{ if } j \leq k \text{ and } \prod_{i=j}^k T_i = I \text{ otherwise.}$$

Let $C = \{C_h(t); 0 \leq t < T, 0 < h \leq h_0\}$ be a family of operators in X . We consider the following conditions (C1) and (C2).

(C1) $C_h(r) : D(r) \rightarrow D(r+h)$ for $0 \leq r \leq r+h < T$ and $h \in (0, h_0]$.

(C2) There exist $L \in (0, \infty)$ and a family $\{f_h; 0 < h \leq h_0\}$ in \mathcal{F} such that

$$\begin{aligned} & d\left(\prod_{i=1}^n C_h(r+(i-1)h)x, \prod_{i=1}^n C_h(s+(i-1)h)y\right) \\ & \leq L \left(d(x, y) + \int_0^{nh} f_h(r+\sigma, s+\sigma) d\sigma \right) \end{aligned}$$

for $(r, x), (s, y) \in D$, $h \in (0, h_0]$, $0 \leq r \leq s \leq s+nh < T$ and $n = 1, 2, \dots$

The following provides a sufficient condition for stability condition (C2).

Proposition 3. *Assume that there exist $\omega \in [0, \infty)$ and a family $\{f_h; 0 < h \leq h_0\}$ in \mathcal{F} such that*

$$d(C_h(r)x, C_h(s)y) \leq e^{h\omega} d(x, y) + \int_0^h e^{(h-\sigma)\omega} f_h(r+\sigma, s+\sigma) d\sigma$$

for $(r, x), (s, y) \in D$, $0 \leq r \leq s \leq s+h < T$ and $h \in (0, h_0]$. Then condition (C2) holds with $L = e^{T\omega}$.

Proof. A straightforward induction argument on n gives

$$\begin{aligned} & d\left(\prod_{i=1}^n C_h(r+(i-1)h)x, \prod_{i=1}^n C_h(s+(i-1)h)y\right) \\ & \leq e^{nh\omega} d(x, y) + \int_0^{nh} e^{(nh-\sigma)\omega} f_h(r+\sigma, s+\sigma) d\sigma, \end{aligned}$$

for $(r, x), (s, y) \in D$, $h \in (0, h_0]$, $0 \leq r \leq s \leq s+nh < T$ and $n = 1, 2, \dots$ \square

Lemma 4. *Let u be a continuous function on $[0, T)$ to X such that $u(t) \in D(t)$ for $t \in [0, T)$. Let $C = \{C_h(t) ; 0 \leq t < T, 0 < h \leq h_0\}$ be a family of operators in X . Assume conditions (C1) and (C2) to be satisfied. Let $h \in (0, h_0]$. Then for each integer $k \geq 1$ such that $kh < T$, the function $s \mapsto \prod_{i=1}^k C_h(s + (i-1)h)u(s)$ is continuous on $[0, T - kh]$.*

Proof. Let $h \in (0, h_0]$. We apply condition (C2) with $n = 1$ to obtain

$$\lim_{s \rightarrow r, y \rightarrow x, (s, y) \in D} C_h(s)y = C_h(r)x$$

for $(r, x) \in D$ with $r + h < T$. Assertion with $k = 1$ can be verified by this and the continuity of u . The conclusion follows inductively. \square

Lemma 5. *Let u be a continuous function on $[0, T)$ to X such that $u(t) \in D(t)$ for $t \in [0, T)$. Let $C = \{C_h(t) ; 0 \leq t < T, 0 < h \leq h_0\}$ be a family of operators in X . Assume that conditions (C1) and (C2) are satisfied. Then*

$$\begin{aligned} (1) \quad & d\left(u(t), \prod_{i=1}^{[t/h]} C_h((i-1)h)u(0)\right) \\ & \leq \sup\{d(u(s), u(t)) ; s \in [0, T) \text{ such that } |s - t| \leq h\} \\ & \quad + \frac{L}{h} \int_0^h \left(d(u(s), u(0)) + \int_0^{[t/h]h} f_h(s + \sigma, \sigma) d\sigma \right) ds \\ & \quad + \frac{L}{h} \int_0^{[t/h]h} d(u(s + h), C_h(s)u(s)) ds \end{aligned}$$

for $0 \leq t < t + h < T$ and $h \in (0, h_0]$.

Proof. Let $0 \leq t < t + h < T$ and $h \in (0, h_0]$. Define

$$\phi_h(s) = d\left(\prod_{i=1}^{[t/h]-[s/h]} C_h(s + (i-1)h)u(s), \prod_{i=1}^{[t/h]} C_h((i-1)h)u(0)\right)$$

for $s \geq 0$ with $[s/h] \leq [t/h]$. From Lemma 4 we infer that the function ϕ_h is measurable. If $0 \leq s < [t/h]h$, then $(s + h)/h < [t/h] + 1$, and so we see that $[(s + h)/h] \leq [t/h]$ and $\phi_h(s + h)$ makes sense. If $[t/h]h \leq s < ([t/h] + 1)h$, then $\phi_h(s) = d\left(u(s), \prod_{i=1}^{[t/h]} C_h((i-1)h)u(0)\right)$. If $0 \leq s < h$, then $\phi_h(s) = d\left(\prod_{i=1}^{[t/h]} C_h(s + (i-1)h)u(s), \prod_{i=1}^{[t/h]} C_h((i-1)h)u(0)\right)$, and we apply condition (C2) to get $\phi_h(s) \leq L \left(d(u(s), u(0)) + \int_0^{[t/h]h} f_h(s + \sigma, \sigma) d\sigma \right)$

for $0 \leq s < h$. Therefore, we have

$$\begin{aligned} \int_0^{[t/h]h} (\phi_h(s+h) - \phi_h(s)) ds &= \int_h^{([t/h]+1)h} \phi_h(s) ds - \int_0^{[t/h]h} \phi_h(s) ds \\ &= \int_{[t/h]h}^{([t/h]+1)h} \phi_h(s) ds - \int_0^h \phi_h(s) ds \\ &\geq \int_{[t/h]h}^{([t/h]+1)h} d\left(u(s), \prod_{i=1}^{[t/h]} C_h((i-1)h)u(0)\right) ds \\ &\quad - \int_0^h L\left(d(u(s), u(0)) + \int_0^{[t/h]h} f_h(s+\sigma, \sigma) d\sigma\right) ds. \end{aligned}$$

The first term on the right-hand side is estimated as follows:

$$\begin{aligned} &\int_{[t/h]h}^{([t/h]+1)h} d\left(u(s), \prod_{i=1}^{[t/h]} C_h((i-1)h)u(0)\right) ds \\ &\geq \int_{[t/h]h}^{([t/h]+1)h} \left(d\left(u(t), \prod_{i=1}^{[t/h]} C_h((i-1)h)u(0)\right) - d(u(s), u(t)) \right) ds \\ &= hd\left(u(t), \prod_{i=1}^{[t/h]} C_h((i-1)h)u(0)\right) - \int_{[t/h]h}^{([t/h]+1)h} d(u(s), u(t)) ds. \end{aligned}$$

If $0 \leq s < [t/h]h$, then

$$\begin{aligned} &\phi_h(s+h) - \phi_h(s) \\ &\leq d\left(\prod_{i=1}^{[t/h]-[s/h]-1} C_h(s+ih)u(s+h), \prod_{i=0}^{[t/h]-[s/h]-1} C_h(s+ih)u(s)\right) \\ &\leq Ld(u(s+h), C_h(s)u(s)). \end{aligned}$$

The inequality (1) can be obtained by combining these inequalities. \square

Corollary 6. *Let u be a continuous function on $[0, T)$ to X such that $u(t) \in D(t)$ for $t \in [0, T)$. Let $U = \{U(t, s) ; 0 \leq s \leq t < T\}$ be an evolution operator*

of class $\mathcal{E}(D, f)$. Then

$$\begin{aligned}
 (2) \quad & d(u(t), U([t/h]h, 0)u(0)) \\
 & \leq \sup\{d(u(s), u(t)) ; s \in [0, T) \text{ such that } |s - t| \leq h\} \\
 & \quad + \frac{L}{h} \int_0^h \left(d(u(s), u(0)) + \int_0^{[t/h]h} f(s + \sigma, \sigma) d\sigma \right) ds \\
 & \quad + \frac{L}{h} \int_0^{[t/h]h} d(u(s + h), U(s + h, s)u(s)) ds
 \end{aligned}$$

for $0 \leq t < t + 2h < T$.

Proof. Assume that $U = \{U(t, s) ; 0 \leq s \leq t < T\}$ is of class $\mathcal{E}(D, f)$. Let $0 \leq \hat{t} < \hat{t} + 2\hat{h} < T$. Choose $T_0 > 0$ so that $\hat{t} + \hat{h} < T_0 < T_0 + \hat{h} < T$ and set $h_0 = T - T_0$. Define

$$C_h(t)x = U(t + h, t)x$$

for $t \in [0, T_0]$, $h \in (0, h_0]$ and $x \in D(t)$. Then conditions (C1) and (C2) are satisfied with $f_h(r, s) = f(r, s)$ for $(r, s) \in [0, T_0] \times [0, T_0]$ and $T = T_0$. Therefore, (1) implies the desired inequality (2) with $t = \hat{t}$ and $h = \hat{h}$. \square

The following is a direct consequence of Lemma 5.

Theorem 7 (Lax-Richtmyer's theorem [5]). *Let $U = \{U(t, s) ; 0 \leq s \leq t < T\}$ be an evolution operator of class $\mathcal{E}(D, f)$ and $C = \{C_h(t) ; 0 \leq t < T, 0 < h \leq h_0\}$ be a family of operators in X . Assume that conditions (C1) and (C2) are satisfied and*

$$\lim_{h \downarrow 0} \frac{1}{h} \int_0^h \left(\int_0^{T-h} f_h(s + \sigma, \sigma) d\sigma \right) ds = 0.$$

Let $x \in D(0)$. If the consistency condition

$$\lim_{h \downarrow 0} \frac{1}{h} \int_0^{T-h} d(U(s + h, 0)x, C_h(s)U(s, 0)x) ds = 0$$

is satisfied, then

$$\lim_{h \downarrow 0} \prod_{i=1}^{[t/h]} C_h((i-1)h)x = U(t, 0)x$$

uniformly for t in any compact subinterval of $[0, T]$.

The following is a well-known Van Kampen's theorem [4, Theorem 1.20.2].

Theorem 8. *Let u be a continuous function on $[0, T)$ to X such that $u(t) \in D(t)$ for $t \in [0, T)$. Let $U = \{U(t, s) ; 0 \leq s \leq t < T\}$ be an evolution operator of class $\mathcal{E}(D, f)$. If*

$$\lim_{h \downarrow 0} \frac{1}{h} \int_0^{T-h} d(u(s+h), U(s+h, s)u(s)) ds = 0,$$

then $u(t) = U(t, 0)u(0)$ for $0 \leq t < T$.

Proof. Let $0 < T_0 < T$ and set $h_0 = T - T_0$. By condition (f2) we see that the function $s \rightarrow \int_0^{T_0} f(s + \sigma, \sigma) d\sigma$ is upper semicontinuous on $[0, h_0]$. Since

$$\frac{1}{h} \int_0^h \left(\int_0^{T_0-h} f(s + \sigma, \sigma) d\sigma \right) ds \leq \frac{1}{h} \int_0^h \left(\int_0^{T_0} f(s + \sigma, \sigma) d\sigma \right) ds$$

for $h \in (0, h_0)$, and the right-hand side tends to zero as $h \rightarrow 0$, by condition (f1). From Corollary 6 we infer that $u(t) = U(t, 0)u(0)$ for $0 \leq t < T_0$. Since $T_0 \in (0, T)$ is arbitrary, the conclusion follows. \square

Example 9 (Agarwal-Lakshmikantham [4]). Conditions (E1) and (E2) are not sufficient for the conclusion of Theorem 8. In fact, let $X = [0, \infty)$ and $d(x, y) = |x - y|$ for $x, y \in X$, and define

$$U(t, s)x = \{x^{1/3} + (t - s)/3\}^3 \text{ for } x \in D(s) = X \text{ and } 0 \leq s \leq t < T < \infty.$$

Then (E1) and (E2) are satisfied, but (E3) is not satisfied, since

$$\lim_{(x,y) \rightarrow (0,0)} \frac{|U(r+h, r)x - U(r+h, r)y|}{|x - y|} = \infty$$

for $0 \leq r < r + h < T$. Let $u(t) = 0$ for $0 \leq t < T$. Then

$$\frac{1}{h} \int_0^{T-h} |u(s+h) - U(s+h, s)u(s)| ds = \frac{T-h}{3} \left(\frac{h}{3} \right)^2 \rightarrow 0,$$

as $h \downarrow 0$, but $u(t) \neq U(t, 0)u(0) = (t/3)^3$ for $0 \leq t < T$.

REFERENCES

- [1] T. Iwamiya, S. Oharu and T. Takahashi, *On the class of nonlinear evolution operators in Banach space*, Nonlinear Anal. **10** (1986), 315–337.
- [2] Y. Kobayashi, S. Oharu and N. Tanaka, *An approximation theorem of Lax type for semigroups of Lipschitz operators*, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, **42** (2000), 159–166.
- [3] Y. Kobayashi, N. Tanaka and Y. Tomizawa, *Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces*, Hiroshima Math. J. **45** (2015), 267–307.
- [4] R. P. Agarwal and V. Lakshmikantham, *Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations*, Series in Real Analysis Volume 6, World Scientific, Singapore-New Jersey-London-Hong Kong 1993.

[5] R. D. Richtmyer and K. W. Morton, Difference methods for initial-value problems. Second edition, Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney 1967.

Y. KOBAYASHI

Faculty of Science and Engineering, Chuo University, Japan

E-mail address: `kobayashi@math.chuo-u.ac.jp`

N. TANAKA

Department of Mathematics, Faculty of Science, Shizuoka University, Japan

E-mail address: `tanaka.naoki@shizuoka.ac.jp`